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Abstract: In this paper, a data augmentation method Conditional Residual Deep Convolutional
Generative Adversarial Network (CRDCGAN) based on Deep Convolutional Generative Adver-
sarial Network (DCGAN) is proposed to address the problem that the accuracy of existing image
classification techniques is too low when classifying small-scale rock images. Firstly, Wasserstein
distance is introduced to change the loss function, which makes the training of the network more
stable; secondly, conditional information is added, and the network has the ability to generate and
discriminate image data with label information; finally, the residual module is added to improve the
quality of generated images. The results demonstrate that by applying CRDCGAN to the augmented
rock image dataset, the accuracy of the classification model trained on this dataset is as high as
96.38%, which is 13.39% higher than that of the classification model trained on the non-augmented
dataset, and 8.56% and 6.27% higher than that of the traditional dataset augmented method and the
DCGAN dataset augmentation method, respectively. CRDCGAN expands the rock image dataset,
which makes the rock classification model accuracy effectively improved. The data augmentation
method was found to be able to change the accuracy of the classification model to a greater extent.

Keywords: GAN; rock image generation; data augmentation; condition information; rock classification

1. Introduction

Rock classification plays an important role in geological exploration and belt trans-
portation, etc. [1,2]. Misclassification of rocks can cause safety hazards and economic
losses [3]. Currently, deep-learning-based image classification techniques are the main-
stream approach for rock classification [4]. Deep learning requires a large amount of data
for model training, which in reality is constrained by the conditions of rock image acqui-
sition, making it difficult to obtain a large amount of rock image data and obtaining an
uneven proportion of samples [5,6]. The scarcity of data becomes an important reason for
the accuracy of rock classification models [7].

The poor lighting conditions, electromagnetic interference, dust, and fog in the imaging
environment make it difficult to augment rock image data [8]. In recent years, scholars
have proposed some practical methods for rock image data augmentation as a way to
improve the accuracy of rock image classification. Hong et al. used the traditional data
enhancement technique for coal gangue image data for data enhancement, which effectively
improved the classification accuracy of coal gangue; the method is not applicable to the
dataset containing multiple rock images, the traditional image data enhancement method
generates images with little differentiation from the original image data, and there is a
large amount of redundant feature information, which is not conducive to improving
the generalization ability of the classification model [9]. Baraboshkin et al. subjected
the collected 2000 stratigraphic rock images to data augmentation to 20,000 images to
improve the accuracy of the classification task and prevent overfitting, but the method in
the paper was not effective in augmenting the image data, and there was a large amount
of redundant feature information in the generated images [10]. Cheng et al. proposed
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SinGAN, a rock image generation network based on generative adversarial networks, and
the experimental results showed that the method can automatically generate rock images
with diverse features and effectively retain the image feature detail information, but the
generated images cannot effectively improve the accuracy of the rock thin section image
classification model [11].

In this paper, we propose a CRDCGAN data augmentation method based on Genera-
tive Adversarial Network (GAN) by analyzing the features of rock image data in a rock
classification task scenario. CRDCGAN starts by adding conditional information to enable
the generative network to generate matching sample label pairs and generates multi-class
rock image data based on label information and noisy data. At the same time, the residual
module is introduced, and the loss function is changed to solve the problems of poor quality
of generated rock images, redundancy of generated rock image feature information, and
instability of training of the Generative Adversarial Network. By augmenting the rock
image data with CRDCGAN and generating a large amount of various rock image data
with labels, the accuracy of the classification model is greatly improved, and better results
are also obtained in other evaluation methods.

2. Generating Adversarial Networks

Generative Adversarial Networks were proposed by Ian Goodfellow [12]. GAN in-
cludes two sub-networks: generative network and discriminative network, where the
generative network is responsible for learning the distribution of real samples. The dis-
criminant network is responsible for determining whether the source of the sample is the
generative network or the original data. The losses of the generation network and the
discriminative network are incorporated. The objective function is as follows:

min
G

max
D

V(G, D) = Ex∼Pdata(x)
[log D(x)] + Ez∼Pg(z)

[log(1− D(G(z)))]. (1)

A network is generated when training stops. The optimization goal becomes

max
D

V(G, D) = Ex∼Pdata(x)
[log(D(x))] + Ez∼Pg(x)

[log(1− D(x))]. (2)

Then, points are converted from the following equation:

max
D

V(G, D) =
∫

x
Pdata(x) log(D(x))dx +

∫
x

Pg(x) log(1− D(x))dx, (3)

where the maximum value of V(G,D) is obtained. The maximum value of the requested
equation is calculated as follows:

Pdata(x)log(D(x)) + Pg(x)log(1− D(x)). (4)

Then, log base is set to 2, Pdata(x) = A, Pg(x) = B, and D(x) = t to obtain the following:

f (t) = A log2 t + B log2(1− t). (5)

The first-order derivative of Equation (5) is given by the following:

f ′(t) =
1

In2
A− (A + B)t

t(1− t)
. (6)

For the above equation, make f ′(t) = 0, and obtain t = A/(A + B); f (t) is continuous at
that point and changes in monotonicity. Therefore, the function at that point obtains the
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maximum value. The network is discriminated to reach the optimal state, V( G,D) receives
the maximum, at this point:

D(x) =
Pdata(x)

Pdata(x) + Pg(x)
. (7)

Taking (7) into (3), we obtain the following:

min
G

V(G, D) = −2 log 2 + min
G

∫
x
(Pdata(x) log

Pdata(x)
(Pdata(x) + Pg(x))/2

+ Pg(x) log(
Pg(x)

(Pdata(x) + Pg(x))/2
))dx. (8)

The Kullback–Leibler divergence is calculated as

DKL(p‖q ) =
∫

x
p(x) log

p(x)
q(x)

dx. (9)

Constructing the KL scatter from Equation (8) [13], we obtain

min
G

V(G, D) = −2 log 2 + min
G

[DKL(Pdata(x)‖
Pdata(x) + Pg(x)

2
) + DKL(Pg(x)

∥∥Pdata(x) + Pg(x)
2

)]. (10)

For lack of symmetry in KL dispersion, Jensen–Shannon divergence [14] is introduced
as follows:

DJS( p‖q) = 1
2

DKL( p‖ p + q
2

) +
1
2

DKL( q‖ p + q
2

) (11)

Constructing the JS divergence from Equation (10) gives

min
G

V(G, D) = −2 log 2 + min
G

[DJS(Pdata(x)‖Pg(x))] (12)

From the nature of JS divergence, it follows that DJS(p||q) ≥ 0, DJS(p||q) = 0, V(G,D)
obtains the minimum value −2log2, The state of the generated network at this point is
as follows:

Pdata(x) = Pg(x) (13)

A network is generated to learn the distribution consistent with the true distribution.
We use Generative Adversarial Networks to reach Nash Equilibrium [15].

3. CRDCGAN Algorithm

The original GAN is mainly based on full connectivity to implement the generative
and discriminant networks [16]. GAN requires a large number of network parameters to
generate images. GAN image generation is not effective. Radford et al. [17] proposed Deep
Convolutional Generative Adversarial Networks. DCGAN uses transposed convolutional
layers to realize the generative network and convolutional layers to realize the discrimina-
tive network. Transposed convolution refers to the up-sampling by expanding the image
between the inputs via digital padding and then performing the convolution operation to
reach an output width and height greater than the input [18].

In this paper, we propose CRDCGAN on the basis of DCGAN. CRDCGAN fol-
lows the DCGAN network structure. CRDCGAN improved loss function. CRDCGAN
adds additional information as input to the generative and discriminative networks.
Adding a residual module to the generative network of CRDCGAN improves the quality
of generated images.

3.1. Loss Function Improvements

From (12), it can be seen that DJS(p||q) is fixed when the two distributions are different,
the gradient does not change, and the network parameters cannot be updated. To prevent
the above from happening, JS divergence needs to be replaced. Arjovsky et al. [13] proposed
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the Wasserstein distance, which denotes the minimum cost of performing a transformation
between distributions [19] is defined as follows:

W(pr, qg) = infy∼∏ (p,q)E(x,y)∼γ[‖x− y‖]. (14)

It is difficult to calculate W(pr,pg) directly via Equation (14). According to Kantorovich–
Rubinstein duality [19],

W(pr, pg) = sup‖ f ‖L≤1(Ex∼pr [ f (x)]− Ey∼pg [ f (y)]) (15)

The Wasserstein distance between pr and pg can be transformed into an upper bound
for the distribution of functions pr and pg expectations satisfying the K-Lipschitz continuum.
The Wasserstein distance between the distribution pr and pg is as follows:

W(pr, pg) =
1
K

sup‖ f ‖L≤K(Ex∼pr [ f (x)]− Ey∼pg [ f (y)]), (16)

where f satisfies K-Lipschitz continuity, i.e., satisfies |f (x1) − f (x2)| ≤ K|x1 − x2|.
To ensure that f satisfies the K-Lipschitz continuity, it is necessary to restrict the range

of values of the linear operator for each layer. In this paper, the range (−0.01, 0.01) of the
literature [19] is followed.

The loss function is finally improved as follows:

L = arg min
G

max
f

Ex∼Pdata(x)
[ f (x)]− Ex∼Pg(x)

[ f (x)]. (17)

3.2. Join Condition Information

To solve the problem, DCGAN can only generate images based on random noise
and cannot obtain image labels. CGAN-related methods are introduced to add additional
image labeling information to the generative and discriminative networks. CGAN delivers
additional information to the network as part of the input [20]. The function of generating
samples that resemble the real distribution and meet the corresponding conditions is added
to CRDCGAN. First, the generative network inputs Gaussian noise and additional in-
formation conditions to form a joint representation, turning unsupervised learning into
supervised learning. Second, the generative network outputs pseudo-samples that match
the labels. Finally, the generative network optimization objective is changed to generate
images that match the labels, and the discriminative network objective is changed to
discriminate between pseudo-sample–label pairs from the generative network and sample–
label pairs from the original data. For the generated sample–label pairs, they are processed
and used for classification model training.

3.3. Add Residuals Module

In order to improve the quality and increase the diversity of generated images, CRDC-
GAN introduces the residual block. The residual module adds jump connections between
input and output [21] to extract deep feature information from the feature map. This
way, the model can automatically choose whether to complete the feature or characteristic
transformation via the convolutional layer or skip the convolutional layer directly [22].
Therefore, adding a residual module to the generative network also increases the stability
of the network training [23]. The residual module is added to the generative network, and
the output dimension is not changed.

The following is an example of generating a 32-pixel × 32-pixel RGB image. The
construction of CRDCGAN generative networks based on conditional information and the
deep residual module is shown in Figure 1.
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Figure 1. CRDCGAN generative network.

The generating network takes as input a random vector of dimension 64 obeying
Gaussian distribution and category labels. It is mapped to 256 4 × 4 feature maps via
transposed convolution. A tensor of 32 × 32 × 3 is obtained via 4 transposed convolution
operations. The residual module is added to it, and the output is kept unchanged to
obtain the pseudo-sample matching the category label and output a 32-pixel × 32-pixel
3-channel image.

The construction of the CRDCGAN discriminative network is shown in Figure 2.
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Figure 2. CRDCGAN discriminative network.

Discriminative networks are essentially classifiers for classification tasks. The discrim-
inative network inputs 32 × 32 × 3 image data containing label information and obtains
a 2 × 2 × 384 3-dimensional tensors by 4 convolutional layers. The activation functions
of the first, second, and third convolutional layers using LeakyRelu. The convolution
layer extracts the characteristics, and the fully connected layer transforms the character-
istic vector into a 1-dimensional tensor to obtain the probability that the image is a true
sample–label pair.

4. Experimental Procedure and Analysis
4.1. Evaluation Indicators

In this paper, we study CRDCGAN to generate rock image data with labels, which
are processed and used for image classification, whether the classification performance of
the network has improved or not. The key is the accuracy of the classification task. The
classification accuracy rate is calculated as follows:

acc =
TP + FP

TP + TN + FP + FN
(18)

There is an obvious drawback of accuracy: the categories that account for a larger
proportion of the overall have a greater impact on accuracy than the other categories. For
this purpose, precision, recall, and F1 scores are introduced through the confusion matrix
for a comprehensive evaluation of the network.
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Precision, recall, and F1 scores are calculated as follows:

P =
TP

TP + FP
(19)

R =
TP

TP + FN
(20)

F1 =
2PR

P + R
(21)

TP denotes the number of positive samples predicted correctly, TN denotes the num-
ber of negative samples predicted correctly, FP denotes the number of negative samples
predicted incorrectly, the precision rate P is the proportion of correctly predicted positive
samples to all predicted positive samples, FN is the number of positive samples predicted
incorrectly, the recall rate R is the proportion of correctly predicted positive samples to all
positive samples, and the F1 score is used as a way to indicate the accuracy of the model for
the classification task [24].

4.2. Experimental Environment Configuration

The experimental environment in this paper is Windows 10 OS, CPU model is I7-7700HQ,
memory is 16 G, Python language is used for implementation, deep learning framework
is TensorFlow 2.4.1 +CUDA 11.0.221+ CUDNN8.1.1, and NVIDIA GTX 1050 GPU is used
for acceleration.

4.3. Experimental Procedure

The experimental flow is shown in Figure 3.
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4.4. Experimental Procedure and Analysis of Results

Rock image data is collected on the Internet using crawler technology. The corrupted
and memory-occupied image data of the collected rock image data was eliminated. A total
of 4173 images of various types of rocks remained, including 172 of basalt, 739 of coal,
203 of granite, 677 of limestone, 775 of marble, 956 of quartzite, and 651 of sandstone. We
remove the image watermarks and cropped non-major parts of the images. Image size
varies, image sizes larger than 32 pixels are scaled, and image sizes smaller than 32 pixels
are expanded. All types of images are read, a table of digital codes is created, all subfolders
under the root directory are traversed, the mapping relationship is fixed, and each category
corresponds to a digital code. Corresponding codes and image locations are saved in a
file, and the file is read to obtain image paths and corresponding labels. The images are
read into a (32, 32, 3) tensor form, and the dimensions are added before axis = 0 for tensor
stacking to obtain the rock image dataset. The images of each class are divided according to
the ratio of 4:1 between the training set and the test set. The uneven distribution of samples
in the rock image dataset, the large image noise, and the different number of samples
contained in a single image led to the difficulty of the rock image classification task and the
difficulty of model training. The rock image dataset (from left to right, basalt, coal, granite,
limestone, marble, quartzite, and sandstone) is shown in Figure 4.
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Figure 4. Rock images.

Training CRDCGAN, the optimizer uses Adam. The learning rate of 0.0001, the
batch_size size of 32, and 300 iterations of training for the generative and discriminative
networks were determined through several experiments. The generative network of
CRDCGAN is prevented from learning the features of the test set in advance, generating
images containing the same features as the test set, and only the rock image training set
is used for the training of CRDCGAN. The control generating network input label = 1
generates coal, and the training process generates images presented in a 6 × 1 specification,
as shown in Figure 5.
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As observed in Figure 5, at the 75th iteration, CRDCGAN initially has the generation
capability, and the generated coal images are blurred with obvious noise; at the 150th
iteration, the image generation capability is greatly improved, and the image quality is
obviously improved; at the 225th iteration, the network generation capability is basically
stable, and the generated images are clear; at the 300th iteration, the image generation
capability tends to a steady state, and the generated images are clear in detail, without
pattern collapse and rich in diversity.

The control labels generate basalt, granite, limestone, marble, quartzite, and sandstone,
as shown in Figure 6.
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Figure 6. CRDCGAN generates rock images.

The CRDCGAN generation network that has completed training is fed with label
information and noisy data to generate rock image data with label information. The
original dataset is expanded using the generated images. To verify whether the effect of
using CRDCGAN on rock images can be improved, experimental validation is performed
using AlexNet. This paper focuses on data enhancement without using data enhancement
methods on the data, which is directly used for network training, data enhancement
using traditional methods of affine transformation (rotation, cropping, flipping, increasing
brightness, and random erasing) methods, and data enhancement using DCGAN methods
to expand the dataset. The original image, the image generated via a traditional affine
transformation, the image generated via DCGAN, and the image generated via CRDCGAN
are shown respectively.

From Figure 7, it can be seen that the images of coal enhanced via the traditional
method do not differ much from the original images, and there is redundancy in feature
information; the images generated via DCGAN are relatively single and blurred; the images
generated via CRDCGAN are clearly visible, rich in details with obvious features. The
traditional method, DCGAN method, and CRDCGAN method are used to expand the rock
image dataset, respectively, and the classification model AlexNet is trained on the same test
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set with 100 iterations. The loss value and accuracy variation curves of the classification
model are shown in Figure 8.
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As seen in Figure 8, after 100 iterations, the classification accuracy of the proposed
method CRDCGAN reaches 96.38%, which is 13.39%, 8.57%, and 6.28% higher than that of
the classification models trained using the non-augmented, traditional data augmentation
methods and DCGAN data augmentation methods, respectively, on the same test set. The
classification accuracy of the network trained via the CRDCGAN-augmented dataset is less
volatile and stable at around 0.13. The loss value of the network trained via CRDCGAN
with the expanded dataset fluctuates less and is stable at about 0.13. The CRDCGAN
method is more stable than the other methods and achieves higher classification accuracy.

The advantages and disadvantages of classification models are analyzed in depth
using confusion matrices [25]. The confusion matrix can visualize the classification of each
type of rock. The confusion matrix is shown in Figure 9.

figfig:applsci-2335948-f009 visualizes that the confusion matrix of the classification
model trained via CRDCGAN enhancement has significantly larger values at the diag-
onal line, which also reflects a greater number of correctly classified images. The four
classification models were subjected to performance analysis, and the results are shown in
Tables 1–4.
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Table 1. Original image test set metrics.

Type Precision Recall F1 Score Number

Basalt 0.8438 0.7714 0.8060 27
Coal 0.9061 0.9820 0.9425 164

Granite 0.9000 0.7941 0.8437 27
Limestone 0.9630 0.7123 0.8189 104

Marble 0.6632 0.8514 0.7456 126
Quartzite 0.7753 0.7797 0.7775 138
Sandstone 0.9273 0.8361 0.8793 102

Table 2. Traditional augmentation method test set metrics.

Type Precision Recall F1 Score Number

Basalt 0.8710 0.7714 0.8182 27
Coal 0.9647 0.9820 0.9733 164

Granite 1.0000 0.8235 0.9032 28
Limestone 0.9348 0.8836 0.9085 129

Marble 0.7922 0.8243 0.8079 122
Quartzite 0.8146 0.8192 0.8169 145
Sandstone 0.8692 0.9262 0.8968 113



Appl. Sci. 2023, 13, 5316 11 of 14

Table 3. DCGAN augmentation test set metrics.

Type Precision Recall F1 Score Number

Basalt 0.8857 0.8857 0.8857 31
Coal 0.9375 0.9880 0.9621 165

Granite 0.8333 0.8824 0.8571 30
Limestone 0.9007 0.9315 0.9158 136

Marble 0.8333 0.8446 0.8389 125
Quartzite 0.9432 0.8305 0.8833 147
Sandstone 0.9040 0.9262 0.9150 113

Table 4. Augmentation test set metrics.

Type Precision Recall F1 Score Number

Basalt 1.000 0.9429 0.9706 33
Coal 0.9880 0.9820 0.9850 164

Granite 1.000 0.9411 0.9697 32
Limestone 0.9589 0.9589 0.9589 140

Marble 0.9063 0.9797 0.9416 145
Quartzite 0.9881 0.9379 0.9623 166
Sandstone 0.9597 0.9754 0.9675 119

As seen from Tables 1–4, the method CRDCGAN in this paper achieves more obvious
results compared with the traditional image data enhancement method and DCGAN
image data enhancement method. The number of correct recognitions for quartzite and
marble improved significantly. The data from Tables 1–4 can show that the classification
performance of the classification network trained by the method in this paper is better, and
the classification accuracy recall and F1 values are higher for each category in the dataset.
The experiments and the passing show that the data enhanced by the method of this paper
can achieve the classification model with better classification performance.

4.5. Experimental Comparison of Different Data Augmentation Methods on Public Datasets

In order to verify the effectiveness of the proposed method in this paper, the method
is compared experimentally with no data augmentation, traditional method data augmen-
tation, and DCGAN method data augmentation applied to HWDB10 dataset, FashionMnist
dataset, Cifar-10 dataset, and Cifar-100 dataset to complete handwritten Chinese character
classification, fashion classification, and physical classification. The control experiments
are shown in Figure 10.

Figure 10a,b indicate the loss value and accuracy of the HWDB10 data, respectively.
The loss values and accuracy rates on the FashionMnist dataset, Cifar-10 dataset, and
Cifar-100 dataset are shown in the following order.

From Figure 10, it can be seen that the CRDCGAN data augmentation method in
this paper can positively promote the classification performance of the model and has
a large improvement on the Cifar-10 dataset, with a classification accuracy of 79.54%,
which is much higher than the other 3 methods of 58.68%, 60.64%, and 65.11%. On the
HWDB10 dataset, this paper’s method has only a 3.49% improvement over that without
the data augmentation method. The reason for the accuracy improvement of only 3.49%
is that the AlexNet classification model has 94.68% classification accuracy in this dataset
without data augmentation. The performance on the rock sub-image dataset, the HWDB10
dataset, and the Cifar-100 dataset fully illustrate that the classification accuracy of the
classification model is improved more significantly by using this paper’s method in the
difficult classification task. The rock image classification is a 7-classification task, the Cifar-
10 dataset is a 10-classification task, and the Cifar-100 dataset is a 100-classification task.
Through these three sets of experiments, it can be shown that the method of this paper can
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be applied to a variety of multi-classification tasks. The method enhanced the effect on
both color and black-and-white images.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 14 
 

model is improved more significantly by using this paper’s method in the difficult classi-
fication task. The rock image classification is a 7-classification task, the Cifar-10 dataset is 
a 10-classification task, and the Cifar-100 dataset is a 100-classification task. Through these 
three sets of experiments, it can be shown that the method of this paper can be applied to 
a variety of multi-classification tasks. The method enhanced the effect on both color and 
black-and-white images. 

 
Figure 10. Comparison of classification model loss value accuracy change curves. (a) Loss value on 
HWDB10. (b) Accuracy on HWDB10. (c) Loss value on FashionMnist. (d) Accuracy on Fash-
ionMnist. (e) Loss value on Cifar-10. (f) Accuracy on Cifar-10. (g) Loss value on Cifar-100. (h) Accu-
racy on Cifar-100.  

The above experiments verify the effectiveness of the proposed method in this paper, 
which can enhance the data and thus improve the accuracy of the classification model. It 
also shows that the method in this paper has some general significance and can improve 
the accuracy of rock image classification. 

5. Conclusions 
In this paper, an image data augmentation method CRDCGAN is given. CRDCGAN 

is derived from the machine learning algorithm DCGAN and improved on DCGAN. 

Figure 10. Comparison of classification model loss value accuracy change curves. (a) Loss value on
HWDB10. (b) Accuracy on HWDB10. (c) Loss value on FashionMnist. (d) Accuracy on FashionMnist.
(e) Loss value on Cifar-10. (f) Accuracy on Cifar-10. (g) Loss value on Cifar-100. (h) Accuracy
on Cifar-100.

The above experiments verify the effectiveness of the proposed method in this paper,
which can enhance the data and thus improve the accuracy of the classification model. It
also shows that the method in this paper has some general significance and can improve
the accuracy of rock image classification.

5. Conclusions

In this paper, an image data augmentation method CRDCGAN is given. CRDCGAN
is derived from the machine learning algorithm DCGAN and improved on DCGAN. CRD-
CGAN generates rock image data, obeying the same distribution as the original image data
with labels, which can be directly applied to classification network model training. The
augmented image dataset was used for rock image classification, and the classification
accuracy reached 96.38%. Compared with [9], this method generates clearer images with
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less redundant information, which is suitable for datasets containing multiple rock images,
and improves the model accuracy while enhancing the model generalization ability. Com-
pared with [11], the rock image data generated by this method can effectively improve the
accuracy of the classification model. Compared with [10], this paper uses a relatively weak
classification model to achieve higher classification accuracy. The comparison with the
above literature proves the effectiveness of our method.

Our next work will continue to investigate the impact of data expansion size on the
classification accuracy of the model.
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