friried applied
e sciences

Article

Designing a Comprehensive and Flexible Architecture
to Improve Energy Efficiency and Decision-Making
in Managing Energy Consumption and Production in Panama

Ivonne Nuifiez !

check for
updates

Citation: Nunez, I.; Cano, E.E.; Cruz,
E.; Rovetto, C. Designing a
Comprehensive and Flexible
Architecture to Improve Energy
Efficiency and Decision-Making in
Managing Energy Consumption and
Production in Panama. Appl. Sci.
2023, 13, 5707. https:/ /doi.org/
10.3390/app13095707

Academic Editors: Kuen-Suan Chen,
Hoang Pham, Kimhua Tan,
Leanne Chung and Shey-Huei Sheu

Received: 4 April 2023
Revised: 27 April 2023
Accepted: 28 April 2023
Published: 5 May 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Elia Esther Cano 1/, Edmanuel Cruz 2

and Carlos Rovetto 1*

Research Group on Engineering Technologies Applied to Society (GIITAS), Universidad Tecnolégica de
Panama, Panama 0819-07289, Panama; ivonne.nunez@utp.ac.pa (LN.); elia.cano@utp.ac.pa (E.E.C.)

School of Computer Systems Engineering, Universidad Tecnoldgica de Panamd, Panamd 0819-07289, Panama;
edmanuel.cruz@utp.ac.pa

*  Correspondence: carlos.rovetto@utp.ac.pa

Abstract: In recent years, the integration of new elements to the electric grid, such as electric
vehicles and renewable energies, requires the evolution of the electric grid as we know it, making
it necessary to optimize the processes of production, distribution, and storage of energy. This
situation gives rise to introducing the so-called Smart Grids (SG), which would allow a balance
between energy supply and demand, thus enabling a system in which the consumer will also
become a producer of its surplus energy. Under this scenario, this work proposes an architecture
whose technological components, such as the internet of things (IoT), artificial intelligence (AI),
cloud computing, and mobile applications, allow users to address the problem of consumption and
production of electricity. In the experiments conducted, results were obtained from the components
that support the functionality of the proposed platform.

Keywords: energy efficiency; mobile application; internet of things (IoT); artificial intelligence (AI);
cloud computing

1. Introduction

Electric grids are evolving, where capabilities and functionalities are added to the
existing infrastructure to improve efficiency and quality of service. To this end, current
technology’s growing processing and intelligence capabilities are being used, giving rise to
the so-called SG or smart grid. It will be the basis for a balance between energy supply and
demand and the first step towards smart energy, a system in which the consumer will also
become a producer of surplus energy [1-3]. In this way, the digitalization of the energy
sector becomes a crucial factor for decarbonization by increasing energy efficiency and
supporting the use of renewable energy sources [4-6] through the integration of variable
production technologies that improve the quality and security of supply [7,8], thus creating
an efficient, resilient, and competitive energy market [9,10].

The SG is defined as an electrical grid that can integrate the actions of all con-
nected users to be efficient in providing a sustainable, economic, and secure electricity
supply [11,12]. The transformation of grids towards a smart, secure, and reliable infrastruc-
ture will enable the challenges of a complete electrification of the economy, the integration of
renewable sources, sustainable mobility, and a more empowered and connected consumer
to be met [13].

To reach the full potential of the electricity market in a competitive and robust manner,
investment in research and innovation must be made to develop the infrastructure by im-
plementing the necessary technologies. This paper proposes the design of a comprehensive
and flexible architecture based on different elements of information and communication
technologies (ICT) that allow the processing of data produced by energy sources in the
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generation phase and consumption data recorded by a low-cost meter. The architecture
uses components such as IoT, cloud computing, Al, and mobile technology to allow the
user to consult their consumption information, providing the possibility to improve the
efficiency of their energy consumption. It raises the level of understanding of disturbances
in energy production and consumption, such as fluctuations introduced by system par-
ticipants dynamically, in turn facilitating planning that not only considers the technical
aspects but also how participants respond to changes in economic terms.

This work seeks to present an efficient model that allows the integration of data
from various sources, such as consumption meters and energy production sensors. The
objective is to facilitate the interpretation and use of information on energy consumption
and production in Panama using data analysis and visualization tools. With this solution,
it is expected to contribute to the improvement of energy efficiency and decision-making
on the management of energy consumption and production.

The structure of this study is as follows: Section 2, background; Section 3, definition
of the problem and motivation; Section 4, materials and methods; Section 5, results and
discussions; and finally, in Section 6, the conclusions.

2. Background
2.1. Theoretical Context

The smart grid is an electrical network that integrates all connected users’ actions
to efficiently provide a sustainable, economic, and secure electricity supply. Smart grids
use information and communication technologies to collect and analyze real-time data on
energy consumption, energy production, and grid capacity. The data is used to optimize
energy flow and reduce energy losses [14-17]. Smart grids use a wide variety of technolo-
gies to achieve electric power system optimization. Some of the key technologies used in
smart grids include:

2.1.1. Internet of Things (IoT)

Thanks to IoT nodes, power grids acquire the flexibility needed to face a more electri-
fied future. Smart grids make it possible to know consumption and demand and to adopt
predictive maintenance strategies [18-23]. IoT devices offer many connectivity options in
energy infrastructure, helping to monitor all essential energy assets to achieve efficient
energy use. Today, it is a technology that has become a benchmark for data collection and
processing systems [24-27].

One of the core elements of the SGs is the use of IoT to increase the visibility of
the entire environment, providing greater dynamism and efficiency in the collection and
distribution of data, which will be used to generate optimization notes for the system [28,29].
IoT is one of the core elements of SGs by providing greater dynamism and efficiency in
data collection and distribution and more capacity for direct interaction and control over
specific parts of the network [30-33].

In the research of Shahinzadeh and M. Rana [34,35], IoT integration is used to achieve
reliable data transmission in communication infrastructures at different levels of SGs:

1.  Generation: Monitoring electricity generation from different types of power plants,
gas emissions, energy storage, and energy consumption, and predicting the energy
needed to supply consumers.

2. Transmission: Monitoring and control of transmission lines and substations, protec-

tion of transmission towers.

Distribution: Distribution automation, equipment management and protection, fault management.

4. Consumption: Smart home and home appliances, smart charging and discharging of
electric vehicles, power load control, multi-grid management.

@

2.1.2. Artificial Intelligence (AI) Application

The application of Al techniques allows extracting value from generation, transmission,
distribution, and consumption data to support decision-making in power grid management,
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which is transforming and evolving towards an SG [7,36-38]. Al, combined with analytics
and monitoring systems, provides clear and complete visibility of the systems within the
grid, allowing preventive maintenance actions, real-time incident resolution, and decision-
making for operational improvements and optimizations [39-41].

Some practical cases of the use of the application of Al in SGs can be observed in the
work of Atef y Eltawil [42], who proposes two intelligent techniques for addressing the
electricity price forecasting (EPF) problem using machine learning. First, a support vector
regression (SVR) model is used to predict the hourly price. Second, a deep learning (DL)
model is implemented and compared with the SVR model. The results show that the two
proposed models are effective tools for EPFE.

In the work of Ahmad [43], compare tree-based ensemble machine learning models
(random forest—RF and extra trees—ET), decision trees (DT) and support vector regression
(SVR) to predict the useful hourly energy from a solar thermal collector system. The
models developed were compared in terms of their generalizability (stability), accuracy,
and computational cost.

In a well-known case implementing an Al platform applied to the design and operation
of energy-efficient buildings (EFBs) [44], Yang et al. presented an adaptive ANN which
can predict the unexpected behavior of incoming data and adapt to it accordingly. Two
models, accumulative training and sliding window training, were tested against simulated
and measured data. The sliding window technique had better performance in the case of
real measurements. For simulated data, both techniques showed similar performances [45].

Chae et al. proposed a short-term building energy usage forecasting model based
on an artificial neural network (ANN) model with Bayesian regularization algorithm to
investigate the effects of network design parameters, such as time delay, number of hidden
neurons, and training data, on the model capability and generality [46]. The model was
used for day-ahead electricity usage of buildings in a 15-min resolution.

Gonzalez and Zamarreno used a feedback ANN to predict short-term electric load
consumption in buildings. The biggest advantage of this model lies in its simplicity. It used
a minimal number of resources and yet its precision was comparable to other methods used
for forecasting [47]. Edwards et al. [48] tested seven different ML techniques on different
data sets, and discussed the advantages, disadvantages, and technical benefits for each tech-
nique when applied to the prediction of future hourly residential electrical consumption.

On the other hand, in the investigation of Syed et al. [49] evaluates the performance of
different feature extraction or dimensionality reduction techniques for short-term energy
forecasting applications using smart meter data. The number and type of input feature data
are crucial for the performance of energy forecasting models. The results obtained show the
importance of dimensionality reduction techniques for higher accuracy and faster training
times. While linear principal component analysis (PCA) is a preferred dimensionality
reduction technique for faster training times, kernel PCA, non-negative matrix factorization
(NMF), independent component analysis (ICA), and uniform manifold approximation and
projection (UMAP) yield better accuracies.

2.1.3. Cloud Computing

Intelligent systems, such as, Smart City and SG, are based on the collecting and
analyzing of large amounts of data obtained through a macro network of sensors distributed
throughout the infrastructure, which must be processed and stored somehow. Here, data
centers appear as an essential element for SG to become a settled reality and with it, the
cities of the future [50].

Emerging business prospects from the IoT are driving private, public, and hybrid
cloud providers to integrate their systems with IoT devices equipped with sensors and
actuators to provide a new level of service infrastructure to improve the quality and security
of power supply. At the same time, with the advent of 10T, the continued evolution of cloud
computing has led to a dramatic change in the design, implementation, and delivery of
applications [51,52].
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Cloud computing provides geographically distributed computing and storage re-
sources that are essential for the analysis and management of real-time and computationally
intensive data in intelligent networks, as is the case of data produced by IoT devices in an
SG [53].

2.1.4. Mobile Applications

Nowadays, cell phones have become essential, and thanks to advances in their devel-
opment in conjunction with the Internet, a wide range of tasks can be performed through
them. By using a mobile device, users can access statistics on energy consumption and
control household electrical power remotely [54]. There are several studies on the devel-
oping mobile smart grid applications that focus on monitoring and controlling energy
consumption to interact with an SG network [55-57]. These studies only focus on the
technical method of the smart grid system process so that energy consumption can be
monitored, organized, and scheduled using a mobile application without going into the
process of developing smart-grid-oriented mobile applications.

2.2. Related Work

In this section, we will see some studies related to the development of software
architectures oriented to energy efficiency in SG, smart energy, and smart cities.

In the work of Ahsan et al. [58], they propose a distributed smart home architecture
involving home sensors that communicate directly with a smart gateway installed inside
the home. The gateway decides which data should be sent to the central processor for
further analysis. They use an open data set to feed sensor data into the test setup and
show that local data processing can improve efficiency by effectively utilizing the available
network bandwidth.

Varga et al. [24] present a practical composition method that helps solve IoT interoper-
ability conundrums used in SG. The described approach results in a higher-level abstraction,
protecting user applications under a high-level domain API, decisively demonstrating the
method’s feasibility, power, and utility.

Zhou et al. [59] presents a smart energy community management approach that en-
ables P2P trading and manages domestic energy storage systems. It proposes a smart
residential community concept where domestic users and a local energy pool can trade,
providing access to cheap renewable energy without new power generation equipment.
The proposed energy trading process is modeled as a Markov decision process, and a rein-
forcement learning algorithm is used to find the optimal decision. A fuzzy inference system
is employed to use Q-learning in continuous state space problems (Fuzzy Q-learning)
for infinite possibilities in the energy trading process. The performance of the proposed
demand-side management system is evaluated by comparing electricity costs before and
after its implementation in a community.

Haghgoo et al. [51] presents a cloud-based platform based on a service-oriented archi-
tecture to perform service analysis of smart energy systems. It is the result of the European
FISMEP (FIWARE for Smart Energy Platform) project to demonstrate an information and
communication technology (ICT) architecture for the smart energy sector. The architecture
presented is powered by FIWARE, customizable and open-source building blocks for future
Internet applications and services. A general list of functional and non-functional system
requirements that can be considered in any other system in the energy sector is specified.
In addition, the proposed ICT architecture has been demonstrated in the different field
tests of the project. In this research, FIWARE has a great potential for application in the
investigated use cases. However, due to its modular structure and its goal to provide
an API for everything possible, it becomes quite difficult to maintain and requires expert
knowledge to operate in production.

In the work of Pau et al. [60], they present a new philosophy for the digitization and
automation of distribution networks, based on a modular architecture of microservices
implemented through container technology. This architecture enables a service-oriented de-
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ployment of the intelligence needed in distribution management Systems, going beyond the
traditional vision of monolithic software installations in control rooms. The proposed archi-
tecture unlocks a broad set of possibilities, including cloud-based deployments, extension
of legacy systems, and rapid integration of machine-learning-based analytical tools.

In the work of Di Santo et al. [61], they present an active demand side management
methodology that optimizes energy storage management for domestic consumers with
distributed generation. The objective is to reduce electricity costs and postpone investments
in grid expansion if the highest load period coincides with the highest electricity tariff of
the day. The methodology employs a validated neural network decision-making system
trained with optimized data that can be used in households meeting specific conditions:
location, electricity tariff, and consumption profile verified by the local electricity company.
Three consumption profiles and three solar generation profiles were created and combined
to validate the methodology, and the results show that the ANN-based decision-making
system efficiently operates the battery to achieve the minimum electricity bill.

In the paper of He et al. [62], they propose an architecture that uses random matrix
theory (RMT) to perform anomaly detections for energy flows and data flows, making
advanced big data analysis possible within a smart grid. They show that the architecture
supports block computation only using a small regional database, proving it to be a data-
driven solution sensitive to system situational awareness, and practical for real large-scale
interconnected systems.

On the other hand, the research by Sitton-Candanedo et al. [63] proposes the use
of an Edge-IoT platform and a social computing framework to build a system for smart
energy efficiency in a public building scenario. The system has been evaluated in a public
building and the results highlight the remarkable benefits of applying Edge computing to
both energy efficiency scenarios and the framework itself. These benefits include reduced
data transfer from IoT-Edge to the cloud and reduced network, computing, and cloud
resource costs.

3. Problem Description and Motivation

Panama is making significant efforts from various sectors to modernize and innovate
the electricity sector, mainly led by the National Energy Secretariat (SNE) [64,65]. One of
the open problems identified in the SNE’s white paper is the need for studies on the devel-
opment of software and hardware for intelligent automatic management and control of
energy generation and consumption, which is essential because, given a tariff, consumption
profile, and customer needs, energy can be saved and sold efficiently. From this, the idea
arises to propose an architecture whose technological components will allow us to create
an essential innovation in the Panamanian electricity sector.

In this sense, using a low-cost sensor with IoT technology, electric power quality data
is collected, measured, and analyzed. Then, from this data stored in the cloud, Al predic-
tive models will be used to assist in the analysis, control, forecasting, consumption, and
production capacity of the different energy sources based on historical data to enable better
management of the network and generate a different perspective to help make decisions
based on data analysis through these robust systems with predictive capabilities. Finally, a
system or application is provided to visualize, monitor, and control those mentioned above.

4. Materials and Methods
4.1. Methodology

We will work with the SCRUM agile methodology because it integrates good practices,
and better results are obtained through the collaboration of a highly competitive team.
This methodology is recommended in projects with complex environments, changing
requirements, and needing fast results, where innovation, flexibility, and productivity are
fundamental [66].
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The SCRUM methodology is an agile framework used in the management and devel-

opment of software projects and is divided into three main stages: planning and estimation,
implementation, and review and retrospective [67,68]:

Planning and estimation: In this first stage, the development team meets with the
objective of defining the project to be developed and establishing a work plan. Re-
quirements are identified, project goals are established, and the product backlog is
created, which is a prioritized list of all the functionalities to be developed.
Implementation: Once the work is planned, work begins in sprints or short devel-
opment cycles of two to four weeks duration. During each sprint, the team focuses
on developing the most important features of the backlog. Each sprint begins with
a Scrum Daily Meeting, where progress is reviewed and the work plan is adjusted
as needed.

Review and retrospective: At the end of each sprint, a sprint review meeting is held,
in which the functionality developed during the cycle is presented and feedback and
other stakeholders are received. This feedback is used to adjust the product backlog
and plan the next sprint.

The start of the Scrum methodology begins with sprint planning, which establishes

the objectives of the sprint, identifies the tasks to be performed during the sprint, and
determines how much work can be completed during the sprint. The product backlog,
which is a list of all the product functionality, features, and requirements to be completed
in the project, is also developed.

The end of the project lifecycle comes with the final delivery sprint, in which the

complete final product is delivered, which is intended to meet the functionalities and
requirements defined at the beginning of the project. Figure 1 shows the stages of the
methodology used.

*Study and analyze
the project by
identifying the
basic needs of the
sprint.
*What do | want?
*How do | want it? Start
*When do I want it?

1.Create deliverables.
2.Perform daily stand-up.

~

3.Refinance prioritized
product backlog.

1.Demonstrate and
validate the sprint.
2.Sprint
retrospective.
. S

«Create, estimate and commit
user stories.

*ldentify and estimate tasks.

o Create the sprint backlog or
task iteration.

+ Send
deliverables.

Launch + Send project
retrospective.

Figure 1. Stages of the methodology used.

4.2. Proposed Architecture

Based on the need to achieve a more reliable electricity supply, a higher quality, more

efficient, safe, and sustainable service, an architecture is structured to innovatively manage
the monitoring and control level of the electricity grid by integrating storage technology,
demand analysis, and electricity consumption interfaces.

Figure 2 shows the general diagram of the architecture, followed by a detailed de-

scription of its components for the consumption and prediction of energy consumption
in Panama:
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Figure 2. Proposed Architecture.

4.2.1. IoT Component

Access to smart meters is needed to develop an application that uses gamification in
SG. However, due to their high cost and implementation, a low-cost electric meter has been
developed, which allows capturing important variables or characteristics that generate a
set of data to display in the application and the rest to be able to train the AI model.

The electric meter comprises an Arduino board, an ACS712 current sensor, an LM35
temperature sensor, the ML8511 module, an OLED display to observe the data generated
from the sensor, and the ESP32 module. The Wi-Fi component sends the data captured by
the meter via the ESP32 module. This data is stored in a cloud repository, allowing us to
access it at any time and place. Figure 3 shows the Arduino programming of the device.

ms, power, pf, kh, temp;
immsl, powerl, pel, kuhl, templ;

SH1106_128X64_NONAME_F_HW_I2C u8g2 (UBG2_RL,
idots (UBIDOTS_TOKEN, UBI_UDE);
e wifiManager;

Figure 3. Initial programming of the energy meter.

4.2.2. AI Component

Statistical and Al techniques are increasingly used with numerical models to pro-duce
more accurate forecasts. Linear regression (LR) forecasting is one of the Al models used
more frequently in electricity consumption and generation forecasting due to the good
results obtained.

LR is a data analysis technique that predicts the value of unknown data by using an-
other related and known data value. It mathematically models the unknown or dependent
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variable and the known or independent variable as a linear equation. The regression model
consists of an approach to model the relationship between a dependent scalar variable “Y”
and one or more explanatory variables named with “X” and then plots a line that will
indicate the trend of a set of continuous data, whose formula is:

Y=mX+b

where Y is the result, X is the variable, m is the slope (or coefficient) of the line, and b is
the constant or also known as the “point of intersection with the Y-axis” on the graph
(when X =0).

The predictive models are obtained using simple linear regression using the demand
data of each distribution company EDECHI, EDEMET, and ENSA provided by Empresa de
Transmision Eléctrica S.A. (ETESA) [69]. Table 1 shows the data used to train the model.

Table 1. Maximum demand from distributors.

Maximum Demand (MW)

Year EDECHI EDEMET ENSA
1998 50.88 354.14 274.59
1999 55.97 369.67 295.49
2000 58.07 394.35 314.83
2001 60.10 412.81 298.63
2002 62.39 441.25 312.41
2003 77.32 439.34 321.69
2004 77.74 454.39 333.22
2005 78.08 466.76 345.24
2006 83.85 492.42 361.86
2007 82.31 509.15 375.99
2008 84.01 530.36 394.87
2009 85.28 567.38 425.71
2010 95.02 601.27 439.29
2011 101.23 626.72 485.75
2012 110.20 664.29 487.15
2013 114.81 695.44 501.29
2014 120.25 738.41 527.33
2015 146.78 778.55 574.37
2016 148.81 798.31 608.45
2017 140.42 809.83 604.82
2018 155.59 797.84 601.76
2019 159.89 839.70 644.88
2020 155.26 806.97 607.63

The demand of the model variables y, x, and z are obtained by applying simple
linear regression on the data set that constitutes the annual electricity demand of each of
the distributors.

The models for each distributor are as follows:

x =11 + m1DgpEcHr

y =ip + myDgpEMET

z =13 + m3Dgnsa

where ij, my, ip, my, i3, and mj are the coefficients of the linear regressions of the distributors.
Using simple linear regression and the demand values of each distributor, the predic-
tive models are obtained.
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These data were stored in Pandas DataFrame and were programmed using Python [70,71].
During the training of the models, 80% of the data were used for training and 20% of the data
for testing. Tables 2—4 and Figures 4-6 show the values resulting from the model training for
each distributor.

Table 2. Results of the prediction model for EDECHI in MW.

Year Demand Prediction
2001 60.1 61.114716
2011 101.23 109.672682
2012 110.2 114.937448
2019 159.89 156.9798

2021 160.68 151.096748

Table 3. Results of the prediction model for EDEMET in MW.

Year Demand Prediction
1999 369.67 384.96161

2004 454.39 457.108963
2007 509.15 508.185407
2016 798.31 802.397731
2020 806.97 809.546432

Table 4. Results of the prediction model for ENSA in MW.

Year Demand Prediction
1999 295.49 282.535085
2001 298.63 302.141461
2007 375.99 378.338353
2010 439.29 443.73054
2014 527.33 541.124566

Results of the prediction model for EDECHI in

MW

170

160

150

140

130 e Demand
120 e Prediction
110

100

2011 2012 2019 2021

Year

Figure 4. Prediction model for EDECHI in MW.
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Results of the prediction model for EDEMET in MW

620 em—Demand

600 e Prediction

2004 2007 2016 2020

Figure 5. Prediction model for EDEMET in MW.

Results of the prediction model for ENSA in MW

600
550
500
450
400 e Demand
e Pre diction
350
300

2001 2011 2012 2019 2021

Year

Figure 6. Prediction model for ENSA in MW.

The coefficient of determination (r?) is used to evaluate how well the data of each
model fit. In this, a value of 1 is equivalent to an optimal fit. The coefficients of determina-
tion (r?) for each distributor are shown in Table 5.

Table 5. Coefficients of determination (12) by distribution companies.

Coefficients by Distributors EDECHI EDEMET ENSA
r? 0.97 0.99 0.9

The data set extracted from the national ETESA source and the sensor test data set
is verified by the model used to generate the recommendation data displayed in the
mobile application.

4.2.3. Cloud Component

This platform manages the user database, ensuring the ethics of the application data,
and allows the integration of other components that will make the application robust. It
will allow the development cycle of both the mobile application and the web to be carried
out harmoniously and simply in less time while maintaining quality [72-74].

This component uses the Firebase mobile cloud platform [75,76], whose main function
is to develop and facilitate the creation of high-quality applications in a fast way, so that the
user database can be increased. The Figure 7 shows the scripts of the initial programming
in Firebase. All programming was based on APIs, JSON, client IDs, and variable logic to
make the application functionalities work correctly, as shown in Figure 8.
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Figure 7. Initial Firebase programming.

Figure 8. JSON for making requests to the Firebase and Colab cloud.
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4.2.4. App Component

The objective of the architecture is the development of a prototype of a mobile applica-

tion, where users can consult not only their energy consumption but also other vital factors
that will allow them to enter the prosumer concept, that is, people capable of producing
and consuming energy, a key figure for energy transition, decarbonization, and smart cities
of the future.

The phases of activities involved in the development a prototype of a mobile applica-

tion is described below:

1.

Analysis and design (identification of needs): The characteristics and functionalities
of various applications related to energy efficiency were analyzed. Information was
collected through interviews with various random users to have some data to know
the level of experience and usability in specific actions regarding the use of mobile
applications. Table 6 shows the attributes of the sociodemographic characteristics of
the users of the study.

Table 6. Attributes of the characteristics.

Attributes Values
Female
Gender Male

Prefer not to say

15-20 years old
21-25 years old

Age (Numeric) 26-30 years old
Other
Smartphone
What mobile device do you own? Tablet
Computer
Android
What operating system do you have? i0S
Other
No experience
How much experience do you have in Reasonable experience
handling mobile applications? Experienced

Very experienced

Elevation of requirements: With the results of the previous phase, the key features
for using the mobile application and the technological tools used by the participants
were identified. The feasibility and technical complexity of each requirement were
evaluated to prioritize user requirements:

Feasibility: an unstructured literature search was conducted to identify accessibility

features and services.
Complexity: the technical complexity of each requirement was evaluated considering the
features, services, and development tools available and the difficulty of programming.

Based on these criteria, the priority of each user requirement was rated independently

on a 4-point numerical rating scale (see Table 7) according to the Moscow prioritization
method [77]:

1: must have,

2: should have,

3: could have,

4: will not have at this time.
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Table 7. Functional requirements of the mobile application.
Feature Description Complexity
Consult energy consumption View appliance energy consumption patterns in watts per hour. Yes, high 1
f chargi i lectrici . . . .
Maps o charging stations, electricity Enable location data to be used to find certain locations Yes, half 2
distribution centers
User contracts, whether the user is associated with an electricity
Display user contracts distribution company or is a prosumer to whom he Yes, high 1
transmits energy.
Buying assets Purchase assets to generate renevYable electricity from either solar Yes, half 2
or wind.
The user can access information on renewable energies, smart
Learn more Yes, low 3
energy and SG.
. F f ltati h h
Analytics uture forecast consultation based on the energy the consumer Yes, half 2
has access to

In addition, the technical requirements of the mobile application were established.

Development: Because in Panama, 86% of people with smartphones use Android, 13%

use the iOS system, and the remaining 1% use other alternatives [78], the application
is built using Web standards: HTML, HTML, CSS, JavaScript and making use of other
frameworks. Then, the application is combined with Apache Cordova, giving us

access to the native features of mobile devices. The Figure 9 shows some screenshots
of scripts used in the framework.

(@ SCEERGYFINA & (] i
7

DATA CONFIGURATOR

< BACK

REST API direct integration resource SignupUsers

SCHEMA

Properties of this schema

email

CREATE RECORD (POST) password

Figure 9.

returnSecureToken

Create record (POST) response schema

Android app configuration

Android app ID

1:694625875868:android:1081b5370b0a30440c7a59

Android APl key

AlzaSyDihdA8LejxUasvk4ec9RDZoajsH-wTvEM
Web app configuration

Web app ID

1:694625875868:web:663e3101e8522b370c7a59

Web API key

AlzaSyCbWEWEfR_6dVGVQN44PtPwi2YVkNaP208

Scripts used in the framework.

Method enabled

ADD PROPERTY @)
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Adjective
range

4. Protection of user data: To guarantee the privacy of the data handled in the architecture
and the mobile application, we will work with the personal data protection Law
81, enacted in March 2019 in Panama [79]. There are principles, obligations, and
procedures for data processing in this law that are established to protect the right to
privacy and to identify the conditions that must be met by companies or individuals
who manage user databases.

5. Testing: Usability tests were performed to ensure the quality of the application on the
prototype by applying Nielsen heuristic metrics [80-82] and evaluation techniques,
testing, and user satisfaction test and validation [83,84].

For this case, we used the System Usability Scale (SUS) validation technique. Table 8
shows the System Usability Scale (SUS) validation technique. The scale itself consists of
10 questions, each of which can be scored from 1 to 5, where 1 means Strongly Disagree
and 5 means Strongly Agree.

Table 8. Validation technique for user satisfaction (System Usability Scale (SUS)).

(+) Positive (-) Negative
5 4 3 2 1
Some Neither Agree Somewhat Strongly
Strongly Agree Agreement nor Disagree Disagree Disagree

System Usability Scale (SUS)

Q1: I think I would like to use this application frequently.

Q2: I find this application unnecessarily complex.

Q3: I think the application is easy to use.

Q4: I think I would need support to make use of the application.

Q5: I find the various functions of the application well integrated.

Q6: I have found too much inconsistency in this application.

Q7: I think most people would learn to make use of the application quickly.
Q8: I have found the app quite cumbersome to use.

Q9: I have felt very confident making use of the app.

Q10: I would need to learn a lot of things before I could operate the app.

The median score of the scale is 68. If the score is below 68, it means that it is very likely
that there are serious problems with usability that need to be identified and fixed. A score
above 68 is considered positive but denotes that there is some shortcoming in usability.

An interpretation of the SUS scale is proposed in a range of adjectives such as: “worst

unimaginable”, “poor”, “acceptable”, “good”, “excellent”, and “best impossible”. Figure 10
shows the relationship of the SUS scale to these easily interpretable adjectives.

0

10

I
I
|
I
|
I

||||||||

0

20 30 40 50 60 70 80 90 100

Figure 10. Range of adjectives for SUS scale.
To complement the quantitative analysis provided by the questionnaire, it is supple-
mented with two qualitative questions to learn a little more about the users” opinion.

1. What do you think is the best aspect of this interface and why?
2. What do you think needs to be improved and why?
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5. Results and Discussions

With the proposed architecture, we observed that, from the implemented components,
we could obtain a robust application fed by various services that allow users to have
transparency in their energy consumption information.

For the Al component, we measured the accuracy, as shown in Table 5. We consider
evaluating other types of models to give even greater robustness to the AI component, and
which will be studied in future research.

The information was handled quickly and versatilely regarding the means of commu-
nication to send the data with the developed sensor.

On the other hand, prototype of a mobile application meets the functional requirements
previously stated in Table 6 for managing energy consumption and demand data through
a distributed process and serving as a prelude to structuring a much more robust mobile
architecture in the framework of the SGs. Figure 11 shows the interface of the proposed
mobile application within the architecture.

Functions

Usar mapa para

Contratos

Comprar activos

Conocer mas

L4

Functions

Figure 11. Mobile interface of the prototype application.

The application consists of four sections, which are:

e  Dashboard: In this panel, the user can see the location of his home, the total energy
consumption in watts consumed, appliance consumption, real-time consumption,
and billing.

e Functions: Here, the user gets to see a menu that allows him/her to use the map
functionalities to see his/her location, electric vehicle charging stations, and maps of
electricity generation, transmission, and distribution centers in the province Panama.

e  Analytics: In this panel, the user can see predictions about energy consumption patterns,
and the system offers a series of recommendations based on previous data. In addition,
the user can consult accurate data from Panama regarding electricity generation.

e  Profile: In this section, users can view their registration data, passwords, and security issues.

This study uses SUS adapted with adjective rating scale to measure the usability of
mobile applications. To obtain the results of the usability test of the application, the average
results obtained from the user questionnaire are added up, considering the following: the
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odd questions (1, 3, 5, 7, and 9) will take the value assigned by the user, and 1 will be
subtracted from it.

For the even questions (2, 4, 6, 8, 10), it will be 5 minus the assigned value. Once the
final number is obtained, it is multiplied by 2.5. Table 9 shows the results obtained from
the application of the test to the users.

Table 9. Results for the user satisfaction validation technique (SUS Scale).

SUS Scale Evaluation Percentages

4

& ¢
¢@

What do you think is the
best aspect of this What do you think
interface and why? needs to be improved
R: I consider its and why?
appearance to be the The names of the
best, as it has a very activities should be a
good balance of little more intuitive.

information and colors.

@ Strongly agree

@® Some agreement

@ Neither agree nor disagree
@® Somewhat disagree

@ Strongly Disagree

1 to 5, where 1 means Strongly Disagree and 5 means Strongly Agree.

According to what was described above in the use of the SUS scale, we have that:

According to the data in the graphs found in the table, the results obtained in the
questions, in order, were: 5,1,5,2,5,2,2,4,1,4,1.

We assign the new values according to the SUS algorithm, and our new values will be:

G-D+6-D+6-D)+6-2)+6-DH+6G—-2)+@-1D+G-1D+¢A-1D+>B-1)*25

Then, the SUS score is 90. Given that the theoretical maximum is 100 points and
looking at the Figure 10 in the range of adjectives, this result indicates that the level of user
satisfaction in using the application is excellent.

The proposed architecture model shows that investment in energy transformation can
significantly influence future socioeconomic development and position Panama as a clean
technology energy hub at the forefront of the Latin American and Caribbean region.
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For the projections to be fully achieved, it is necessary to modernize and innovate by
aligning the governance of energy policy and international cooperation, expanding the
supply of innovation aimed at the energy sector, addressing critical gaps, increasing the
demand for clean and sustainable energy technologies and innovation, taking advantage of
digitalization while closing the digital divide, improving data collection, management and
application, and data systems.

6. Conclusions

The energy sector is undergoing a revolution, with disruptive and innovative solutions
and new approaches emerging, which need to be implemented under the context of the
national market to facilitate its contribution to the energy transition. There is great potential
for the modernization of the Panamanian electricity system. Investing in the energy
transition would stimulate economic activity in the recovery phase 2020-2024, providing a
net stimulus to investment in clean technologies and eliminating fossil fuel subsidies. It
would boost real GDP by an additional 0.52% in 2024.

A mobile technology architecture was proposed based on which mobile interface
oriented to energy query and prediction was designed and developed for user use in the SG
framework using innovative technologies such as IoT, Al the cloud, mobile applications,
software engineering methodologies, security, and user-centered design processes. This
architecture contributes as a small foundation for innovation in Panama’s electricity sector
and to migrate to a resilient electricity sector.
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