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Abstract: Behavioral malware analysis is a powerful technique used against zero-day and obfuscated
malware. Additionally referred to as dynamic malware analysis, this approach employs various
methods to achieve enhanced detection. One such method involves using machine learning and deep
learning algorithms to learn from the behavior of malware. However, the task of weight initialization
in neural networks remains an active area of research. In this paper, we present a novel hybrid model
that utilizes both machine learning and deep learning algorithms to detect malware across various
categories. The proposed model achieves this by recognizing the malicious functions performed
by the malware, which can be inferred from its API call sequences. Failure to detect these malware
instances can result in severe cyberattacks, which pose a significant threat to the confidentiality,
privacy, and availability of systems. We rely on a secondary dataset containing API call sequences,
and we apply logistic regression to obtain the initial weight that serves as input to the neural network.
By utilizing this hybrid approach, our research aims to address the challenges associated with
traditional weight initialization techniques and to improve the accuracy and efficiency of malware
detection based on API calls. The integration of both machine learning and deep learning algorithms
allows the proposed model to capitalize on the strengths of each approach, potentially leading to a
more robust and versatile solution to malware detection. Moreover, our research contributes to the
ongoing efforts in the field of neural networks, by offering a novel perspective on weight initialization
techniques and their impact on the performance of neural networks in the context of behavioral
malware analysis. Experimental results using a balanced dataset showed 83% accuracy and a 0.44 loss,
which outperformed the baseline model in terms of the minimum loss. The imbalanced dataset’s
accuracy was 98%, and the loss was 0.10, which exceeded the state-of-the-art model’s accuracy. This
demonstrates how well the suggested model can handle malware classification.

Keywords: malware; malware detection; API calls; logistic regression; neural network; weight initialization

1. Introduction

The role of cybersecurity has become increasingly significant as cyberattacks have
rapidly escalated, necessitating cutting-edge approaches to detecting and preventing mali-
cious behavior [1,2]. In recent years, the prevalence of malware has grown exponentially,
posing a significant threat to the security of computer systems and networks worldwide.
According to a report by AV-TEST, an independent IT security research institute, they regis-
tered over 1.2 billion malware samples by the end of 2021, with approximately 350,000 new
malware samples being identified daily [3]. This staggering growth rate highlights the
urgency of the development of advanced detection and prevention techniques to combat
the ever-evolving malware landscape.

The complexity and sophistication of malware attacks have also increased, with cyber-
criminals employing new tactics and techniques to evade traditional detection methods.
A study conducted by Symantec revealed that targeted attacks increased by 42% in 2021,
with ransomware attacks becoming more targeted and lucrative, and supply chain attacks
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increasing by 93% [4]. These statistics emphasize the need for innovative, intelligent, and
automated solutions to identify and counteract the growing threat posed by malware [5].

Malware, an abbreviation for "malicious software", refers to a diverse range of intrusive
software programs designed with the intent to compromise the integrity, confidentiality,
or availability of computer systems and their resources [6]. These malevolent software
entities infiltrate, disrupt, or exploit computer systems, networks, or end-user devices,
often leading to unauthorized access, data theft, or corruption [7]. Malware encompasses
a broad spectrum of software types, including viruses, worms, Trojans, ransomware,
adware, spyware, and rootkits, each exhibiting unique characteristics and methods of
propagation [8]. The proliferation of malware poses a significant threat to both individuals
and organizations, necessitating continuous advancements in detection and prevention
techniques, to safeguard the digital ecosystem [9].

Malware analysis is a critical aspect of cybersecurity that involves systematically
examining, understanding, and dissection malicious software. By analyzing malware,
researchers and cybersecurity professionals can gain valuable insights into its functionality,
purpose, and potential impact on computer systems, networks, and end-user devices [10].
This process plays a pivotal role in enhancing the overall security position of organizations
and individuals alike.

The primary objectives of malware analysis include identifying the nature and charac-
teristics of the malware, such as its type (e.g., virus, worm, Trojan), the method of propaga-
tion, and its behavior within the infected system [9]. These insights enable the development
of effective countermeasures, including antivirus signatures, intrusion detection system
(IDS) rules, or software patches that can detect, prevent, or remediate infections caused
by malware [7]. Moreover, malware analysis helps strengthen cybersecurity defenses by
providing a deeper understanding of the tactics, techniques, and procedures (TTPs) em-
ployed by cybercriminals. This knowledge facilitates the development of proactive security
measures and strategies to mitigate future threats [6]. Additionally, the information gleaned
from malware analysis can support incident response and digital forensic investigations by
attributing the malware to specific threat actors, understanding their motives and objectives,
and facilitating the collection of evidence for legal or law enforcement purposes [11].

Malware analysis techniques typically fall into two categories: static analysis and
dynamic analysis. Static analysis involves examining the malware’s code and metadata
without executing it, while dynamic analysis entails running the malware in a controlled
and isolated environment, to observe its behavior [10]. Both approaches provide valuable
information that helps cybersecurity professionals defend against the ever-evolving threat
landscape. Malware analysis is an indispensable component of modern cybersecurity prac-
tices. Its contributions to understanding the intricacies of malicious software, developing
countermeasures, and enhancing overall security defenses make it a vital area of research
and a key factor in safeguarding the digital ecosystem against emerging threats.

In previous research, dynamic and static API approaches have primarily been em-
ployed independently, with only a few instances of their combined application. This study
introduces a novel hybrid model that relies on dynamic API call sequences for malware
detection. The model incorporates machine learning logistic regression as an initial weight
input for the neural network. This approach offers several advantages, including enhanced
malware detection accuracy and mitigation of vanishing and exploding gradients in the
neural network. Our hybrid model’s innovation lies in its weight initialization process
for neural networks, an area that continues to attract research interest. In this paper, we
propose a hybrid model that utilizes weights derived from a machine learning model,
specifically logistic regression, and integrates them as initial weights in a recurrent neural
network model. This unique combination effectively addresses the challenges associated
with weight initialization in neural networks, while maximizing the detection capabilities
of both dynamic and static API methods.

The rest of the paper is organized as follows. In Section 2, we summarize some
previous studies and literature reviews that addressed malware analysis and detection
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using API calls, machine learning, and deep learning approaches. In Section 3, we elaborate
on our proposed hybrid model. In Section 4, we present the results and discussion. Lastly,
in Section 5, we conclude our paper and suggest future areas of work.

2. Related Works

To effectively identify concealed malicious code, it is vital to comprehend both the
features of API calls and the structure of program executables (PE). Analyzing API calls
sheds light on the behavior of a file, while understanding the Win32 portable executable
(PE) file format, the standard format provided by Microsoft, revealing the static features of
malware that can be obfuscated using evasion techniques.

The majority of malware originates from benign software that has been infected by
various types of malicious programs, such as worms. From a code perspective, these
are ordinary code sequences that have been injected with harmful code fragments. Both
benign and malicious computer programs are primarily processed using a series of ordered
API calls. However, attackers often employ techniques such as inserting irrelevant APIs,
incorporating conditional triggers, and employing obfuscation to evade detection. As a
result, the proposed framework focuses on first dividing the entire API sequence into API
fragments of a specific length, which are then used in a training phase. This enables the
classifier to identify malicious API fragments and subsequently employ ensemble learning
to recognize malicious code based on the proportion of malicious API fragments present
within the entire API execution sequence [12].

In September 2019 alone, one million new malware specimens emerged, contributing
to a staggering total of 948 million known specimens in the wild. This surge highlights the
pressing need for effective malware detection methods. Consequently, a novel behavioral
malware detection approach has been proposed, which is based on dynamic analysis
data represented by the graph structure of API call sequences. This method leverages a
cutting-edge deep learning architecture specifically designed for graph classification to
achieve its goal. By defining a graph structure that encapsulates the API call sequence
of a program, both the spatial and temporal information of the program’s behavior is
integrated. Subsequently, a streamlined version of a deep graph convolutional neural
network (DGCNN) is employed to learn high-level representations, which a classifier can
then utilize to discern whether the program is malicious or benign [13].

In [14], the most noteworthy contribution revolves around developing an innovative
image processing technique that employs top-rated parameters for machine learning al-
gorithms (MLAs) and deep learning architectures to achieve an effective 0-day malware
detection system. Their approach incorporates both static and dynamic analysis, clas-
sical machine learning algorithms, and recurrent neural networks (RNNs), providing a
comprehensive solution to the challenge of malware detection.

On the other hand, the authors of [15] focused on a significant contribution, in the
form of a mixed-stage detection process. This methodology consists of two primary stages.
In the first stage, a Markov model extracts the sequential characteristics of API calls,
capturing vital information about the program’s behavior. The second stage involves
applying multiple machine-learning algorithms to the extracted API calls, enabling the
detection model to leverage the strengths of various algorithms for improved accuracy
and effectiveness.

A key aspect of the research presented in [15] is the emphasis on minimizing false
positive (FP) error rates when evaluating the model’s performance. By concentrating on
reducing FP error rates, the authors strive to enhance the reliability of the detection model,
ensuring that benign programs are not mistakenly flagged as malicious. This focus on
model evaluation highlights the importance of precision in malware detection systems, as
false positives can have significant implications for the users and organizations relying on
these systems for protection.

This research in [16] presents a novel malware detection method based on the visual
representation of recombined API command sequences. The authors suggest a method
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for obtaining instruction sequences that combines static and dynamic analysis and then
visualizes them using a heat map. The paper’s key contribution is the application of
visualization to malware detection, which makes it simpler to find patterns and anomalies.
The authors ran tests using a collection of real malware samples, and they successfully
detected over 97% of the threats. Overall, the suggested method shows the Table 1.

A multifaceted deep generative adversarial network (MDGAN) model for detecting
mobile malware was suggested in the paper in [17]. The proposed model comprises three
parts: a malware detector, a discriminator, and a generator. While the discriminator can
tell the difference between actual and fake malware samples to enhance the generator,
the generator creates synthetic malware samples for training the malware detector. The
primary contribution of this research is integrating a deep generative model with a malware
detector, which increases the malware detector’s detection precision. Compared to recent
advances, the suggested MDGAN model achieved 96.2% accuracy.

Table 1 offers a comprehensive overview of various studies conducted in the field,
meticulously comparing the distinct methods and classifiers employed across each research
endeavor. It provides a clear side-by-side comparison, enabling readers to easily discern
the differences and similarities in the methodologies and algorithms utilized, ultimately
shedding light on their efficacy in addressing the research question at hand. By examining
this comparative analysis, one can gain valuable insights into the underlying techniques
and their performance, which may pave the way for more refined and robust approaches in
future studies. Additionally, the table serves as a reference point for researchers, facilitating
the identification of potential gaps in the literature and inspiring novel contributions to
the field.

Table 1. Comparison of Previous Research.

Reference Method Classifier # of Malware Accuracy

Xin et al., 2019 [12] Dynamic analysis Long Short Term Memory (LSTM) 12,000 0.973
Schranko de Oliveira et al., 2019 [13] Dynamic analysis Deep Graph Convolutional Neural Networks (DGCNNs) 42,797 0.924

Vinayakumar, R., et al., 2019 [14] Both static and dynamic analysis Convolutional Neural Networks CNN 118,717 0.93
Hwang et al., 2020 [15] Dynamic analysis Random Forest machine learning model 1909 0.973

Yang, Hongyu et al., 2022 [16] Both static and dynamic analysis Malware feature image convolutional neural network (MimgNN) - 0.97

Mazaed Alotaibi, Fahad, 2022 [17] Both static and dynamic analysis Multifaceted Deep Generative Adversarial
Networks Model (MDGAN) 5546 0.962

3. Proposed Model
3.1. Dataset and Data Prepossessing

In this research, the data used were obtained from secondary sources, specifically
from [13]. The dataset was designed to support the research community by establishing a
basis for ongoing progress and improvement. It encompasses 42,797 malicious API call
sequences and 1079 non-malicious API call sequences, where each sequence consists of
the initial 100 nonrepeated, consecutive API calls. Nonetheless, the dataset exhibits an
imbalance, with the malware category being 40% larger than the benign category. Such
an imbalance may result in performance challenges when appraising the model using test
data. To counter this issue, we utilized an undersampling approach, which balanced the
record count in both classes and enabled the classifier to function more efficiently across
the two categories. In our investigation, we evaluated the model’s performance using both
balanced and imbalanced datasets, offering a thorough examination of its potential.

3.2. API Call Sequences

The application programming interface (API) is a critical element of the Windows
operating system, encompassing an array of functions housed within specific libraries.
Users leverage these functions to interact with the operating system, which in turn mirrors
the behavior of various files. Therefore, it is of utmost importance to analyze the manner in
which these calls are executed, to determine their authenticity [18]. In order to pinpoint
malware, a multitude of API sequences are extracted from malware samples, which then
serve as features for detecting the presence of malware [19].
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For example, a significant portion of malware infects a victim’s machine through
Windows dynamic-link libraries (DLLs), which are libraries containing code and data that
multiple programs can simultaneously access via API calls. The DLL injection sequence
commences with an OpenProcess call to manage the targeted process, followed by allocating
memory space using the VirtualAllocateEx call. Subsequently, the malware’s complete path
is written using WriteProcessMemory, and finally, the targeted process reloads the DLL
through CreateRemoteThread. This sequence is extracted from the malware sample for
further analysis.

Another example involves import address table (IAT) hooking, where the IAT is a
table populated with function pointers that are executed at runtime. In simpler terms,
the IAT contains the starting addresses for APIs. By altering the addresses within the
table, a different API can be called, resulting in malware behavior, as demonstrated in [20].
Figure 1 illustrates a simple IAT hooking technique, where the application code calls the
Function1 API. Using the strcmp() function, the addresses stored in the import address
table (IAT) are sequentially compared to find the correct address pointing to the required
DLL function. Once the memory address containing the required DLL is located, the
VirtualProtect() function is used to change the memory protection permissions, to allow
writing and injecting the addresses, so that it can be redirected to the infected Baddll
function rather than the required Function1.

Application code 

...

...

Call Function1

Import Address Table (IAT) 

jmp Function1 

jmp Function0 

Function1

Legitimate
 code 

strcmp()

Function1

malware
 code

VirtualProtect()

Figure 1. IAT hooking.

The model proposed in this study was trained on a secondary dataset containing sam-
ples of malware API call sequences, enabling it to detect unknown malware instances [21].

3.3. Hybrid Model

Weight initialization in neural networks is a difficult task, specifically in iterative neural
network algorithms, where the initial point can determine if the algorithm will converge
or not and also affect result generalization [22]. For this reason, we need to initialize the
NN weights carefully. Our proposed model, as shown in Figure 1, is designed to initialize
neural network weights using logistic regression weights. The logistic regression model is
a supervised learning technique that is used in binary classification.The logistic regression
can be defined as in Equation (1):

y =
e(wx+b)

1 + e(wx+b)
(1)

While logistic regression has its limitations for capturing non-linear associations,
leveraging it as a source of initial weights for a neural network yields numerous advantages.
The proposed hybrid model, which fuses logistic regression and neural networks, seeks to
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enhance malware detection performance based on API calls by utilizing their combined
strengths. Employing logistic regression in this manner allows the model to capitalize on
its ability to identify significant features and achieve faster convergence, while the neural
network can model complex relationships within the data.

Algorithm 1 demonstrates a collection of API call sequences, denoted as x, which
function as the input for the model. The output is a binary classification label, y, that
signifies whether the input sequence is malware or not. To develop a coherent model,
the input sequences x and their corresponding labels y are employed to train a logistic
regression model. This process involves utilizing the training data to compute the logistic
regression model’s coefficients, represented as θ. The input and output sizes must be
defined to initialize the RNN. Following this, the coefficients from the logistic regression
model are transposed to serve as the RNN’s input-to-hidden weights, denoted as Wx. The
training data, a given loss function, an optimizer, and a specified number of epochs, were
then used to train the RNN. Lastly, the performance of the trained RNN was assessed by
applying a specific evaluation metric on a separate test dataset.

Algorithm 1: Hybrid Model
Input: API call sequences x.
Output: y that classify if x malware or not malware
1: θ ← TrainLogisticRegression(x, y).coe f f icient()
2: rnn← InitializeRNN(InputSize, OutputSize)
3: Wx = Transpose(θ)
4: SetWeights(rnn.InputToHiddenWeights, Wx)
5: TrainRnn(rnn, TrainingData, Activation, LossFunction, Optimizer, NumEpochs)
6: TestRnn(rnn, TestData, Evaluation)
7: end

The result of logistic regression is a probability ranging from 0 to 1, indicating the
likelihood of a given data point belonging to a particular class. Upon completing the model
training, we achieved an accuracy of 0.82 with the balanced dataset and 0.98 with the
imbalanced dataset. We then extracted the weights obtained during the final stage of the
logistic regression training, to be utilized as initial weights in the neural network.

A recurrent neural network (RNN) is a deep learning model that takes the sequence
input to perform an operation on it and then produces either one or a sequence of outputs.
Here, we used the many-to-one type of RNN, where the model takes many API calls and
classifys them into one class, either malware or not malware. In other words, we used a
sequential model. The main advantage of this RNN model is that model can remember its
previous inputs for computations. The RNN can be defined as shown in Equation (2) :

h(t) = f (h(t−1), xt; Θ) (2)

In the end, after developing the proposed model, we evaluated its effectiveness.
We compared the model’s performance on both balanced and imbalanced datasets, as
illustrated in Figure 2. Through this evaluation, we sought to gain insights into how
well the proposed model could be generalized to different types of dataset. By analyzing
the results obtained from the evaluation, we could draw conclusions about the model’s
effectiveness in handling imbalanced datasets compared to balanced ones. The model’s
performance on each dataset could be assessed based on various metrics, such as accuracy,
precision, recall, and F1 score. This comparison of the model’s performance on balanced
and imbalanced datasets can inform the development of strategies for improving the
model’s performance in future applications.
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Logistic Regression

1- Training logistic regression model
2- Extracting weights from the

trained model  
3- Transpose weights

Collecting Dataset that
consists of malware and

benign API call
sequences (Secondary)

Data preprocessing 

1- Removing the missing values
2-Balancing data using the
undersampling technique

Evaluating the
performance of the hybrid

model 

loss, time, accuracy, precision,
recall, and F1 score

Start

Splitting the dataset
into 

training and testing sets

RNN model 

1- Initializing the RNN model with 
weights from logistic regression.

2- Training the RNN model

RNN model with Xavier weights

1- Initializing the RNN model using 
Xavier strategy .

2- Training the RNN model

Evaluating the performance
of the Xavier model 

loss, time, accuracy, precision,
recall, and F1 score

Comparing the
models performances

End

Figure 2. The sequence of operations in our proposed hybrid model.

4. Results and Discussion

This portion of the paper aimed to apply the aforementioned theoretical concepts by
devising measurable and comparable experiments. Furthermore, the experiments were
organized in a manner that permitted statistical assessment of the results and comparison
to established techniques within the field. This methodology aided in identifying the pros
and cons of the proposed approach, as well as in appraising their ability to improve neural
network performance. To accomplish this, the experiments were carefully crafted to ensure
that the investigated variables were distinctly defined and could be precisely gauged.
This degree of exactness will allow researchers to derive significant inferences from the
information and contribute valuable understanding regarding the efficacy of the suggested
methods. Additionally, the experimental design incorporated elements of replicability and
control, ensuring that the results are robust and can be confidently generalized to a wider
range of scenarios.

Furthermore, the experiments were carried out in a systematic manner, comparing
the novel techniques against existing benchmarks in the field. This comparison provided a
clear understanding of how the proposed methods stack up against current practices and
revealed potential areas for improvement. By carefully analyzing the results, researchers
can pinpoint the most promising avenues for future research, fostering innovation and
driving the field of neural networks forward.

Regarding the experimental setup, the first model was built using the Constant weight
initializer with initial weights derived from the logistic regression coefficients. In contrast,
the GlorotUniform weight initializer was used to generate the second model. The archi-
tecture and hyperparameters were the same for both models. Our dataset was randomly
divided into training and testing sets, with a ratio of 70/30. We trained both models on the
training set, and the testing set served for evaluation of their performance. We used the
Adam optimizer, accuracy was the evaluation metric, and binary cross-entropy was the
loss function.

In the study by Xavier, in [23], a model was proposed to address the issues of vanishing
and exploding gradients in the final layers of neural networks. This method recommends
an approach wherein weights are chosen from a uniform distribution, with random values
restricted within specified bounds, as shown in Equation (3):

wij ∼ U[− 1√
n

,
1√
n
], (3)
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In this case, U represents the uniform distribution, and n corresponds to the number
of inputs. Given the extensive use of the Xavier technique for weight initialization, along
with its proven effectiveness in various deep learning models and architectures, it served
as a comparison baseline for evaluating the performance of our proposed approach, in both
balanced and imbalanced data scenarios.

Incorporating the Xavier model as a benchmark provided a solid foundation for
assessing the potential advantages of our suggested strategy. By comparing the outcomes
of our method with those obtained using the well-established Xavier technique, we could
establish a clear understanding of the relative strengths and weaknesses of our proposal.
This comparative analysis was instrumental in refining the proposed approach and ensuring
its relevance and applicability to a diverse range of deep learning contexts.

4.1. Balance Dataset

Following the application of an undersampling technique to balance the data, a method
commonly used to tackle imbalanced datasets in classification tasks, the number of majority
classes (malware) was adjusted to align with that of the minority classes (not malware). This
adjustment helped avoid potential bias in the model towards the majority class. As a result,
the number of records for both malware and nonmalicious software reached 1079 each,
culminating in a balanced dataset consisting of 2158 records, although somewhat limited in
size. Employing the undersampling technique yields advantages in terms of computational
efficiency and reduces false alarms in the minority class, which might otherwise occur
during training on an imbalanced dataset.

The significance of creating a balanced dataset is not to be underestimated, as it
ensures that the model is capable of accurately distinguishing between malware and non-
malicious software. By effectively managing class imbalance, the overall performance and
reliability of a classification model are enhanced. This is particularly crucial in cybersecu-
rity applications, where false alarms and misclassifications can have severe consequences.
In this regard, the undersampling technique is a valuable tool for improving a model’s
generalizability and robustness in handling diverse and real-world datasets.

Table 2 displays a range of performance metrics for each model, such as the accuracy,
optimal loss values, confusion matrix, and the time required for executing each model.
With respect to the accuracy, the models did not exhibit a substantial disparity, as they all
lied within the 0.83 to 0.84 range, which was deemed satisfactory for the limited number of
records in this dataset. Nonetheless, it is crucial to take the loss value into account when
assessing a model’s efficacy. As evident from the table, the proposed model significantly
outperformed the Xavier model in achieving the lowest loss value. The proposed model
attained a loss value of 0.40, compared to the Xavier model’s 3.47. This outcome suggests
that the proposed model was more efficient in reaching the lowest possible loss values,
while requiring a comparable or even shorter amount of time to train than the other models.
A confusion matrix is included to highlight the similarities in values between both classes
in the balanced dataset and to illustrate how these values differ in the upcoming section
discussing the imbalanced dataset.

Figure 3 depicts the changes in loss values for the neural network’s balanced dataset
throughout the training procedure. It is clear that the proposed model in Figure 3a started
with a relatively low loss value and, by the conclusion of the training process, achieved a
lower loss value than the Xavier model in Figure 3b. This observation implies that there
could be opportunities to optimize the training process of neural networks of this nature,
leading to enhanced computational efficiency and superior performance.
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Table 2. Evaluation scores for malware and benign classes with balanced data with logistic regres-
sion (LR), sequential with logistic regression weight (SLRW), and sequential with Xavier weights
(SXW) models.

Accuracy Best Loss Time (s) Malware Precision Recall F1-Score

LR 0.84 0.52 0.13
0 0.86 0.80 0.83

1 0.82 0.88 0.85

SLRW 0.83 0.44 10.86
0 0.83 0.81 0.82

1 0.82 0.84 0.83

SXW 0.83 3.47 10.98
0 0.86 0.78 0.82

1 0.80 0.88 0.84

(a) (b)
Figure 3. Loss comparison with balanced data. (a) The proposed model loss with balanced data.
(b) Xavier model loss with balanced data.

Figure 4 presents the accuracy per epoch of the proposed and Xavier models. As can
be observed, the Xavier model’s accuracy in Figure 4b steadily increases as the number of
epochs increases, with a few minor fluctuations. In comparison, the proposed model in
Figure 4a started with a relatively good accuracy, which is because the model had already
learned from the logistic regression model. This may indicate that in the future, there is a
possibility of reducing the time and difficulty of training the model using logistic regression,
while taking advantage of the properties of nonlinear neural networks.

(a) (b)
Figure 4. Accuracy comparison with balanced data. (a) The proposed model accuracy with balanced data.
(b) Xavier model accuracy with balanced data.
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4.2. Imbalance Dataset

In this particular dataset, we employed the entire data population, without applying
any resampling techniques. This choice was grounded in the understanding that neural
networks generally yield a higher accuracy when working with larger amounts of data.
Moreover, imbalanced classes are a common feature in most real-world problems. Conse-
quently, we utilized the complete dataset, to capitalize on all available information, despite
any potential imbalance issues. It is crucial, however, to acknowledge that using the full
dataset might introduce a bias towards the majority class, leading to a diminished accuracy
for the minority class. This occurrence, referred to as overfitting, can result in inadequate
generalization when encountering new data. As observed in Table 3, the recall and f1-
score of both models diverged significantly between the malware and benign classes. Both
models exhibited comparable performance in terms of accuracy, but the proposed model
outperformed Xavier’s model in this aspect. Specifically, the proposed model reached an
accuracy of 0.98, whereas Xavier’s model attained an accuracy of 0.92.

Table 3. Evaluation scores for malware and benign classes with the imbalanced dataset with logistic
regression (LR), sequential with logistic regression weights (SLRW), and sequential with Xavier
weight (SXW) models.

Accuracy Best Loss Time (s) Malware Precision Recall F1-Score

LR 0.98 0.97 0.40
0 0.83 0.38 0.52

1 0.98 1.00 0.99

SLRW 0.98 0.10 157.00
0 0.72 0.46 0.56

1 0.99 1.00 0.99

SXW 0.92 0.10 154.90
0 0.19 0.64 0.29

1 0.99 0.93 0.96

The findings presented in this analysis emphasize the importance of considering the
impact of class imbalances on model performance, particularly regarding metrics such as
recall and f1-score. While using the entire dataset can indeed improve the overall accuracy,
it is vital to be mindful of the trade-offs involved, as well as the potential for overfitting. By
exploring various techniques for addressing class imbalances, researchers can develop more
robust and versatile models that perform effectively across a diverse range of real-world
problems. The comparative evaluation between the proposed method and the widely
adopted Xavier model illustrated the efficacy of our suggested method in tackling the
challenges posed by both balanced and imbalanced datasets, delivering comparable or
even better performance in terms of accuracy, loss values, and training duration.

In the end, one of the most notable observations was that the loss values of the two
models were almost indistinguishable. As depicted in Figure 5, the proposed model
commenced with a comparable loss value after the training process. This finding implies
that it might be possible to reduce the training time in the future, without compromising
the high level of accuracy achieved by the model.

By examining the similarities in loss values between the proposed model and Xavier’s
model, we can gain insights into the potential for optimizing the training process of neural
networks. A reduced training time, while maintaining high accuracy, could lead to more
efficient deployment of these models in real-world applications. Further research and
experimentation in this area could uncover new techniques and approaches that enhance
the overall performance and efficiency of neural networks, enabling them to better tackle
complex and diverse problems across various domains.
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(a) (b)
Figure 5. Loss comparison with imbalanced data. (a) The proposed model loss with imbalanced data.
(b) Xavier model loss with imbalanced data.

Figure 6 displays the accuracy per epoch for the two distinct neural network models— the
Xavier model and the suggested model—undergoing comparison. Remarkably, following
the training phase, both models achieved similar levels of precision. Furthermore, a careful
examination of Table 3 highlights that the proposed model outperformed the baseline model
in terms of accuracy, a crucial aspect to acknowledge. The data shown in Figure 6 and
Table 3 demonstrate the advantages of adopting the proposed model, implying its potential
as a practical addition to existing models in this field. Notably, both logistic regression
(LR) and sequential with logistic regression weights (SLRW) exhibited an accuracy of 0.98,
whereas sequential with Xavier weights (SXW) achieved an approximate accuracy of 0.92.
These findings further emphasized the proposed model’s superior performance and value.

(a) (b)
Figure 6. Accuracy comparison with imbalanced data. (a) The proposed model accuracy with
imbalanced data. (b) Xavier model accuracy with balanced data.

5. Conclusions and Future Work

In conclusion, this research aimed to develop and evaluate a malware detection
method based on a hybrid model that learns from API call sequences. Our approach
relied on a secondary dataset consisting of API call sequences, which we used to train
the proposed model and obtain the initial weights for the neural network. A comparative
analysis of our method with the widely used Xavier model demonstrated the effectiveness
of our proposed approach in addressing the challenges of both balanced and imbalanced
datasets, achieving a comparable or even superior performance in terms of accuracy, loss
values, and training time.
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The comparative evaluation between the proposed method and the widely adopted
Xavier model illustrated the efficacy of our suggested method in tackling the challenges
posed by both balanced and imbalanced datasets, delivering comparable or even better
performance in terms of accuracy, loss values, and training duration.The experiments in
this research allowed crucial insights into the influence of weight initialization methods on
neural network performance, specifically in malware detection. Our results highlighted
the potential of our hybrid model to enhance the precision and efficiency in malware
detection, along with the significance of addressing class imbalances and optimizing the
training procedure.

In subsequent studies, we plan to broaden the proposed model to encompass mal-
ware detection for different operating systems, thereby increasing the applicability and
pertinence of our strategy. Furthermore, we aim to explore the performance of our hybrid
model when trained with limited data and compare it to outcomes attained using conven-
tional weight initialization methods in neural networks with more extensive datasets. This
comparison will yield a different interpretation of the trade-offs associated with different
weight initialization techniques, assisting us in pinpointing the most effective methods
for designing and implementing neural networks for malware detection across various
operating systems and scenarios.

It is also vital to recognize the importance of generating a balanced dataset and
effectively addressing class imbalance, as this ensures the model’s ability to accurately
differentiate between distinct classes, such as malicious and benign software. This aspect is
particularly critical in cybersecurity applications, where false alarms and misclassifications
can have serious repercussions. By investigating diverse techniques for handling class im-
balance, researchers can create more resilient and adaptable models that perform efficiently
across a wide array of real-world challenges.

Our research has made a valuable contribution to the field of neural networks and
malware detection by proposing a novel hybrid model and demonstrating its effectiveness
compared to the widely-used Xavier model. The findings of this study have important
implications for the development of more robust and efficient neural networks, as well as
for the broader understanding of weight initialization techniques in deep learning.

To sum up, this research proposed a novel malware detection method based on a
hybrid model learned from API call sequences and demonstrated its effectiveness and
potential advantages over traditional weight initialization methods in neural networks.
By expanding the proposed model to cover other operating systems and investigating its
performance with different data sizes, we aim to further refine and enhance the applicability
and relevance of our approach. This, in turn, will contribute to the ongoing efforts to
improve the accuracy, efficiency, and versatility of neural networks for malware detection
and other cybersecurity applications.
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