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Abstract: Accurate surface water mapping is crucial for rationalizing water resource utilization and
maintaining ecosystem sustainability. However, the diverse shapes and scales of water bodies pose
challenges in automatically extracting them from remote sensing images. Existing methods suffer
from inaccurate lake boundary extraction, inconsistent results, and failure to detect small rivers. In
this study, we propose a dual-stream parallel feature aggregation network to address these limitations.
Our network effectively combines global information interaction from the Swin Transformer network
with deep local information integration from Convolutional Neural Networks (CNNs). Moreover, we
introduce a deformable convolution-based attention mechanism module (D-CBAM) that adaptively
adjusts receptive field size and shape, highlights important channels in feature maps automatically,
and enhances the expressive ability of our network. Additionally, we incorporate a Feature Pyramid
Attention (FPA) module during the advanced coding stage for multi-scale feature learning to improve
segmentation accuracy for small water bodies. To verify the effectiveness of our method, we chose the
Yellow River Basin in China as the research area and used Sentinel-2 and Sentinel-1 satellite images
as well as manually labelling samples to construct a dataset. On this dataset, our method achieves a
93.7% F1 score, which is a significant improvement compared with other methods. Finally, we use
the proposed method to map the seasonal and permanent water bodies in the Yellow River Basin
in 2021 and compare it with existing water bodies. The results show that our method has certain
advantages in mapping large-scale water bodies, which not only ensures the overall integrity but
also retains local details.

Keywords: attention mechanism; swin transformer; convolutional neural networks; feature pyramid
attention; Yellow River Basin

1. Introduction

Water is a fundamental natural element and an invaluable resource for various human
endeavors [1,2]. Contemporary shifts in global climate, coupled with intensified human
activities, have precipitated pronounced spatial and temporal variations in water resources,
commonly manifesting as reductions in both area and volume [3]. These problems pose
substantial challenges to human livelihoods and agricultural production, underscoring
the imperative for meticulous extraction and dynamic monitoring of surface water bodies.
Remote sensing technology has become an effective tool for such monitoring, attributed
to its accessibility, extensive coverage, frequent updating, and immediacy [4,5]. In recent
years, the growing water use conflict in the Yellow River Basin has seriously affected human
welfare and livelihoods, highlighting the critical importance of surveilling the dynamic
fluctuations of Surface Water Area (SWA) within this region.

Appl. Sci. 2024, 14, 178. https://doi.org/10.3390/app14010178 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14010178
https://doi.org/10.3390/app14010178
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0006-7890-8678
https://orcid.org/0000-0002-2938-7419
https://doi.org/10.3390/app14010178
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14010178?type=check_update&version=1


Appl. Sci. 2024, 14, 178 2 of 24

In recent years, deep learning has been widely used in tasks such as image classifica-
tion [6], object detection [7], and semantic segmentation [8]. Water bodies extraction is a
typical semantic segmentation task, where methods rooted in deep learning significantly
improve the accuracy of traditional extraction techniques [9]. However, the application
of deep learning in water bodies extraction faces several challenges, including diverse
morphologies, complex scenarios (e.g., rivers, lakes, urban water bodies, and aquaculture),
and variations in dimensions, with particular difficulty presented by small water bodies [8].
Convolutional Neural Network (CNN) have emerged as a prevalent strategy in water bod-
ies extraction research, owing to their proficiency in semantic information of remote sensing
images through convolutional operations processes [8,10–12]. Despite their merits, CNNs
are constrained by their receptive field dimensions, leading to a predominant focus on local
features while ignoring the spatial correlation within a water body. This limitation often
culminates in inaccurate edges of lake boundaries [10,11]. Furthermore, the progressive
enlargement of the receptive field amidst continuous down-sampling can result in the ne-
glect of smaller water bodies’ features, leading to fragmented extraction outcomes [12]. The
advent of Fully Convolutional Network (FCN) marked a pivotal transition by introducing
an encoder-decoder structure for image segmentation, facilitating a shift from image-level
classification to a more fine-grained, pixel-level classification [13,14]. Li et al. [15] used a
FCN model for water bodies extraction from Very High Resolution (VHR) images, demon-
strating the efficacy of pixel-level classification. However, this method suffers from the
inaccurate extraction of small-size water bodies due to an inherent information attrition
during the convolutional operations.

To address the limitations of CNNs, particularly the loss of information through con-
tinuous down-sampling, researchers have integrated attention mechanisms and dilated
convolution modules into existing methodologies. Zhong et al. [16] introduced a two-way
channel attention mechanism and a depth-expanded residual structure forming MIE-Net
network, aiming to improve lake segmentation accuracy. Gosula [17] demonstrated the
superior performance of a DeeplabV3+ model with an Atrous Spatial Pyramid Pooling
(ASPP) module in extracting various water body sizes compared to its counterpart without
ASPP structure. Yuan et al. [18] proposed an Enhanced ASPP (EASPP) module, adept
at maintaining the prominence of high-dimensional features and improving the recogni-
tion of small-size water bodies. However, the primary focus remains on expanding the
receptive field, rather than truly encoding contextual information. This limitation tends to
overshadow the intricate local traits of small-sized water bodies, leading to inconsistencies
in the extraction outcomes for rivers and lakes [19]. The emergence of a Transformer
model, a sequence-to-sequence architecture based on the attention mechanism, heralds
new prospects. Unlike traditional CNNs, a Transformer leverages multi-head attention
to establish remote dependencies, thereby facilitating a more holistic feature extraction
from images [20]. This technique is gaining traction in water bodies extraction [11,21].
Zhao et al. [11] introduced Convolutional Block Attention Module (CBAM) and substi-
tuted the conventional convolutional layers in the original U-Net model encoder with
Vision Transformer (Vi-T), enhancing the continuous spatial relationship interpretation,
and thereby improving the segmentation of lake water bodies on the Qinghai-Tibet Plateau.
However, Transformer architecture, which compresses the image into one-dimensional
tokens, interpreted as sequences, has its limitations. Specifically, this approach can result
in the loss of internal and local image information, potentially impeding the recovery of
fine-grained details during the decoding stage [21]. The fusion of optical and microwave
images emerges as a robust solution, providing complementary visuals and fortifying
the database requisite for feature identification [22–24]. Initial research efforts primarily
focused on the amalgamation of multispectral and radar data through shallow feature
fusion, as demonstrated in studies by Filsa [25]. These classical classifiers rely on feature
engineering and exhibited limited generalization proficiencies. Inspired by deep learning
in Computer Vision (CV), the powerful feature extraction capability of Convolutional
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Neural Networks (CNNs) has been successfully applied in feature classification, with
contemporary research gravitating towards multimodal learning.

In general, we note that there are still some problems when conducting fine extraction
and dynamic monitoring of large-scale water bodies: (1) For water bodies with variable
shapes and complex scenes, existing deep learning studies use convolution kernels to
encode key features, which lack global information between pixels, resulting in inconsis-
tent water extraction results and inaccurate lake extraction edges. (2) Continuous down-
sampling of convolution operations will lead to information loss, and the extraction results
of small water bodies will be off-flow.

In order to solve the above problems, the contributions of this paper are as follows:

(1) Using the parallel coding structure of Swin-T and CNN, while adaptively enhancing
the local features of the image, the global association between pixels is strength-
ened, improving the accuracy of water boundary extraction and the consistency of
the results.

(2) An attention mechanism module is proposed, which automatically highlight the
important channels of the feature map according to the characteristics of the image
feature map and avoids the problem of excessive attention of convolution on irrelevant
local features.

(3) In the advanced feature coding stage, the FPA module is used to construct the feature
pyramid to obtain the advanced semantic features of different scales of the image
and improve the segmentation ability of multi-scale water bodies. We construct a
water extraction network based on multi-source data, and use the network to extract
water bodies, achieving high segmentation accuracy. In addition, we also mapped
the seasonal water body and permanent water body of the Yellow River basin in 2021
and compared them with existing water body products.

2. Related Work
2.1. CNN-Based Semantic Segmentation for Water Body Extraction

In the field of water body extraction, CNN has been the dominant method and sig-
nificant progress has been made. Recently, WaterHRNet [1] is a high-performance fully
convolutional network that focuses on enhancing the results and detail representation
of water body segmentation. It achieves this by focusing on features in the foreground
region from a global perspective. This is accomplished through parallel channel-specific
attention and spatial-specific attention, which enhance the differentiation between the
foreground and background. MSAFNet [26] is a network that employs multiple attentional
modules to extract both low-level and high-level local features. These multi-level features
are then aggregated through the feature fusion module (FFM) to improve the mapping of
water body edges, directly enhancing the segmentation of water bodies. To accurately fuse
multi-scale contextual information, MSNANet [27] utilizes the MSNA module, establishing
remote feature dependencies between channels to improve the accuracy and mapping
capability of the model. In related work, DUPNet [28], a network structure with a U-shaped
encoder and decoder, uses dense blocks to extract image semantic features and obtain
highly abstract feature maps. Instead of employing the maximum pooling layer, it adopts
Atrous Separable Convolution during down-sampling to increase the perceptual field of
view of the feature maps, thereby enhancing the robustness of the network model. The
aforementioned study demonstrates the paramount importance of integrating multi-scale
features in the task of water body extraction.

2.2. CNN and Transformer-Based Semantic Segmentation for Water Body Extraction

CNN architectures have been widely used for water body segmentation tasks, but they
often suffer from induction bias and a lack of long-range dependencies. To address this
limitation, researchers have explored Transformer-based architectures that leverage the self-
attention mechanism to encode global information. By integrating CNN and Transformer,
these architectures can consider both spatial location information and local details of the
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water body, effectively combining global and local features. One such improvement is seen
in Sgformer [29], which utilizes the SGU module to integrate local details and contextual
semantic information. It fuses the features from both the CNN and Transformer branches,
effectively addressing the problem of semantic divergence at different levels and reducing
the likelihood of misdetection and omission of water bodies. Another study by Zhang
et al. [30] employs the Swin Transformer as the backbone network and integrates multi-
scale contextual information through the SASPP module, reducing the chances of false
detection and omission of water bodies. They also use CNN to reconstruct features in
the decoding stage and redistribute the weights of multiresolution feature maps using
the SE module, enhancing the capability of water body boundary segmentation. Peng
et al. [31] introduce Conditional Position Encoding (CPE) as a replacement for traditional
position encoding, enabling efficient interaction between local and global information in the
encoding stage of the ViT model to enhance glacier segmentation. Meanwhile, ERSSeg [32]
develops a more efficient self-attentive transformer backbone network based on Segformer.
It introduces the Feature Fusion Module (FFM) and location-free coding FFN to enhance the
decoder’s ability to reconstruct the image and capture spatial and positional information
independently of the input size. These improved approaches provide strong support for
water body segmentation tasks by overcoming the limitations of CNN architectures.

3. Methodology
3.1. Proposed Deep Learning Architecture

This study introduces a novel Dual-Stream feature extraction network, termed DSST-
UNet, which synergizes principles from CNN and Transformer models, specifically Swin-
Unet, to enhance water bodies’ extraction using fused multimodal data, including optical
and SAR imagery. Inputs to the network are distinct patches from both optical and SAR
images. The comprehensive DSST-UNet architecture is depicted in Figure 1: 1(a) outlines
the entire network, 1(b) details CNN branch (DCB-ConvNet), and part 1(c) elucidates the
elements within 1(a).

DSST-UNet encoder, dedicated to feature extraction and fusion, cooperates through
three main steps:

(1) Pseudo-Siamese feature extraction: Illustrated in Figure 2, this phase involves the
parallel processing of optical and SAR image patches through two distinct sub-networks
within Pseudo-Siamese feature extractor, each functioning independently without shared
weights. Each sub-network yields four hierarchical feature maps, simultaneously decreas-
ing in spatial dimensions and increasing in channel depth. Specifically, the optical images
produce feature maps {O1, O2, O3, O4}, and SAR images yield {S1, S2, S3, S4}, with corre-
sponding spatial resolutions of {128, 64, 32, 16} and channel counts of {96, 192, 384, 768}.
Subsequently, a fusion process combines corresponding feature maps from the optical and
SAR pathways, resulting in an integrated feature set denoted as {C1, C2, C3, C4}.

(2) Dual-Stream feature encoding: As outlined in Figures 3 and 4, the encoder’s initial
three stages involve a parallel configuration of a Transformer branch and a CNN branch
(DCB-ConvNet). The Transformer branch employs a self-attention mechanism to assimilate
the global context across varying image locations, thereby securing comprehensive semantic
insights. Conversely, the CNN branch (DCB-ConvNet) harnesses an enhanced D-CBAM to
meticulously discern local attributes such as texture, contours, and shapes, augmenting the
system’s proficiency in local detail recognition of diverse water body forms. These branches
operate concurrently, generating a feature map that amalgamates both global and local
image information. During this phase, the merged features from each optical image stage
are labeled {O1, O2, O3}, and those from each SAR image stage are {S1, S2, S3}. Subsequent
to this, a fusion procedure combines the stage-specific optical image feature maps with
those of SAR image to create multimodal features. This fusion involves channel-dimension
splicing of O1 with S1 to form a novel feature tensor, followed by a dimension-reduction
technique (using 1 × 1 convolution) that rescales the spliced tensor down to C1. This
method of splicing and dimension reduction is consistently applied to O2 with S2 and
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O3 with S3, yielding the compounded features C2 and C3. This dual-stream encoding
strategy effectively merges the multimodal data from the optical and SAR images, resulting
in integrated feature maps from the first three stages {C1, C2, C3}.
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(3) Advanced feature encoding: As depicted in Figure 5, the final segment of the en-
coder phase involves the intricate integration of the Transformer branch with a FPA module.
Within this process, the Transformer branch operates independently on the designated
optical and SAR image segments, dedicated to nuanced feature extraction. Following this,
a FPA module [33] is applied to the preliminary extraction outcomes, producing refined
outputs O4 and S4. The FPA module plays a pivotal role in extracting profound semantic
information from elevated-level feature maps, simultaneously reinstating precision in pixel
localization. Throughout this stage, the module expands the receptive field comprehen-
sively across multiple scales, thereby recovering intricate pixel localization details. Such
augmentation is crucial for the recognition of water bodies on multiple scales. The termi-
nal part of this phase encompasses the multimodal feature fusion, previously elaborated,
resulting in the composite output referred to as C4. This fusion signifies the termination
of the encoding section, yielding an array of multimodal feature maps {C1, C2, C3, C4},
consistently throughout the four integral stages of this phase.
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The decoder serves to restore spatial dimensions and refine object specifics [34], con-
verting encoded feature maps into unified semantic segmentation maps for both optical and
SAR images. Within DSST-UNet, the decoder employs Swin-Unet’s structure. This involves
a Patch Expanding mechanism and successive Swin-T modules, collectively constituting
an up-sampling layer. Feature information undergoes consolidation into a novel feature
map via skip-connections, integrating sub-high-level data from the corresponding down-
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sampling layer. The process culminates with the generation of a water body segmentation
map, accomplished through a Linear Projection layer.

3.2. D-CBAM

While CNNs adeptly discern local features and spatial information via convolutional
operations, they also address certain Transformer limitations, such as accuracy in localiza-
tion and extraction of local features. During network training, prioritizing more salient
features is desirable, making the integration of an attention mechanism within convo-
lutional operations a potent strategy [35,36]. CBAM, a streamlined attention module,
sequentially employs channel and spatial attention, effectively interpreting channel and
spatial information within feature maps. To enhance the expressive capacity of the con-
volutional attention module, the study introduces an advanced form of CBAM, termed
D-CBAM, which optimizes the original structure. The architecture of D-CBAM is depicted
in Figure 6. The structure of D-CBAM is shown in Figure 6.
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Channel attention facilitates the allocation of distinct attention levels to different
channels at each position within an image, as delineated in Equation (1):

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

where Mc denotes the channel attention map; σ denotes the Sigmoid function; MLP de-
notes the multi-layer perceptron; MaxPool denotes the global maxinum pooling; AvgPool
denotes the global average pooling.

The deformable convolutional layer, with its inherent ability to learn offsets, can
dynamically alter the shape and size of the receptive field in accordance with the specific
characteristics of water bodies within an image. This advanced feature substantially
augments the network’s proficiency in pinpointing the accurate spatial attributes of water
bodies. Consequently, this study introduces an enhancement to the spatial attention module
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within CBAM by substituting traditional convolution, which conducts sampling of a fixed
size and is thus termed regular convolution, with deformable convolution. Deformable
convolution distinguishes itself by incorporating a learnable offset for each sampling point
within the receptive field, providing a more adaptable approach to feature extraction [37].
The mathematical representation of deformable convolution is articulated in Equation (2):

y(p0) = ∑pnϵR w(pn)× x(p0 + pn + ∆pn) (2)

where w(pn) denotes Convolution checks the weight of the position; ∆pn denotes off-
sets; x(p0 + pn + ∆pn) denotes the offset element value at p0 + pn position on the input
feature map.

In the enhanced spatial attention module, feature set F′, refined by the channel at-
tention mechanism, undergoes global average pooling and max pooling. These proce-
dures, executed across the channel dimension, convert F′, originally with dimensions
H × W × C, into two feature tensors, each with dimensions 1 × 1 × C. These tensors are
then concatenated along the channel dimension, resulting in a single 1 × 1 × 2C feature
tensor. This tensor is subsequently processed through a 3 × 3 deformable convolutional
layer, emphasizing the adaptability to the image’s spatial characteristics. The Sigmoid
activation function is then applied to this convoluted output, yielding weight matrices
that signify the relative importance of various spatial components within the image. These
weight matrices are element-wise multiplied with the original feature set F′, assigning
distinctive weights to different spatial elements in the image. This process is mathematically
captured in Equation (3), with the deformable convolution-based spatial attention module
illustrated in Figure 7:

Ms(F) = σ
(

f 3×3
d ([AvgPool(F); MaxPool(F)])

)
(3)
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3.3. FPA

In the last level of DSST-UNet encoder, convolutions of varying scales (7 × 7, 5 × 5,
3 × 3) are applied to high-level features to extract multi-scale features. These features are
then up-sampled, elevating lower-level details to higher-level features, thereby imbuing
them with pixel-level accuracy. This process ensures that features crucial for water body
identification receive higher priority. Following this, refined features, processed through
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a 1 × 1 convolution, are integrated with pyramid attention features via element-wise
multiplication, resulting in an encompassing enhancement of the feature set. Finally,
these composite features are merged with the global pooling branch, culminating in the
comprehensive pyramid attention features. The advanced feature extraction FPA module
shown in Figure 8.
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3.4. Loss Function

In the network model, the chosen loss function integrates Binary Cross Entropy
(BCE) [38] and Dice coefficients [39]. The task of water body delineation falls under binary
classification within semantic segmentation, targeting the discernment of water bodies
from their surrounding terrain in images. BCE, a standard in binary classification scenarios,
is adopted as the foundational loss metric. This loss criterion quantifies the discrepancies
at the pixel level between the predicted outputs and actual labels, employing natural
logarithm calculations as detailed in Equation (4):

LBCE = − 1
N ∑N

i=1(yilogŷi + (1 − yi)(1 − logŷi)) (4)

where N denotes the number of samples; yi denotes the true label value; yi ∈ {0, 1}; and ŷi
denotes the predicted probability of a particular area being classified as a water body.

However, BCE loss focuses on pixel-level classification accuracy, posing challenges
when subjects are minimal or sparse, resulting in the loss value being disproportionately
influenced by the background imagery. Particularly in water body identification tasks,
images from mountainous or urban regions frequently feature limited water areas. To
address this imbalance, the Dice Loss function is incorporated, computing the congruence
between actual labels and predictive outputs from the model. Dice Loss alleviates the
detrimental effects arising from foreground-background area discrepancies within the
samples, as delineated in Equation (5):

LDICE = 1 − 2|Y ∩ P|
|Y|+ |P| (5)

where Y denotes the true labeled value; P denotes the model predicted value; and |·|
denotes the number of elements in the set.

The overall loss function of the network model can be expressed as in Equation (6):

Loss = λ1 × LBCE + λ2 × LDICE (6)

where λ1 + λ2 = 1, the performance of the model is optimized through the calibration of
the weights attributed to the two loss functions during the training process.
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3.5. Methods for Analyzing Seasonal Water Bodies

Generally, Water Inundation Frequency (WIF) is described as the proportion of in-
stances a specific image location is identified as water over a certain duration, relative to
the total count of suitable observations (unobstructed by clouds, cloud shadows, or snow
and ice) [40]. This is mathematically represented as in Equation (7):

WF =
∑N

i=1 w
N

× 100% (7)

where N represents the total number of times that have been effectively observed;
w ∈ {0, 1}, w = 1 means the pixel is a water body, and w = 0 means the pixel is not a
water body.

In this study, the 2021 monthly water bodies extraction results for the Yellow River
Basin are analyzed through WIF, defined at each pixel as the ratio of the number of times
water is detected to the total number of months. Utilizing WIF values, water bodies are
classified as permanent (WIF ∈ (75%, 100%]), seasonal (WIF ∈ (25%, 75%]), or non-existent
(WIF ∈ (0, 25%]). Essentially, locations registering water presence over nine times annually
are deemed permanent, those observed three to nine times are categorized as seasonal,
and those under three times are designated as non-water bodies. This analysis focuses on
seasonal and permanent categories, collectively referred to as year-round effective water
bodies, forming the basis for subsequent product comparisons.

3.6. Evaluation Metrics

The model’s efficacy is assessed using key performance metrics, including accuracy,
Recall, F1 Score, and Intersection Over Union (IoU). The F1 Score, a harmonized mean of
accuracy and Recall, encapsulates the model’s accuracy and inclusiveness. Conversely, IoU
offers an extensive evaluation by quantifying the congruence between predicted and actual
water body areas. The respective computations for these evaluation metrics are as follows:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 = 2 × Precision × Recall
Precision + Reacll

(10)

IoU =
TP

TP + FP + FN
(11)

where TP is a pixel correctly recognized as a water body; FP is a background pixel incor-
rectly recognized as a water body; and FN is a water body pixel incorrectly classified as
a background.

3.7. Training Details

In this research, all neural network models were constructed utilizing the PyTorch
framework. The training phase employed the complete array of training and validation
samples, with computations facilitated by four NVIDIA TITAN XP GPUs, each equipped
with 12 GB of RAM. The training protocol stipulated a batch size of 12, utilizing AdamW
optimizer [41]. An initial learning rate of 0.001 was established, with a comprehensive
iteration count of 200. This learning rate was subject to dynamic modification contingent on
F1-score observations from the validation set. Specifically, a stagnation in the improvement
of F1-score over 20 epochs triggered a reduction of the learning rate by 50%. This rate
adjustment could be enacted up to three times or until the prescribed iteration limit was
attained. Pertaining to the loss function’s hyperparameters, the values were fixed at 0.7
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for λ1 and 0.3 for λ2. Furthermore, batch normalization [42] techniques were applied to
expedite model convergence.

4. Experiment
4.1. Study Area

The Yellow River Basin, illustrated in Figure 9, lies in northern China, extending
from 32◦ to 42◦ N and 96◦ to 119◦ E. Its geographical stretch covers around 1100 km
from north to south and approximately 1900 km from east to west, with a total area of
795,000 km2, making it China’s second-longest river [4]. The basin’s topography is intricate,
characterized by a decline from west to east, with western regions marked by plateaus and
mountains, central areas by plains and basins, and eastern locales by plains and hills. The
basin hosts a dense urban population, predominantly in its central and lower segments.
Water body morphology within the Yellow River Basin presents substantial complexity and
variety. The upper basin, known for its high altitude, features numerous perennially frozen
lakes due to its colder climate. The middle basin contends with significant sedimentation
from Loess Plateau, resulting in rivers with high sand content. Conversely, the lower
basin lacks prominent large-scale tributaries feeding into the river, creating a distinct
fluvial environment.

1 
 

 
Figure 9. Geographical location of the study area.

4.2. Data Sources and Preprocessing
4.2.1. Remote Sensing Data

This study used high-resolution data from the multispectral imaging satellite Sentinel-2
and SAR satellite Sentinel-1. Comprising Sentinel-2A and Sentinel-2B, the Sentinel-2 sys-
tem operates in a collaborative fashion, offering a 5-day revisit period. For the Yellow
River Basin in 2021, surface reflectivity products (L2A) were sourced from the European
Space Agency’s (ESA) Copernicus Data Center (available at https://scihub.copernicus.eu/,
(accessed on 12 November 2023) Date: from January to December 2021). The dataset,
delivered in 12 monthly segments, encompasses a total of 1768 image captures. These
images incorporate 12 spectral bands, featuring spatial resolutions of 10 m, 20 m, and
60 m. For compatibility with deep learning methodologies, bands of lower resolution were

https://scihub.copernicus.eu/
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resampled to a uniform 10 m, culminating in the integration of bands to produce optical
image data with consistent resolution.

Sentinel-1, part of ESA’s Copernicus Earth Observation Project, is a high-resolution
SAR satellite featuring a six-day revisit period. It offers Level 1 Ground Range Detected
(GRD) products across four modes: SM, IW, EW, and WV. This research focuses on high-
resolution GRD data from the IW mode, boasting a 10-m resolution and supporting dual
polarizations: vertical (VV) and cross-polarization (VH). Data was obtained through Google
Earth Engine and synthesized via averaging techniques into monthly installments, which
amounted to 12 editions for the year, readily usable for deep learning endeavors.

Furthermore, this study integrates auxiliary data for a comprehensive analysis. This
includes ESA’s 10 m surface coverage product [43] and the Joint Research Centre’s (JRC)
global water body data [44]. ESA product is instrumental in creating sample data, thereby
refining the deep learning model’s accuracy and reliability. Concurrently, JRC and ESA
datasets facilitate the evaluation of the model’s accuracy and a comparative study of
the results.

4.2.2. Reference Samples

This study categorizes water bodies into four distinct types based on their morphology
and distribution contexts: rivers, lakes, urban water bodies, and aquaculture, collectively
referred to as complex water bodies. To enhance the accuracy of complex water bodies
identification, a specialized sample library encompassing these diverse water body types
was developed. Illustrative examples are provided (Figure 10), where “a” denotes lakes, “b”
rivers, “c” aquaculture, and “d” urban water bodies. The sample labeling process, crucial
for accurate water body identification, was executed in three strategic phases. Initially,
conventional thresholding techniques were employed to derive preliminary water body
outlines. Subsequently, integration of ESA land cover products and Digital Elevation
Model (DEM) data [45] was undertaken to eliminate features potentially mistaken for water
bodies, such as mountain shadows. The final phase involved generating a binary water
body sample dataset through meticulous interpretation and accuracy labeling of concurrent
spatio-temporal images sourced from Google Maps.

For model training, 26 images, each measuring 16,053 × 16,054 pixels, were chosen.
These images are evenly distributed across the Yellow River Basin, encompassing all
water body types identified in the small sample library. The images were segmented into
1024 × 1024 pixel slices with a 128-pixel overlap, followed by data augmentation on
these segments. The slices were then randomly allocated into training, validation, and
test sets at an 8:1:1 ratio. Throughout the training phase, the model was built using the
training set, while the validation set facilitated hyperparameter tuning. Post-training, the
model’s generalization capabilities were assessed using the test set. This process resulted in
6231 training images, 1021 validation images, and an equal number of test images.
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4.3. Ablation Study

Ablation study dissects the performance contributions of various configurations within
the Swin-UNet architecture as follows:

1⃝ Swin-Unet + Optical: This configuration employs U-shaped architecture of the
Swin-UNet network, designated as “Swin-UNet-Opt”. It exclusively utilizes optical image
patches as input.

2⃝ Swin-Unet + Pixel-level fusion: Architecturally akin to “Swin-UNet-Opt”, this
variation, termed “Swin-UNet-Sum,” also relies on U-shaped Swin-UNet framework. How-
ever, it diverges by inputting patches derived from a pixel-wise fusion of optical and
SAR imagery.

3⃝ SiamSwin-UNet + feature-level fusion: SiamSwin-UNet model is an evolution
of Swin-UNet structure, characterized by a dual-branch design. These branches operate
independently, maintaining distinct weights and input samples. The first branch processes
optical image patches, while the second handles SAR image patches.

To validate the individual contributions of each component within DSST-UNet frame-
work, this study conducted systematic ablation tests using the Yellow River Basin dataset.
We established Method 1⃝ as the Baseline, utilizing only optical input. Method 2⃝ extends
this by incorporating pixel-level fusion of multisource data, while Method 3⃝ evolves the
structure to a dual-branch SiamSwin-UNet, employing feature-level fusion. Subsequent
iterations, labeled Methods 4⃝ through 6⃝, sequentially integrate DCB-ConvNet and FPA
modules, either individually or combined, into the SiamSwin-UNet structure, thereby
allowing an assessment of each configuration’s impact on performance enhancement.

The ablation study results, detailed in Table 1, demonstrate that feature-level fusion of
multi-source data outperforms pixel-level fusion in water bodies extraction, with the latter
surpassing the use of solely optical data. Accordingly, feature-level fusion is adopted as the
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standard for subsequent analysis. Employing just a simple feature-level fusion in SiamSwin-
UNet yielded an F1 score of 91.62, indicating potential underutilization of features. The
introduction of a DCB-ConvNet branch, which incorporates deformable convolutions
in CNN operations, addressed this by enhancing local detail processing, resulting in a
2% F1 score increase to 93.58. Incorporation of a FPA module further improved the F1
score to 92.78, a 1% rise, and augmented Recall by 1%, diminishing detection omissions.
This enhancement stems from FPA’s ability to guide the network’s focus towards salient
high-level features, thereby mitigating detail loss. The concurrent application of both
the DCB-ConvNet branch and the FPA module significantly bolstered extraction efficacy.
The DCB-ConvNet branch fortified local feature learning, the deformable convolution
diversified the adaptability to various water body types, and the FPA module minimized
detail neglect. Collectively, this approach harmonized accuracy and Recall metrics for
water bodies extraction, culminating in a 2% F1 score leap to 93.7.

Table 1. Ablation experiments for the network design.

Method
Metrics (%)

Precision Recall IoU F1

Swin-Unet-Opt 91.42 90.34 83.27 90.87

Swin-Unet-Sum 92.89 89.60 83.85 91.22

SiamSwin-UNet 92.35 90.89 84.53 91.62

SiamSwin-UNet + DCB-ConvNet 95.07 92.13 87.94 93.58

SiamSwin-UNet + FPA 92.36 93.20 86.53 92.78

SiamSwin-UNet + DCB-ConvNet + FPA 94.82 92.79 88.31 93.79

In the illustrative outcomes depicted in Figure 11, the ablation findings are segmented
into four categories. The initial two rows depict lakes with complex perimeters, followed
by rivers, geometrically distinct aquaculture formations, and finally, urban water bodies.

The first row contains both expansive and diminutive lakes characterized by their
intricate borders. These water bodies, set against a relatively non-complex topographical
backdrop, are distinguished by their pronounced boundaries, geometric regularity, and
contrast relative to adjacent areas, making them perceptibly distinct in color and texture.
This result suggests that Transformer’s self-attention mechanism is proficient in captur-
ing the image’s global context, thereby effectively segregating lakes from other elements.
Nonetheless, when dealing with smaller lakes exhibiting complex contours, SiamSwin-
UNet framework tends to generate numerous incorrect identifications. This limitation
arises partly because the Transformer prioritizes overarching information, often at the
expense of localized details, and partly due to the absence of multi-scale learning in pro-
cessing high-level feature maps. The integration of both DCB-ConvNet and FPA modules
markedly diminishes instances of overlooked lake boundaries, with the former enhancing
the extraction of potent local features and the latter bolstering the comprehension of exten-
sive, complex lake perimeters through multi-scale feature assimilation. However, while the
FPA module enriches the model’s capacity to discern complex lake borders, it concurrently
elevates the rate of false detections even as it curtails instances of overlooked detections.

The second row encompasses extensive rivers and complex river networks, positioned
in terrains akin to the first group but distinguished by their sinuous boundaries, compli-
cating water bodies extraction processes. It is evident, as shown in the third row, that
the baseline framework frequently fails to accurately identify segments of the dense river
network, indicating a deficiency in the network’s stability concerning river delineation
tasks. The incorporation of either a DCB-ConvNet branch or a FPA module significantly
mitigates instances of water bodies misidentification. Ultimately, the amalgamation of
both the DCB-ConvNet branch and the FPA module results in river delineations that more
accurately reflect actual labels, although certain inaccuracies persist.
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Figure 11. Visual assessment of ablation studies in water bodies extraction: White indicates correct
detections (where ground truth is water bodies, and detection successful), red indicates missed
detections (where ground truth is water bodies, but detection fails) and blue indicates false detections
(where ground truth is not water bodies, but is incorrectly detected as such). From left to right:
(a) Opt image; (b) SAR image; (c) Ground truth; (d) Swin-UNet-Opt; (e) Swin-UNet-Sum;
(f) SiamSwin-UNet; (g) SiamSwin-UNet + DCB-ConvNet; (h) SiamSwin-UNet + FPA; and
(i) SiamSwin-UNet + DCB-ConvNet + FPA.

The fourth row illustrates block-distributed aquaculture interspersed among cropland,
leading the baseline network to misclassify certain agricultural plots as aquacultural zones.
The introduction of the DCB-ConvNet branch and FPA module enhances aquaculture
delineation compared to the baseline, but the intricate and fragmented nature of aquaculture
distribution results in persistent inaccuracies and omissions in boundary identification
against actual labels.

The fifth row displays urban water bodies environments, characterized by diverse
forms including linear channels, slender streams, and block-like ponds. The baseline
network, constrained by its multimodal feature fusion capabilities, exhibits limited efficacy
in urban water body delineation. The DCB-ConvNet branch’s convolution operations and
FPA module’s strategy for multi-scale learning on high-level feature maps contribute to
enhanced accuracy in urban water bodies extraction. Nonetheless, a degree of misdetection
persists, indicating a need for continued exploration in the realm of urban water bodies
extraction methodologies.

4.4. Comparing Methods

To validate the efficacy of the proposed method, both qualitative and quantitative
analyses were conducted against contemporary cutting-edge techniques using the Yellow
River Basin water bodies dataset. The methodologies for comparison encompass FCN [13],
PSPNet [46], PVT (Pyramid Vision Transformer) [47], and TransUnet [48]. The first two
comparative methods are based on traditional CNN, and the latter two are based on
the Transformer architecture. Specifically, FCN uses an inverse convolutional layer to
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up-sample the feature map to achieve pixel-level classification of the image. PSPNet
contains a pyramid pooling module that integrates global contextual information. PVT
introduces progressively shrinking pyramids while employing finer-grained image chunks
as inputs and always has a global receptive field. TransUnet employs a hybrid encoder of a
CNN and a Transformer of hybrid encoders, where Transformer encodes labeled image
chunks from Convolutional Neural Network (CNN) feature maps as an input sequence for
extracting global context. In this case, TransUnet uses the serial structure of Transformer
and CNN in the encoding stage, while our DSST-UNet uses the parallel mode. In addition,
SegFormer [49] stands out for its integration of a decoder with a full MLP structure. This
design choice allows SegFormer to have a larger and more efficient receptive field compared
to regular CNN models, while still maintaining a lightweight architecture. Furthermore,
our study incorporates FAN [50], which introduces a novel attentional channel design to
the Vision Transformer (ViT) architecture. By dynamically reweighting channel selection
based on content, FAN enhances the network’s feature extraction capabilities. In our
comparison, we utilize SegFormer with FAN Backbone as a comparative method, referred
to as SegFormer-FAN. All of the above comparison methods use both optical and SAR
images as inputs. Our comparison results are shown in Table 2. From Table 2, we can see
that our method has obvious advantages in all indicators and compared with the highest
accuracy of 92.64% of mainstream methods, our method can improve the accuracy by
about 1%.

Table 2. Quantitative comparison of the proposed method with mainstream method.

Method
Metrics (%)

Precision Recall IoU F1

FCN 87.34 90.29 79.84 88.79

PSPNet 90.54 88.74 81.21 89.63

PVT 92.35 90.89 84.53 91.62

TransUnet 93.06 92.84 86.83 92.95

SegFormer-FAN 93.53 93.75 88.04 93.64

Ours (DSST-UNet) 94.82 92.79 88.31 93.79

In the comparative results depicted in Figure 12, the analyses are segregated into
four distinct categories. The initial row showcases large lakes with complex perimeters,
followed by the second and third rows that illustrate riverine landscapes. The fourth row
depicts aquaculture organized in block formations, while the fifth and final section focuses
on urban water features.

The first row is a frozen lake, and the extraction results of different methods are some-
what misdetected and underdetected. Since FCN is only a simple convolution operation, it
has a large number of missed detections on the frozen lake. The Transformer-based network
architecture performs better in the face of this problem. Our method can adaptively adjust
the receptive field size for local feature enhancement learning, so the extraction results are
closer to the labels than these comparison methods. Farmland exists beside the fine rivers
in the second row, and the fine tributaries in the large rivers in the third row have complex
features. The pooling operation in PSPNet omits the local information of the image, which
leads to the breakage of the extraction results of the fine water bodies. Compared with the
results of the rivers extracted by other comparative methods, the extraction results of our
method are more continuous.
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Figure 12. Comparative analysis of water bodies extraction approach: White indicates correct
detections (where ground truth is water bodies, and detection successful), red indicates missed
detections (where ground truth is water bodies, but detection fails) and blue indicates false detection
(where ground truth is not water bodies, but is incorrectly detected as such). From left to right:
(a) Opt image; (b) SAR image; (c) Ground truth; (d) FCN; (e) PSPNet; (f) PVT; (g)TransUnet;
and (h) SegFormer-FAN; (i) Proposed method in this study.

The fourth row is the block distribution of aquaculture, aquaculture due to the in-
fluence of the terrain, in a fragmented and scattered distribution. Moreover, there are
easily confused croplands between aquaculture, which makes classification more diffi-
cult. Overall, the network based on the Transformer architecture performs better than
the CNN, thanks to the fact that the Transformer is good at capturing global information.
For aquaculture, the latter performs better because PVT divides tokens under the role of
pyramid, SegFormer-FAN is a pure transformer encoder, while TransUnet first performs
convolutional operation and encodes the context through the Transformer. Additionally,
our method performs parallel coding of CNN and the Transformer at each stage, so the
extraction is the best. In the final row, focusing on linear ditches, established methods tend
to produce fragmented results, interrupting the continuity of flow, whereas the proposed
approach ensures more seamless extraction outcomes. Moreover, for landscape water bod-
ies encompassing complex peripheries, the novel technique outperforms its counterparts,
achieving heightened accuracy in boundary extraction.
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5. Discussion
5.1. About the Model

The efficacy of extracting water bodies is intrinsically linked to the quality of feature
information fed into the network. Historically, both optical and SAR imagery have been
leveraged for this task. Nonetheless, SAR imagery often falls prey to noise interference,
hampering the clarity of water body delineations. Concurrently, optical imagery acquisition
becomes problematic during cloudy conditions, and the extraction process is often con-
founded by the ‘same spectrum, different objects’ dilemma. One strategy for amalgamating
optical and SAR images involves their concatenation within the channel dimension. While
this methodology endows the network with a richer feature set, the simplistic nature of
pixel-level fusion inadvertently ushers in substantial noise during feature extraction, given
the unselective sharing of weight information. In contrast, feature-level fusion operates
on a multimodal platform, treating different satellite data individually based on their
inherent properties. This approach involves a comparative analysis of labels to discern the
contribution of each pixel to varying branches, thereby optimizing parameters for a more
effective water bodies extraction process.

The efficacy of water bodies extraction is intricately tied to the network architecture
employed. This study utilizes a hybrid network, drawing upon the strengths of both
Transformer and CNNs, structured around the U-Net framework for enhanced multimodal
water bodies extraction. During the single-modal feature encoding phase, an innovative
connection is forged between the DCB-ConvNet and Transformer branches through sys-
tematic feature linkage in the channel dimension at each level. This structural confluence
facilitates a robust extraction of global semantic information, augmented by detailed local
features. An advanced D-CBAM module is integrated to steer the DCB-ConvNet branch,
emulating human perceptual capabilities by automatically modulating the receptive field
size in response to the diverse morphologies of complex water bodies, thereby bolstering
local feature amplification. Within the Transformer branch, the self-attention mechanism’s
inclusion significantly mitigates the limitations traditionally associated with convolutional
operations’ ability to model long-range dependencies. This strategic amalgamation ef-
fectively addresses the global context insufficiency and extended semantic interactions
typically lacking in CNNs. Furthermore, the introduction of a FPA module enhances the
network’s proficiency in discerning water bodies across various scales. Feature-level fusion
is meticulously achieved by concatenating the features distilled from both the Transformer
and DCB-ConvNet branches within the channel dimension. Progressing to the decod-
ing stage, the study employs U-Net architecture’s skip connection concept, leveraging
high-level feature insights to navigate lower-level feature synthesis, culminating in a more
nuanced extraction of edge detail features.

5.2. Computational Efficiency

In order to comprehensively evaluate the complexity and performance of a deep
learning model, it is customary to assess several key metrics, including model parameters,
computational complexity, and inference time (FPS). FLOPs, which stands for Floating-
Point Operations per Second, is primarily utilized to measure the computational speed and
efficiency of the model. FPS refers to the number of image frames processed per second and
is mainly used to gauge the real-time performance of the model. The number of parameters
denotes the total count of trainable parameters in the model and serves as an indicator of
its complexity and capacity. From Table 3, we can see that our model possesses the second
highest number of parameters, trailing only TransUnet. This is attributed to the dual-
stream structure and retention of two decoders. However, we do incur higher overhead
in terms of inference time compared to other methods. On the other hand, SegFormer-
FAN demonstrates superiority in balancing accuracy and efficiency, potentially due to
its employment of lightweight ViT blocks and a simpler decoding structure. Therefore,
future directions for improvement should involve exploring new backbone networks that
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can reduce time and memory costs, while still retaining the dual-stream structure. This
approach will likely further enhance the overall performance and efficiency of our model.

Table 3. Comparison of computational efficiency of different model.

Model FLOPs (G) Params (M) FPS

FCN 55.26 23.85 35.63
PSPNet 62.83 48.90 28.72

PVT 82.35 63.75 29.83
TransUnet 105.30 103.23 16.64

SegFormer-FAN 67.63 58.92 19.48
Ours 92.85 83.26 8.65

5.3. Comparison Analysis of Water Body Classifications

The network architecture under discussion was applied to map diverse water bodies
in the Yellow River Basin in 2021, using the WIF method. This mapping differentiated
water bodies into non-water bodies, seasonal water bodies, and permanent water bodies,
detailed in Figure 13. For an inclusive evaluation of these extensive mapping outcomes,
products from ESA [43] and JRC [44] were brought into comparison. JRC product classifies
observations into four types: invalid, non-water, seasonal water bodies, and permanent
water bodies. In this analysis, the ‘effective water bodies’ term was coined to collectively
describe both seasonal and permanent water bodies within the JRC framework. In contrast,
ESA product presents 11 feature categories. This study narrows its scope to the water body
category, aligning the comparison to concentrate solely on ‘effective water bodies’ for all
referenced products.
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This research undertook a comparative analysis using 2021 water body data from
the JRC and the 2021 land-cover classification from ESA, focusing on case areas in Urad
Front Banner in Inner Mongolia Autonomous Region, Maqu County, Zhongning County,
and Dongping County. The discrepancies in the water body areas within the Urad Front
Banner, as depicted in JRC’s versus this study’s findings and ESA’s datasets, are noticeable
(Figure 14). One plausible explanation for this variance could be the coarser resolution
of JRC dataset, potentially leading to the erroneous classification of barren land as water
bodies. However, apart from these deviations, a substantial congruence is observed among
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the datasets. They all adeptly delineate the spatial distribution of water bodies in the Yellow
River Basin, though this study indicates a higher number of water bodies compared to the
figures in JRC and ESA datasets.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 22 of 26 
 

 
Figure 14. Comparative analysis of different water body detections in various products. 

 
In the four case areas of Urad Front Banner, Maqu County, Zhongning County, and 

Dongping County, this study demonstrates superior accuracy in detecting both extensive 
and smaller water bodies when compared to JRC and ESA datasets. This is particularly 
evident in Maqu County and Zhongning County, regions with a dense river network com-
prising Yellow River’s main course and numerous smaller tributaries. JRC’s data, with a 
spatial resolution of 30 m, fails to capture many smaller water bodies. Furthermore, in 
areas like Urad Front Banner and Dongping County, known for Wuliangsu Lake and 
Dongping Lake respectively, ESA’s datasets offer static results, unable to account for sea-
sonal water bodies and thereby omitting them. This research stands out by considering 

Figure 14. Comparative analysis of different water body detections in various products.

In the four case areas of Urad Front Banner, Maqu County, Zhongning County, and
Dongping County, this study demonstrates superior accuracy in detecting both extensive
and smaller water bodies when compared to JRC and ESA datasets. This is particularly
evident in Maqu County and Zhongning County, regions with a dense river network
comprising Yellow River’s main course and numerous smaller tributaries. JRC’s data, with
a spatial resolution of 30 m, fails to capture many smaller water bodies. Furthermore,
in areas like Urad Front Banner and Dongping County, known for Wuliangsu Lake and
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Dongping Lake respectively, ESA’s datasets offer static results, unable to account for
seasonal water bodies and thereby omitting them. This research stands out by considering
the seasonal dynamics of water bodies and employing higher-resolution data, which
contribute to the enhanced accuracy in water body identification.

6. Conclusions

This research presents an end-to-end deep learning framework designed for the
nuanced extraction of water bodies, employing a synergistic approach through the amalga-
mation of Transformer and CNN methodologies. This innovative model is meticulously
configured to concurrently assimilate fine-grained local and comprehensive global infor-
mation present in feature maps. One of the pivotal enhancements implemented within
this framework is the refinement of CBAM in DCB-ConvNet segment. This is further
complemented by the incorporation of deformable convolution techniques, significantly
sharpening the system’s acuity in identifying water body perimeters and augmenting
its capability in detailed local information capture. Parallelly, the Transformer segment
exploits its inherent self-attention mechanism, offering a solution to the inherent constraints
of traditional convolution procedures, which exhibit deficiencies in managing extensive
spatial dependencies. This strategic enhancement fortifies the model’s capacity for compre-
hensive feature learning, thereby boosting the uniformity and reliability of outcomes in the
context of water bodies extractions. Addressing the potential contamination of high-level
features with irrelevant background constituents, the model integrates a FPA module. This
critical inclusion serves to meticulously filter out non-water bodies elements, intensifying
the focus on multi-scale water-related information, and substantially improving the accu-
racy of detecting smaller-scale water bodies. The model’s accuracy and adaptability, as
demonstrated by 93.7% F1 score on the challenging Yellow River Basin dataset, are further
validated through rigorous ablation testing and comparative assessments, establishing
its suitability for complex, large-scale applications. Its practical efficacy is additionally
evidenced by successful, extensive mapping exercises conducted within the Yellow River
Basin. Future initiatives aim to expand the utility of this cutting-edge model by undertaking
comprehensive assessments of temporal fluctuations in the Yellow River Basin’s water
bodies over a triennial period, with a concentrated focus on discerning patterns within both
seasonal and permanent water bodies. Concurrently, there is a commitment to enhancing
the operational efficiency of the network, striving for a leaner configuration that retains, or
potentially elevates, its analytical prowess.
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ASPP atrous spatial pyramid pooling
BCE binary cross entropy
CBAM convolutional block attention module
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CV computer vision
DCB dense convolutional block
D-CBAM deformable convolutional block attention module
DCNN deep convolutional neural networks
DEM digital elevation model
EASPP enhanced atrous spatial pyramid pooling
ESA european space agency
FCN fully convolutional network
FN false negative
FP false positive
FPA feature pyramid attention
GRD ground range detected
IoU intersection over union
JRC joint research centre
PAN pyramid attention network
SAR synthetic aperture radar
SWA surface water area
TP true positive
VHR very high resolution
WIF water inundation frequency
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