
Citation: Riaz-ud-din, M.; Ghafoor,

S.A.; Shafait, F. Sparse

Representations Optimization with

Coupled Bayesian Dictionary and

Dictionary Classifier for Efficient

Classification. Appl. Sci. 2024, 14, 306.

https://doi.org/10.3390/app14010306

Academic Editor: Luigi Portinale

Received: 1 November 2023

Revised: 13 December 2023

Accepted: 20 December 2023

Published: 29 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Sparse Representations Optimization with Coupled Bayesian
Dictionary and Dictionary Classifier for Efficient Classification
Muhammad Riaz-ud-din 1,* , Salman Abdul Ghafoor 1 and Faisal Shafait 1,2

1 School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and
Technology (NUST), Islamabad 44000, Pakistan; salman.ghafoor@seecs.edu.pk (S.A.G.);
faisal.shafait@seecs.edu.pk (F.S.)

2 National Center of Artificial Intelligence (NCAI), Islamabad 46000, Pakistan
* Correspondence: muhammad.riaz@seecs.edu.pk

Abstract: Among the numerous techniques followed to learn a linear classifier through the discrimina-
tive dictionary and sparse representations learning of signals, the techniques to learn a nonparametric
Bayesian classifier jointly and discriminately with the dictionary and the corresponding sparse repre-
sentations have drawn considerable attention from researchers. These techniques jointly learn two
sets of sparse representations, one for the training samples over the dictionary and the other for the
corresponding labels over the dictionary classifier. At the prediction stage, the representations of the
test samples computed over the learned dictionary do not truly represent the corresponding labels,
exposing weakness in the joint learning claim of these techniques. We mitigate this problem and
strengthen the joint by learning a set of weights over the dictionary to represent the training data
and further optimizing the same weights over the dictionary classifier to represent the labels of the
corresponding classes of the training data. Now, at the prediction stage, the representation weights of
the test samples computed over the learned dictionary also represent the labels of the corresponding
classes of the test samples, resulting in the accurate reconstruction of the labels of the classes by the
learned dictionary classifier. Overall, a reduction in the size of the Bayesian model’s parameters also
improves training time. We analytically and nonparametrically derived the posterior conditional
probabilities of the model from the overall joint probability of the model using Bayes’ theorem. We
used the Gibbs sampler to solve the joint probability of the model using the derived conditional
probabilities, which also supports our claim of efficient optimization of the coupled/joint dictionar-
ies and the sparse representation parameters. We demonstrated the effectiveness of our approach
through experiments on the standard datasets, i.e., the Extended YaleB and AR face databases for face
recognition, Caltech-101 and Fifteen Scene Category databases for categorization, and UCF sports
action database for action recognition. We compared the results with the state-of-the-art methods
in the area. The classification accuracies, i.e., 93.25%, 89.27%, 94.81%, 98.10%, and 95.00%, of our
approach on the datasets have increases of 0.5 to 2% on average. The overall average error margin of
the confidence intervals in our approach is 0.24 compared with the second-best approach, JBDC, for
which it is 0.34. The AUC–ROC scores of our approach are 0.98 and 0.992, which are better than those
of others, i.e., 0.960 and 0.98, respectively. Our approach is also computationally efficient.

Keywords: linear classifier; dictionary learning; nonparametric Bayesian; discriminative; sparse
representation

1. Introduction

Dictionary learning and sparse representation are considerably used in the different
approaches of research areas, particularly in image restoration [1–4], compressive sensing in
ad hoc wireless sensors networks and image processing areas [3,5,6], face and gender clas-
sification [7–14], action recognition [15–18], face recognition and object detection [19–21],
etc. A dictionary consists of a collection of column vectors trained in such a way that
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examples of a dataset belonging to a particular domain can be expressed as linear com-
binations of a few column vectors of the collection. The column vectors are called atoms.
For example, a sample taken from a particular class of dataset can be expressed as a sparse
linear combination of the remaining samples of the same class. The atoms contributing to
the linear combination to reconstruct a signal are few. Therefore, the weights associated
with these atoms form a sparse representation of the signal. These weights are also called
sparse weights.

The sparse representation power of a dictionary was first exploited by Wright et al. [9],
proposing a sparse representation-based classification scheme (SRC). The test signal was
sparsely represented over an overcomplete dictionary that was constructed by the labeled
training signals. The test signal was constructed with the linear combination of dictionary
atoms and the maximum count of class-specific atoms contributing to the linear combina-
tion decides the class of the test sample. Although the classification accuracy of SRC was
good, computationally it was very expansive. Instead of using training data as a dictionary,
discriminative dictionary-learning techniques were introduced for classification. These
techniques learned discriminative dictionaries of reasonable sizes and resulted in improved
accuracy and efficiency [12,22].

Instead of directly using labeled training examples to learn a linear classifier, sparse
representations of these training examples were also used to learn linear classifiers sepa-
rately. Joint classifier learning along with discriminative dictionary learning techniques
became very effective and efficient [23–25]. The association of labels with the dictionaries
and the classifiers makes the dictionary and the classifier discriminative. Discriminative
learning enhances classification accuracy [19,24,25]. For a discriminative dictionary to be
used for classification purposes, a dictionary may be divided into three categories. In the
first category, it consists of two types of atoms, i.e., the class-specific atoms contributing
to the representation of data samples belonging to a particular class and the atoms con-
tributing to the representation of all samples of the data [8,26,27]. The second category
consists of atoms grouped among classes, where each class of atoms represents the data
belonging to that class only [3,14,28–30]. In the third category of dictionaries, a data sample
is represented as a sparse linear combination of atoms selected dictionary-wide without
grouping the atoms among classes. However, discrimination in the dictionary is induced
during learning in such a way that sparse weights become discriminative and are used for
classification [8,31]. These three types of discriminative features are equally applicable to a
dictionary classifier, which either consists of a single dictionary or a classifier that has been
learned in conjunction with a dictionary.

The authors’ key objective remains to keep the relationship between data samples and
the corresponding labels intact while inducing discriminative behavior. In conjunction
with discriminative learning, Akhtar et al. [24,25] introduced approaches for joint learn-
ing of dictionary and a linear classifier based upon a nonparametric Bayesian framework
coupled with beta-Bernoulli processes. These approaches also introduced the adaptive
learning feature of the size of the dictionary and classifier, and the association of labels of
the training examples with dictionary and classifier atoms to make them discriminative to
enhance classification accuracy. Beta-Bernoulli processes enabled discriminative learning
by associating training examples’ labels with the dictionary and classifier atoms. The same
Bernoulli distributions were learned for the selection of dictionary and classifier atoms
to represent training examples and the corresponding labels, respectively. Consequently,
the joint discriminative and adaptive learning ability of the model enhanced the classifi-
cation efficiency. These approaches jointly learn two different sets of sparse weights to
represent training examples and their corresponding class labels over the dictionary and
the classifier, respectively. Two steps are followed to predict a test sample. In the first step,
sparse weights of the test sample are computed over the learned dictionary, using the OMP
(orthogonal matching pursuit) algorithm. In the second step, these sparse weights are used
as inputs to the learned classifier to predict the label of the test sample. The classifier acts
like a dictionary, and its label reconstruction ability determines its efficiency in predicting
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the test sample. In the second step, it is expected that the dictionary classifier will precisely
construct the corresponding class label of the test sample using these sparse weights com-
puted in the first step. However, during training, different sparse weights were learned to
represent the corresponding labels of the training examples. Therefore, the performance of
the classifier will be decreased. The use of weights computed over the dictionary will not
effectively allow the classifier to reconstruct the corresponding label correctly.

These approaches [24,25] enhanced discriminative behavior while learning a dictionary
and linear classifier, along with a feature of adaptively learning the size of the dictionary.
However, these approaches are not strongly effective in establishing a strong joint between
the dictionary and the classifier, as their strategies are of different sparse weights learning,
and choosing the sparse weights computed over the dictionary instead of over the classifier
is not intuitively feasible. To mitigate this issue and enhance the coupling between the
dictionary and the dictionary classifier, we introduce the same representation weights
learning approach. Our approach learns the same sparse weights over the dictionary to
represent the training examples and over the classifier to represent the corresponding
training labels, respectively. At the prediction stage, the representation weights of a test
sample, computed over the dictionary, will also serve as the representation weights of the
corresponding label over the classifier. This way, the reconstruction of the corresponding
label or mapping to the corresponding label by the dictionary classifier will be more
accurate. Therefore, the sparse codes of a signal computed over the dictionary should
either be used separately for classification [9] or, if these are to be integrated with the
dictionary classifier in joint learning settings [24,25], the same sparse codes should be
further learned/optimized over the dictionary classifier, instead of learning different codes
over the dictionary classifier. We point this out as a research gap that needs to be addressed.
By learning the same weights, we address this gap in the existing research. We tailor the
sparse weights being learned over the dictionary, representing training examples, to further
optimize for the representation of corresponding labels over the dictionary classifier, instead
of learning another set of weights that are not accessible at the stage of prediction. This way,
the sparse weights get truly integrated with the dictionary and the classifier in joint learning
settings. Moreover, we introduced a new strategy in the Gibbs sampling learning technique
to improve the training time. We tested during experimentation that the number of inner
iterations can be reduced by processing atoms and associated model parameters in groups.
The size of the group varies from database to database to avoid degradation of the accuracy
of the results. We used conjugate priors and analytically and nonparametrically derived the
conditional probability distributions of the posterior parameters of the proposed Bayesian
network. We used these conditional probabilities during Gibbs sampling for iteratively
taking samples for computing the posterior probabilities of the model.
The following are the salient contributions of our work:

1. Our approach learns jointly and discriminately the dictionary and the dictionary
classifier with the same sparse weights over the dictionary to represent training
examples and over the classifier to represent the corresponding labels of the training
examples. The approach highlights the weakness in the joint learning of the existing
approaches and proposes a true strong joint design in Bayesian settings with enhanced
classification accuracy.

2. Our approach is computationally efficient, as it reduces the training time by decreasing
the overall number of parameters of the model.

3. The reconstruction error for the training examples needs to be updated after the update
of each dictionary atom and the associated parameters during Gibbs sampling. We
demonstrated that dictionary atoms and the associated parameters can be updated in
groups, and reconstruction errors can be updated following group updating without
compromising classification accuracy. However, the maximum size of the group
of atoms varies depending on the data. Following this strategy, training time was
reduced by a factor of 64.
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In our work, we present the literature review in Section 2 and explain the problem in
Section 3. We present the formulation of our proposed model along with the derivation of
conditional probabilities for posterior parameters for Gibbs sampling in Sections 4 and 5,
respectively. Our work also includes details of datasets and their preprocessing, perfor-
mance measures, experiments and comparative results, statistical analysis, discussion,
and conclusion in Sections 7–14, respectively.

2. Literature Review

Yang et al. [13] first proposed a sparse representation classification (SRC) method for
face recognition exploiting the discrimination capability of the dictionary. A competitive
environment of effective dictionary learning problems evolved, and such problems became
very challenging. Motivated by the sparse representation capability of a discriminative
dictionary, various dictionary learning methods evolved, such as supervised dictionary
learning [32], the kernel method [33], the proximal method [34], nonparametric Bayesian
inference [25], and so on.

Various techniques of learning dictionaries could be categorized as multiple dic-
tionary learning [27], compact dictionary learning [35], and discriminative dictionary
learning [8,12,36]. Zhou et al. [27] trained multiple class-specific dictionaries using visual
correlation within the objects. An incoherence term was introduced to the loss function for
inducing class-specific discrimination between various class-specific dictionaries [37]. How-
ever, this technique was computationally expensive. To address the large-scale datasets,
compact dictionary learning techniques evolved. An entropy minimization rule was
utilized to pick the dictionary atoms for the representation of examples based upon a
probabilistic model [38]. Additionally, the kernel regularization method was also employed
for nonlinear dictionary atoms training, which reduced the dimensions of features [33].
However, this method could not induce effective discrimination in the learned dictionaries.
To induce discrimination in the dictionaries, authors followed approaches to get label
information induced into the loss function at the training stage. Logistic loss [39], quadratic
loss [8], and hinge loss [40] are some of the examples of commonly used loss functions.
Using label along with feature data [23], a discriminative method, K-SVD (D-KSVD), was
proposed to learn the dictionary and linear classifier simultaneously. Jiang et al. [8,41]
enhanced the dictionary’s discrimination ability by introducing a label-consistent constraint.
Yang et al. [12] proposed a structured dictionary scheme via Fisher discrimination criteria,
utilizing both the reconstruction errors and the sparse codes for classification. The recogni-
tion accuracy was increased by developing a method based on low-rank representation
to eliminate the correlation between different categories [42]. These optimization-based
dictionary learning algorithms could not adaptively learn sparsity level and noise variance
to produce the best results.

To overcome these limitations, dictionary learning problems were handled through
Bayesian techniques. A nonparametric beta-Bernoulli process model was developed
by [43] to learn dictionary atoms and sparse codes for image denoising and interpola-
tion, which is capable of inferring the number of dictionary atoms from training data.
Akhtar et al. [24,25], Akhtar and Mian [44] presented a joint discriminative dictionary and
classifier learning algorithm for image classification using Gibbs sampling. A variational
inference method was developed by [45] to train a dictionary for image denoising.

Deep learning methods were also gaining popularity in the computer vision field [46].
Convolutional neural networks (CNNs) were taking a lead [47]. For instance, a deep
residual network [48] with a network depth of 100 was proposed for image classification.
Huang et al. [49] proposed a densely connected CNN to strengthen feature propagation,
increasing the classification accuracy. The multiple-layer architecture was the success of
deep learning methods for superior approximation capacity. The total number of parame-
ters involved in a deep model is very large. For the optimization of massive parameters,
a large volume of data are required during training along with computational power.
Therefore, for medium-scale datasets, dictionary-learning-based methods are suitable com-
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pared with deep learning methods. Consequently, our article focuses on dictionary and
sparse-representation-based classification methods.

Class-specific discriminative dictionary learning approaches produced the best clas-
sification accuracies, but heavy computation was involved during the training and clas-
sification of a test sample. Joint and discriminative learning of the dictionary and the
classifier gained significant attention from the researchers. Traditional dictionary and
classifier learning techniques could not adaptively optimize the model parameters, partic-
ularly sparsity and the size of the dictionary and the classifier. Nonparametric Bayesian
approaches coupled with beta-Bernoulli processes became very famous for adaptively
learning the parameters and inducing discrimination [24,25,44]. However, the emphasis
and the success in controlling the accuracy through the discrimination-inducing power of
beta-Bernoulli processes ignored an important aspect of learning the same representation
weights for training examples and their corresponding labels. The sparse weights for the
representation of the test sample and the corresponding label play a pivotal role in the
classification process. The optimization of the same sparse weights over the dictionary and
the classifier is intuitively an effective approach to enhance classification performance. The
literature review is summarized in Table 1.

Table 1. Summary of the literature review.

Authors Method(s) Datasets Accuracy
(%)

Train vs. Test Examples (%)—Other
Conditions
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y

Ramirez
et al. [37]

Classification and clustering via
dictionary learning with structured
incoherence and shared features

MNIST 97.00 Size of dictionaries = 800

USPS 98.00 Size of the dictionaries = 80

ISOLET 98.50

Brodatz dataset 99.60

Yang et al.
[13]

Robust sparse coding (RSC)
by modeling the sparse coding as a
sparsity-constrained robust regression
problem

Extended Yale B 99.40 50/50—Acc. decreases with
low-dimension features

AR 96.00 50/50—Acc. decreases with
low-dimension features

Multi-PIE 97.80 35/65—Acc. with smile expression

N
on
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n
D
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ti

on
ar

y
(D

is
cr

im
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at
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e/
Jo
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t)

Le
ar

ni
ng Mairal

et al. [32]

Supervised dictionary learning (SDL)
with generative training (SDL-G) and
with discriminative learning (SDL-D)
along with linear (L) and bilinear (BL)
decision functions

MNIST 98.96 86/14—with SDL-D L

USPS 96.46 78/22—with SDL-D L

Brodatz dataset 83.16 50/50—with SD-G BL

Jiang et al.
[8]

Label Consistent K-SVD: Learning a
Discriminative Dictionary for
Recognition (LC-KSVD) with two
variants, LC-KSVD1 and LC-KSVD2,
with discriminative power and with
both the discriminative and the
constructive powers

Extended YaleB 96.70 50/50—LC-KSVD2

AR 97.80 78/22—LC-KSVD2
Caltech101 73.60 34/66—LC-KSVD2
Caltech256 34.32 38/62—LC-KSVD2
15 Scene 92.90 34/66—LC-KSVD2

UCF 95.70 Fivefold
cross-validation—LC-KSVD2

Liu et al.
[33]

A kernel regularized nonlinear
dictionary learning for sparse coding
with stacked autoencoder (SAE)
networks used to jointly learn low
embedding of the data samples and a
dictionary

USPS 99.00 71/29—Dimension = 120

Extended Yale B 96.00 78/22—Dimension = 350

COIL-20 97.00 70/30—Dimension = 250

GTSRB 98.00 76/24—Dimension = 350
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Table 1. Cont.

Authors Method(s) Datasets Accuracy
(%)

Train vs. Test Examples (%)—Other
Conditions

Zhang
et al. [21]

Twin-Incoherent Self-Expressive
Locality-Adaptive Latent Dictionary
Pair Learning for Classification
(SLatDPL)

YaleB 98.2 50/50
AR 98.60 77/23
CMU PIE 95.30 24/76

MIT CBCL 99.80 15 random split train/test—3240
examples (324 images per person)

UMIST 93.40 10/90
15Scene 98.80 33/67
ETH80 98.30 15/85
Caltech101 72.72 8/92
Caltech256 78.90 13/87
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Akhtar
et al. [25]

Discriminative Bayesian Dictionary
Learning for Classification (DBDC).
Nonparametric Bayesian framework
with beta process

Extended Yale B 97.19 50/50
AR 97.41 77/23
Caltech-101 74.60 7/93
15Scene 98.67 33/67

UCF sports action 95.1
Fivefold cross-validation with four
folds for training and one
for testing

Akhtar
et al. [24]

Joint Discriminative Bayesian
Dictionary and Classifier Learning
(JBDC). Nonparametric Bayesian
framework with beta process

Extended Yale B 92.14 24/76
AR 87.17 27/73
Caltech-101 89.59 7/93
15Scene 97.73 17/83

UCF sports action 95.7
Fivefold cross-validation with four
folds for training and one
for testing

Akhtar
and Mian
[44]

Nonparametric Coupled Bayesian
Dictionary and Classifier Learning for
Hyperspectral Classification

Indian Pines 92.64 10/90—Avg. Acc. = 93.31%,
Kappa = 0.917

Salinas Image 92.75 1/99—Avg. Acc. = 96.45%,
Kappa = 0.918

Pavia University
Image 91.30 10/90—Avg. Acc. = 87.99%,

Kappa = 0.884

3. Problem Representation

A dictionary Φ ∈ RM×K containing K atoms is defined as

A ≈ Φα, (1)

where A ∈ RM×N is training data that contain C classes, i.e., A1, A2 . . . Ac . . . AC, indexed
in IN . Ic represents a set containing the indices of the training examples belonging to the

cth class, and equivalently,
C
∑

c=1
|Ic| = N, where |.| is the cardinality of a set. In Equation (1),

α ∈ RK×N is the matrix of sparse codes representing examples in A. In terms of classes of
examples, a class of data can be expressed as

Ac ≈ Φαc, (2)

where αc ∈ RK×|Ic | is the matrix consisting of sparse representation vectors of the examples
belonging to Ac. The constrained optimization problem of dictionary and sparse codes
learning can be put in the form

< Φ, α >= min
Φ,α

||A − Φα||2F s.t. ∀i, ||αi||p ≤ t, (3)
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where αi ∈ RK is the ith column of α that represents the sparse codes of the ith example
of data A. The constant t controls the sparsity of the columns of the sparse codes matrix.
The ||.||F and ||.||p represent the Frobenius norm and lp-norm of a vector, respectively. The
sparse codes learned during dictionary learning can be used for training the parameters of
a linear classifier as below:

B = min
B

N

∑
i=1

£{hi, f (αi, B)}+ λ||B||2F, (4)

where B ∈ RC×K, £, hi ∈ {0, 1}C, λ, and f (.) represent classifier, loss function, class
label for ai, regularization constant, and predicted label for ai, respectively. Though the
aforementioned approach provides a baseline for using the dictionary learning domain
in the classification domain, this does not exhibit joint and discriminative behavior. The
joint and discriminatory learning dictionary and classifier obtain the label information
of the training data induced into the learning process, and the efficiency of the classifier
increases [8,40,50]. Among such joint discriminative approaches, the approach followed
by [24] became very prominent and knocked out other approaches. This approach used a
Bayesian nonparametric framework with beta process [51]. The authors in [52] introduced
the beta process for image restoration and compressive sensing. This concept was further
exploited by Akhtar et al. [24,25] for object and scene classification, as well as face and
action recognition.

Basically, Paisley and Carin [51] developed a beta process for nonparametric factor
analysis. It is represented by BP(a0, b0, h̄0) with a0 > 0, b0 > 0, and h̄0 as the base measure.
The drawing of atoms in the dictionary from the base measure can be expressed as below:

h̄ = ∑
k

πkδϕk
(ϕ), k ∈ K = {1 . . . , K},

πk ∼ Beta(πk|a0/K, b0(K − 1)/K),

ϕ ∼ h̄0,

(5)

where δϕk
(ϕ) = 1 for ϕ = ϕk and 0 otherwise. h̄ is a vector of probabilities for the

selection of atoms and its kth component represents the selection probability of the atom
ϕk, drawn from the base measure h̄0. To induce sparsity, a vector of Bernoulli probabilities,
Br = {Bernoulli(πk) : k ∈ K}, corresponding to the atoms selection probabilities h̄ is
introduced. Similarly, a matrix Z ∈ {0, 1}K×N of N binary vectors can be drawn for the
selection of atoms for all data examples. Training data can sparsely be approximated
as A ≈ ϕZ, where the number of nonzero elements in a column of Z depends upon
the value of K. However, in case of K → ∞, the number of nonzero elements is a draw
from a Poisson ( a0

b0
) distribution [51]. This approach was used by [25] and learned a

linear classifier independently. However, discrimination in the dictionary was induced
by drawing different sets of Brs for each class of data. Joint learning was further induced
by [24]. To keep data labels intact with the data samples, they used the same Bernoulli
distributions for both dictionary atoms and classifier atoms selection during joint dictionary
and classifier learning. However, they trained different weights for the representation of
data samples and the corresponding labels at the dictionary learning and the classifier
learning stages, respectively. While predicting a test sample, weights computed over the
learned dictionary are used directly as input to the classifier. The different weights learned
for the representation of labels during classifier learning get ignored at the prediction stage.
We introduced an approach in which this issue is mitigated by learning the same weights
at both the stages, i.e., at the dictionary learning and the classifier learning stages for the
representation of both the data examples and the corresponding labels.

4. Formulation of Our Approach

We design a Bayesian network and follow a nonparametric approach for computing
the conditional probabilities of the nodes. Motivated by the sparse representation power of
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an overcomplete dictionary, we learn sparse representations of training examples by jointly
learning two Bayesian dictionaries. The same sparse representations learned with the first
dictionary, called the dictionary, are further optimized by the second dictionary, called the
linear classifier, to represent the labels of the corresponding classes of the examples over the
classifier. Furthermore, we also used the beta-Bernoulli processes to induce discrimination
in the dictionary and the classifier. The Bayesian network of our approach is shown in
Figure 1.

Figure 1. Bayesian Network. Nodes represent the random variables of the model and edges
represent conditional dependence among the variables. Note that the same atom selection (zc

i ) and
representation (sc

ik) variables contribute to the reconstruction of both the training examples, ac
i , and the

labels, hc
i .

We use different base measures for the dictionary and the classifier and use the
same Bernoulli distributions for the selection of the dictionary atoms and the classifier
atoms for the representation of training examples and the corresponding labels. The
Bernoulli distributions’ parameters π are drawn from the beta process. These parameters
are associated with the dictionary atoms and the classifier atoms. Though different base
measures are used for beta-Bernoulli processes for the dictionary and the classifier, the same
Bernoulli parameters are used for associating probabilities with dictionary atoms and
the corresponding atoms of the classifier for the representation of the examples and the
labels. However, to induce discrimination and associate labels with dictionary atoms
and classifier atoms, we use different sets of draws of Bernoulli distribution parameters
from beta-Bernoulli processes for each class of the training data. Consequently, different
sets of Bernoulli distributions for the selection of atoms are used for the representation
of the examples and the corresponding labels for different classes. The work in [24] uses
two separate prior Gaussian distributions to draw the weights for the dictionary and the
classifier for the representation of the training examples and the corresponding labels,
respectively. We use the same Gaussian prior for drawing the same representation weights
for the dictionary and the classifier to represent training examples and the corresponding
labels. Based upon our nonparametric Bayesian approach for jointly learning the dictionary
classifier with a dictionary and the same sparse representations for both the training
examples and the labels of the corresponding classes, the model is expressed mathematically
in Equation (6).

For the construction of the ith training example of the cth class. it is formulated as
ac

i = Φαc
i + aϵi and αc

i = zc
i ⊙ sc

i . Here, αc
i is the sparse code vector (weights) for the ith

example of data, sc
i ∈ RK is the weight vector associated with dictionary atoms contributing
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to sparse code representation of ith example, and ⊙ represents the Kronecker product. The
linear classifier B is also learned jointly with the same sparse codes αc

i for the representation
of class labels, contrary to [24]. The formal representation of our model is shown below.

∀i ∈ Ic, ∀c ∈ {1, 2, . . . , C}, and ∀k ∈ {1, 2, . . . , K}
αc

i = zc
i ⊙ sc

i

ac
i = Φαc

i + aϵi hc
i = Bαc

i + hϵi

πc
k ∼ Beta(πc

k|a0/K, b0(K − 1)/K)

zc
ik ∼ Bernoulli(zc

ik|π
c
k)

sc
ik ∼ N (sc

ik|0, 1/λc
s)

ϕk ∼ N (ϕk|0, 1/λϕ0 IM) bk ∼ N (bk|0, 1/λb0 IC)

aϵi ∼ N (aϵi |0, 1/λaIM) hϵi ∼ N (hϵi |0, 1/λhIC)

(6)

We train the same zc
i and sc

i for both ac
i and hc

i . We draw kth coefficients zc
ik and

sc
ik of zc

i and sc
i from Bernoulli distribution and Gaussian distribution, respectively. λ’s

are precision parameters of Gaussian priors in Equation (6). Bernoulli parameters πc
i are

drawn from the Beta distribution. To represent the kth column of the dictionary Φ and
the classifier B, we use the notations ϕk and bk, respectively, where 0 is the zero vector of
dimension M for the dictionary prior and of dimension C for classifier prior. The subscript
‘0’ appearing in the expressions shows the hyperparameters belonging to prior distributions.
We also modeled errors aϵi and hϵi for the construction of both ac

i and hc
i . We further place

noninformative Gamma hyperpriors over precision parameters, i.e., λc
s ∼ Gam(c0, d0) and

λa, λh ∼ Gam(e0, f0).
In conjunction with the priors defined in Equation (6) and our model shown in Figure 1,

we derive conditional probabilities of posterior parameters (ϕk, bk, sc
ik, πc

k, zc
i ) of our model

in the coming sections.

5. Posterior Conditional Probabilities for Gibbs Sampling

Using the Gibbs sampler as an inference algorithm, we iteratively take samples from
conditional probabilities for the posterior parameters of our model. We drive conditional
probabilities analytically using conjugate priors of our proposed probabilistic model pre-
sented in Equation (6). We derived the factorized expressions for these conditional proba-
bilities from the overall joint probability distribution of our model using the Bayes theorem.
The symbol “|−” in the following conditional probabilities of the posterior variables means
conditioned on all variables except the variable of the mentioned probability. Here, it is
understood that the conditional probability is conditionally independent of all the variables
absent in the expression, i.e., the variables outside the Markov blanket. This can be inferred
from the probabilistic graphical model (PGM) presented in Figure 1. The overall joint
probability of the model is given below.

p(ϕ, B, A, H, Z, S, λs, π, λa, λh) =
K

∏
k=1

N (ϕk|0, λ−1
ϕ0

IM)
K

∏
k=1

N (bk|0, λ−1
b0

IC)

N

∏
i=1

K

∏
k=1

N (aiϕk
|ϕk(zik.sik), λ−1

a IM)
N

∏
i=1

K

∏
k=1

N (hibk
|bk(zik.sik), λ−1

h IC)
C

∏
c=1

∏
i∈Ic

K

∏
k=1

Bernoulli(zc
ik|π

c
k)

C

∏
c=1

∏
i∈Ic

K

∏
k=1

N (sc
ik|0, (λc

s)
−1)

C

∏
c=1

Gam(λc
s|c0, d0)

C

∏
c=1

K

∏
k=1

Beta
(

πc
k|

a0

K
,

b0(K − 1)
K

)
Gam(λa|e0, f0)

Gam(λh|e0, f0)

(7)
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Bayes’s theorem, in general, is given as

p(Θ|X) =
p(Θ

⋂
X)

p(X)

or

p(Θ|X) ∝ p(Θ
⋂

X) = p(X|Θ)p(Θ),

(8)

where p(X) is the joint probability of observed data that is constant. In the following
sections, we set up the factorized forms of the conditional probabilities of the model
parameters and transform them analytically and nonparametrically to the standard forms
of Gaussian, gamma, beta, and Bernoulli distributions belonging to the respective conjugate
priors families.

5.1. Conditional Probability for Dictionary Atom (ϕk)

The factorized form of the conditional distribution of an atom of the dictionary can be
written as

p(ϕk|−) ∝
N

∏
i=1

N (aiϕk
|ϕk(zik.sik), λ−1

a IM)N (ϕk|0, λ−1
ϕ0

IM) (9)

where aiϕk
= ai − Φ(zi ⊙ si) + ϕk(zik ⊙ sik), is the reconstruction error induced by all

dictionary atoms except the kth atom in representing ai. Here, the dictionary atom does not
carry class label c with it, indicating that we are training a dictionary of the third category,
where all the atoms are shared for the representation of a data example. The expression
in Equation (9) can be analytically transformed to the standard Gaussian distribution
as follows:

ϕk ∝ N (ϕk|µk, λ−1
ϕ IM), λϕ = λϕ0 + λa

N

∑
i=1

(zik.sik)
2, µk = λaλ−1

ϕ

N

∑
i=i

(zik.sik)aiϕk
(10)

5.2. Conditional Probability for Classifier Atom (bk)

Similarly,

bk ∝ N (bk|µk, λ−1
b IC), λb = λb0 + λh

N

∑
i=1

(zik.sik)
2, µk = λhλ−1

b

N

∑
i=i

(zik.sik)hibk
(11)

Here, hibk
is the reconstruction error induced by all classifier atoms except the kth

atom in representing hi. It may be noted here that we use the same weights, sik, for both
the dictionary and the classifier learning.

5.3. Conditional Probability for Bernoulli Variable (ZC
Ik)

We derive the conditional probabilities of the posterior Bernoulli variables of our
model. We use the same Bernoulli probabilities for the selection of both the dictionary
atoms and the classifier atoms to represent training examples and the corresponding labels.
The factorized form of the conditional probability for the posterior parameter zc

ik is

p(zc
ik|−)∞N (ac

iϕk
|ϕk(z

c
ik.sc

ik), λ−1
a IM)N (hibk

|bk(zc
ik.sc

ik), λ−1
h IC)Bernoulli(zc

ik|π
c
k) (12)

Equation (12) can be analytically transformed to the standard Bernoulli distribution,
i.e., belonging to conjugate prior’s family as follows:

zc
ik ∼ Bernoulli(

πc
kζ1ζ2

1 − πc
k + ζ1ζ2πc

k
), ζ1 = exp(−λa

2
(ϕT

k ϕksc
ik

2 − 2sc
ik(a

c
iϕk
)Tϕk)),

ζ2 = exp(−λh
2
(bT

k bksc
ik

2 − 2sc
ik(h

c
ibk
)Tbk))

(13)
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5.4. Conditional Probability for Representation Weight (sc
ik)

This weight is associated with the kth atoms of the dictionary and the classifier, i.e., ϕk
and bk, during the linear combination of the dictionary atoms and the classifier atoms to
construct the ith training example and the corresponding label, respectively. The factorized
form of the conditional probability for representation weight is

p(sc
ik|−) ∝ N (ac

iϕk
|ϕk(zc

ik.sc
ik), λ−1

a IM)N (hc
ibk
|bk(zc

ik.sc
ik), λ−1

h IC)N(sc
ik|0, 1/λc

s), (14)

Here, it may be noted that we are using the same Gaussian prior for representation
weights with both the dictionary and the classifier. Equation (14) can be analytically trans-
formed to the standard Gaussian distribution belonging to the conjugate prior’s family
as follows:

sc
ik ∼ N

(
sc

ik|µs, λ−1
)

, λ = λc
s + λazc

ik
2ϕT

k ϕk + λhzc
ik

2bT
k bk,

µs = λ−1
(

λazc
ikϕT

k ac
iϕk

+ λhzc
ikbT

k hc
ibk

) (15)

5.5. Conditional Probability for a Bernoulli Distribution Parameter (πc
k)

The model parameter πc
k is associated with the kth atoms of the dictionary and the

classifier to be used as prior for the Bernoulli distribution for the selection of these atoms for
the representation of training examples and the corresponding labels belonging to class c.
The class-specific learning of the parameter induces discrimination in the dictionary and the
classifier for associating labels with the dictionary and the classifier atoms. The factorized
and standard forms of the conditional distribution of this parameter are

p(πc
k|−) ∝ ∏

i∈Ic

Bernoulli(zc
ik|π

c
k)Beta

(
πc

k|
a0

K
,

b0(K − 1)
K

)
, or

p(πc
k|−) ∝ Beta

(
a0

K
+

|Ic |

∑
i=1

zc
ik,

b0(K − 1)
K

+ |Ic| −
|Ic |

∑
i=1

zc
ik

) (16)

As per analytical inference by [24], a dictionary atom ϕk can be pruned at each iteration

of Gibbs sampling according to whether
C
∑

c=1
πc

k → 0 or not. Likewise, the classifier atom bk

is also pruned.

5.6. Conditional Distribution for Precision Parameter for a Representation Weight (λc
s)

A separate precision parameter for each class is learned to induce class-wise discrimi-
nation in the representation weights. The factorized form of the distribution is

p(λc
s|−) ∝ ∏

i∈Ic

N (sc
i |0, 1/λc

sIK)Gam(λc
s|c0, d0) (17)

The expression is simplified as follows:

λc
s ∼ Gam

(
|Ic|K

2
+ c0,

1
2

|Ic |

∑
i=1

∥sc
i ∥2

2 + d0

)
(18)

5.7. Conditional Probability for Precision Parameter for Data (λa)

The factorized form of the distribution is given as

p(λa|−) ∝
N

∏
i=1

N
(

ai|Φ(zi ⊙ si), λ−1
a IM

)
Gam(λa|e0, f0) (19)
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The expression is analytically solved into the standard form of conjugate prior family as

λa ∼ Gam

(
MN

2
+ e0,

1
2

N

∑
i=1

∥ai − Φ(zi ⊙ si)∥2
2 + f0

)
(20)

5.8. Conditional Probability for Precision Parameter of Labels λh

Similarly,

λh ∼ Gam
(

CN
2

+ e0,
1
2

N

∑
i=1

∥hi − B(zi ⊙ si)∥2
2 + f0

)
(21)

After sufficient iterations of the Gibbs sampler, we compute the posterior probability
distributions of dictionary atoms and the classifier parameters. For the prediction of a test
sample, its sparse code representation α over Φ is computed first. The label of the test
sample is predicted by classifying α with the classifier B. A label vector corresponding to
the test sample is estimated as Bα ∈ RC, and the index of the largest value is declared as
the class label. Orthogonal matching pursuit (OMP) [53] is used to compute α. As the same
α is jointly learned at both the dictionary and the classifier stages, we expect that Bα ∈ RC

will result in the true label, enhancing the class prediction efficiency.

6. Parameters Initialization

The overcomplete dictionary is initialized with a sufficiently large number of training
samples on the order of 1.25 times the data. The data samples are randomly selected
from the training data with replacement. We use OMP to compute sparse codes for the
initialization of sc

i . We initialize zc
i with all its components equal to one, except those having

zero values for their corresponding components of sc
i , in which case these are set equal

to zero. The ridge regression technique is used to initialize the classifier B, using sc
i and

training labels hc
i ∈ RC [8,23,25]. We set all πk values equal to 0.5 to make the selection of

dictionary and classifier atoms equally probable for the representation of data samples and
the corresponding labels. We follow Algorithm 1 for Gibbs sampling.

Algorithm 1 Gibbs sampling

Require: We refer to Figure 1, Equation (6), and conditional probabilities derivations for
this algorithm. Initialize the hyperparameters a0, b0 with 0 < a0, b0 < min

c
|Ic|, c0, d0, e0,

f0 with 10−6, λϕ0 , λb0 with M and C, λc
s with 1, and λa and λh with 109.

Initialize Φ, B, πc
k, zc

k, and sc
k as already described in Section 6.

1: for i ∈ {1, 2, 3, . . . , 500} do
2: We can reduce the number of iterations in the inner loop by processing atoms in

groups along with the associated parameters.
3: for k ∈ {1, 2, 3, . . . , K} do
4: Sample ϕk, bk, sc

k, zc
k, and πc

k (using expressions of conditional distributions)
∀c ∈ {1, 2, 3, . . . , C}

5: k = k + 1
6: end for
7: Sample λa, λh, and λc

s (∀c ∈ {1, 2, 3, . . . , C})
8: i = i + 1
9: end for

10: Compute sparse weights α of test data over the learned dictionary Φ, using orthogonal
matching pursuit (OMP) available in the SPAMS package in Python. Compute predicted
labels by selecting indices of the maximum value components of each column of Bα.

11: Compute the classification accuracy
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7. Datasets and Preprocessing

In this research, two face recognition, two categorization, and one action recognition
dataset are employed as benchmarks for experiments. We give the details of these datasets
along with the preprocessing operations as follows.

7.1. Extended YaleB

This database was developed for 38 subjects, each with about 64 samples, with suffi-
cient variations in illuminations and facial expressions containing 2414 face images [54].
These variations carried by each subject set a challenging stage for classification approaches.
For one of the subjects, these variations are shown in Figure 2. We used 504-dimensional
random face features [8] extracted by projecting 192 × 168 cropped face images [9] on a
504-dimensional vector. The projection matrix was generated from random samples of
standard normal distributions for this transformation.

Figure 2. Face images for one subject from the YaleB dataset.

7.2. Ar Face Dataset

This database was developed by capturing 26 photographs of each of 126 subjects
during two different sessions with larger variations in facial disguise, illumination, and ex-
pressions compared with YaleB [38]. Consequently, this database consists of over 4000 face
images. Samples from this dataset are shown in Figure 3. We used 540-dimensional ran-
dom face features that were extracted by projecting 165 × 120 cropped face images onto a
540-dimensional vector using a random projection matrix, as in Section 7.1.

Figure 3. Face images for one subject from the AR dataset.

7.3. Caltech-101 Dataset

The Caltech-101 database [55] consists of 101 categories of objects and comprises
9144 image samples along with a class of background images. It can be observed in Figure 4
that the images within each class have significant shape variations, setting a challenge for
classification approaches. The size of each class varied from 31 to 800, and 4096-dimensional
feature vectors were extracted from the data by training the 16-layer deep convolutional
neural networks for large-scale visual recognition [56].
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Airplanes

Brain

Cannon

Figure 4. Images from three classes of the Catech-101 dataset.

7.4. Fifteen Scene Category Database

The Fifteen Scene Category database [57] involves fifteen natural scene categories,
and each image has an average size of 250 × 300 pixels. The scenes include images from
kitchens, living rooms, countrysides, etc. The number of samples for each category varies
from 200 to 400. Figure 5 shows the images of eight of the fourteen categories. We used
3000-dimensional spatial pyramid features of the samples provided by [8].

Figure 5. Fifteen scene images; images from eight categories.

7.5. Sports Actions Database

We used action bank features (processed data) [58] of the UCF sports action database [59]
for action recognition. The database consists of 150 clips @10 f ps taken for 10 classes of var-
ied sports actions. The clips contain the sports actions that include kicking, golfing, diving,
horse riding, skateboarding, running, swinging, swinging highbar, lifting, and walking.
Figure 6 shows some of the action examples. Our experiment consists of five five-fold
group-wise cross-validations with different seed values for each cross-validation. Four
folds are used in training, and the remaining one is used for testing.
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Figure 6. Action images from UCF actions dataset clips.

8. Performance Measures

We use the following performance metrics to evaluate the performance of our approach
to establish a comparison with previous approaches. These metrics are explained below.

1. Classification accuracy: Classification accuracy is defined as

Acc.(%) = (
Nt

N
)100, (22)

here, Nt and N are the number of test examples truly classified and the total num-
ber of test examples. We report the average accuracy, averaged over a number of
experiments.

2. Standard deviation: We also evaluate our approach based on the standard deviation
for an assessment of the error margins of the results. The standard deviation of the
accuracy is measured as below.

σ =

√
∑ (X − µ)2

N
(23)

Here, σ, X, µ, and N represent the standard deviation, each value of the parameter,
the mean value of the parameter, and the total number of experiments.

3. Confidence interval: We also measure confidence intervals based upon the confidence
level of 95% for the classification accuracies. The details for finding confidence
intervals based on a 95% confidence level are given in Section 10.

4. AUC–ROC score: The ROC (receiver operating characteristic) curve of a class is
drawn based upon One-vs-the-Rest (OvR) settings, considering the class as positive
and all others as negative. The curve shows the trend of true positive rate with
false positive rate for different threshold values for the positive–negative settings.
The smaller values of false positive rates and larger values of true positive rates favor
the performance of the model for classifying the class. A higher AUC (area under
the curve) value of the ROC of a class shows the good performance of the classifier
in distinguishing between true and false predictions. The average area under the
ROC curves of all the positive–negative combinations (all classes) determines the
performance of the classification model. This value is called the AUC–ROC score.

5. Training time: The total time taken by an experiment during training of a model
determines the computational efficiency of the model.

6. Test time of prediction of a test example: This time also shows the efficiency of the
model in predicting a test example. In our approach, the sparse weights of a test
sample over the learned dictionary are computed using orthogonal matching pursuit
(OMP). Efficient optimization of the atoms of the dictionary determines how quickly
OMP computes the sparse weights. Accordingly, the test time is either large or small,
depending on the efficiency of the learned dictionary.

7. Critical model parameters: A few of the model parameters, like dictionary size
and sparsity, along with other parameters, also play a crucial role in determining the
efficiency of the model.
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9. Experiments

We performed experiments for face recognition, object and scene categorization, and ac-
tion recognition on standard datasets, i.e., the Extended YaleB [54] and AR [38] datasets,
the Caltech-101 [55] and Fifteen Scene Category [57] datasets, and the UCF sports actions
dataset [59], and we compared the results with the state-of-the-art methods, discrimina-
tive Bayesian dictionary learning (DBDL) [25], the joint Bayesian discriminative classifier
(JBDC) [24], the sparse-representation-based classification (SRC) [9], the label-consistent
K-SVD (LC-KSVD) [8], the discriminative K-SVD (D-KSVD) [23], the fisher discrimina-
tion dictionary learning (FDDL) [12], the joint analysis discriminative dictionary learning
(ADDL) [19], the locality-constrained projective dictionary learning (LC-PDL) [20], and the
twin-incoherent self-expressive latent dictionary pair learning (SLatDPL) [21]. These are
the state-of-the-art approaches in the area of discriminative dictionary learning/sparse-
representation-based classification. We reported the results for these approaches with the
same protocols of experimentation followed for our approach.

In conjunction with reporting the classification accuracy, standard deviation, and train-
ing and testing times for all these methods in general, we also carried out a detailed
statistical analysis of our approach with the nearest Bayesian approach (JBDC). In this anal-
ysis, we computed confidence intervals, computational efficiency, and AUC/ROC scores
to establish the effectiveness of our approach. We report the outcomes of this analysis in
Section 10.

In our approach, we set a0 and b0 = minc|Ic|, ∀c ∈ {1, 2, . . . , C}, and K = 1.25N [24].
We set noninformative hyperparameters c0, d0, e0, and f0 = 10−6. We initialized precision
parameters, i.e., λa and λh, with the value 109, except for the UCF sports dataset, where
we used the value 1012 due to the small size of the training data. We initialized λc

s with 1
and set the values M and C for λϕ0 and λb0 . A discussion on the parameter values selection
of the proposed approach is provided in Section 13. We performed the experiments on an
Intel Core i5 Processor with 16 GB RAM.

The results of the experiments for face recognition, object and scene classification,
and action recognition experiments are discussed in the following sections.

9.1. Face Recognition for Extended Yaleb Database

We randomly selected fifteen examples from each class, and the rest of the data were
used as test data. We conducted 10 experiments by randomly selecting the training and
testing samples in each experiment. We report mean recognition accuracy, mean standard
deviation, and test time in Table 2. The accuracy of our approach, i.e., 93.25, is the highest
among all the listed methods. The improvement in the accuracy is attributed to the use of
the same representations for learning of dictionary and the classifier. Improvement in the
training time is attributed to a reduction in the overall number of the model parameters
due to learning only a single set of representations. It is also noted that on using the
dictionary pruning option, the dictionary size is adaptively reduced to 570 atoms starting
from 712 atoms, i.e., 1.25 times the size of the training data, without degrading the accuracy.
However, by fixing the dictionary size, we can further reduce the size to 564 atoms without
compromising the accuracy. These dictionary sizes are less than the sizes of the dictionaries
for other approaches, except for LC-KSVD and D-KSVD. We initialized the sparse codes
with a sparsity of 25 computed over the initial dictionary, and the same sparsity value was
used for the predicted labels. Decreasing the sparsity value from this value degraded the
classification accuracy and increasing the sparsity value resulted in no gain in the accuracy.
The reduction in the classification time per test sample is the result of the reduction in
the dictionary size and the efficiency of the learned Bayesian dictionary in computing
the sparse codes of a test sample over the dictionary. At the prediction stage, we use the
orthogonal matching pursuit (OMP) algorithm [60] for computing the sparse codes over
the learned dictionary. Further insight into the performance of the method is also presented
in Section 10.
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Table 2. Face recognition for Extended YaleB database [54]. Results are based on 10 experiments.

Method Accuracy (%) Test Time (ms)

LC-KSVD [8] 89.73 ± 0.59 0.60
D-KSVD [23] 89.77 ± 0.57 0.61
SRC [9] 89.71 ± 0.45 50.19
FDDL [12] 90.01 ± 0.69 42.82
ADDL [19] 80.88 ± 1.07 —
LC-PDL [20] 80.90 ± 1.06 —
SLatDPL [21] 91.90 ± 0.72 —
DBDL [25] 91.09 ± 0.59 1.07

JBDC [24] 92.32 ± 0.64 0.16
Training Time (min) 38.40

Our Method 93.25 ± 0.72 0.16
Training Time (min) 36.60

9.2. Face Recognition for Ar Face Database

We performed two sets of experiments on 2600 images of 50 male and 50 female
subjects, each with 10 experiments. In the first set of experiments, the training sets were
formed by randomly selecting seven images from each subject, and the rest were used
for testing. In the second set of 10 experiments, training sets were formed by randomly
selecting 20 examples from each subject, while taking the rest of the examples as test sets.
We observe the same trend of increases in classification accuracy and reduction in training
time, as in the case of the face recognition results for the YaleB dataset. The results are
recorded in Table 3 for the AR face database. Classification accuracies of our approach
in both sets of experiments are 89.27 and 98.20, respectively, which beat those of all other
approaches. Similarly, standard deviations, i.e., 0.61 and 0.31, are also low compared with
those of other approaches listed in the table. The average dictionary size came out to be 700,
reduced from the initial size of 875 atoms, and 2000 atoms, reduced from the initial size of
2500 atoms, respectively. These values are comparable to those of JBDC. Despite the large
size of the dictionary for seven samples per class experiment compared with the dictionary
size in YaleB, the classification time per test sample, 0.18 ms, is still comparable to that
of YaleB. This shows the efficient optimization in the learning of atoms of the Bayesian
dictionary through our approach. We did not show the classification time per sample in the
case of the experiment with 20 examples per class, as the time will almost proportionally
increase with the larger size of the learned dictionary (2000 atoms). We set the sparsity
equal to 40 with all other hyperparameters values unchanged, as in Section 9.1. The value
of the sparsity increases in this case by the size of the dictionary, which means more atoms
are available for the linear combinations for the reconstructions of data and labels.

9.3. Object Classification

Our experiment consists of six stages in which we randomly selected 5, 10, 15, 20, 25,
and 30 samples per class, respectively, for training datasets, and the rest in each stage were
used as test sets. The results of these experiments are reported in Table 4. The classification
accuracy is on the rise with the same trend as observed in the experiments on the YaleB and
AR datasets for face recognition. The dictionary size in the experiment stage of 30 samples
per class came out to be 3000, which is the same as that of JBDC. However, this value
was 3033 for DBDL, and for the best performance of LC-KSVD and D-KSVD, it needs to
be 3030 atoms. Just to reveal the effect of our idea of training atoms and the associated
parameters in groups, we used this idea in this experiment only due to the comparatively
bigger size of the database, Caltech-101, and compared the results with JBDC. It may be
noted that we trained the atoms and associated parameters in groups of atoms of size 10
each in inner iterations of Gibbs sampling. Consequently, this reduced the training time
by a factor of 65 on average. We visually show the comparative training times in Figure 7
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for JBDC and our method. Although we do not show the classification time per sample,
we observed that it behaves the same way as in previous experiments. We tested that
sparsity in the range of 40 to 70 produces acceptable results. However, lowering the value
from 40 degrades the classification accuracy, and increasing the value beyond 70 does not
increase the accuracy.

Table 3. Face recognition for AR database [38]. The results are based on two sets of 10 experiments
each. In each experiment of the two sets of experiments, 7 and 20 examples were randomly selected
for training sets, and the rest of the examples were used as test sets, respectively

Methods/Examples Per Class
7 20

Accuracy (%) Test Time (ms) Accuracy (%)

SRC [9] 84.60 ± 1.37 59.91 96.65 ± 1.37
LC-KSVD [8] 85.37 ± 1.34 0.91 96.13 ± 0.64
D-KSVD [23] 85.41 ± 1.49 0.92 96.02 ± 0.58
FDDL [12] 85.97 ± 1.23 50.03 96.22 ± 1.03
ADDL [19] - - 96.37 ± 0.78
LC-PDL [20] - - 96.38 ± 0.79
SLatDPL [21] - - 98.13 ± 0.53
DBDL [25] 86.15 ± 1.19 1.20 97.47 ± 0.99

JBDC [24] 88.90 ± 0.75 0.19 96.70 ± 0.83
Training Time (min) 51.83

Our Method 89.27 ± 0.61 0.18 98.20 ± 0.31
Training Time (min) 47.26

Table 4. Object classification for the Caltech-101 database [55] with six stages consisting of randomly
selected 5, 10, 15, 20, 25, and 30 data points from each class for training sets, respectively.

Training Samples 5 10 15 20 25 30
Accuracy (%)

SRC [9] 76.23 79.99 81.27 83.48 84.00 84.51
FDDL [12] 78.31 81.37 83.37 84.76 85.66 85.98
D-KSVD [23] 79.69 83.11 84.99 86.01 86.80 87.72
LC-KSVD [8] 79.74 83.13 85.20 85.98 86.77 87.81
DBDL [25] 80.11 84.03 85.99 86.71 87.97 88.81

JBDC [24] 82.92 89.60 91.65 92.81 93.98 93.82
Training Time (min) 44.13 125.53 222.57 362.38 512 622.44

Our Method 83.80 90.25 92.09 93.16 94.66 94.81
Training Time (min) 14.28 43.02 73.67 117.61 166.96 237.05
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Figure 7. Comparison of the computational cost of JBDC and our approach for the Caltech-
101 database
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9.4. Scene Categorization

We performed two sets of 10 experiments, each consisting of 50 samples and 20 samples
per category, respectively, for training sets and the rest for test sets. We report the results of
two sets of 10 experiments each in Table 5. Our approach increases the accuracy by 0.7% in
the experiment with 50 samples per class and increases it by 0.3% in the experiment with
20 samples per class when compared with the best accuracy approaches. Although our
approach beats LatDPL with a lesser percentage of increase in accuracy, while comparing
with the nearest approaches (Bayesian approaches), i.e., DBDL and JBDC, the increase in
accuracy is more than 1%. This gain in accuracy is attributed to our idea of learning the
same representations for the training data and the corresponding labels over the dictionary
and the dictionary classifier, respectively, in the Bayesian setting. Our approach truly
exploits the sparse representation and the reconstruction power of a dictionary and tailors
a linear classifier to behave like a dictionary classifier. We observed that the learned
dictionaries and the dictionary classifiers sizes are 300 and 740 atoms in two experiments
for both approaches, i.e., JBDC (the nearest one) and ours, respectively. Despite the same
size of the dictionary and the dictionary classifier in both these approaches for 50 samples
per class experiment, our approach’s test time of 0.66 ms is significantly less than that of
JBDC. This clearly shows the efficiency of the learned dictionary of our approach during
computing sparse representations of test samples. These representations are ultimately
mapped to the corresponding labels as the reconstructions computed by the dictionary
classifier. Likewise, the dictionary also performs efficiently in terms of standard deviation,
training time, and classification time per test sample. We did not report the test times for
20 samples per class experiments, as the test times follow the trend of the dictionary size,
like in the other experiments.

Table 5. Scene categorization for the Fifteen Scene Category database [57]. The results are based
on two sets of 10 experiments each. In each experiment of the two sets of experiments, 20 and 50
examples were randomly selected for training sets, and the rest of the examples were used as test
sets, respectively.

Methods/Examples 50 20

Per Class Accuracy (%) Test Time (ms) Accuracy (%)

SRC [9] 95.41 ± 0.13 78.33
LC-KSVD [8] 95.37 ± 0.28 0.59 93.93 ± 0.45
D-KSVD [23] 95.12 ± 0.18 0.58 93.76 ± 0.48
FDDL [12] 94.08 ± 0.43 57.99 —
ADDL [19] - - 93.45 ± 0.44
LC-PDL [20] - - 93.40 ± 0.45
SLatDPL [21] - - 94.63 ± 0.59
DBDL [25] 96.98 ± 0.28 0.71 -

JBDC [24] 97.45 ± 0.28 1.33 93.73 ± 0.41
Training Time (min) 170 37.22

Our Method 98.10 ± 0.08 0.66 94.90 ± 0.54
Training Time (min) 160 30.11

9.5. Action Recognition

Our experiment consists of five fivefold group-wise cross-validations with different
seed values for each cross-validation. The model was trained and tested on 25 partitions,
and the mean recognition rates and the standard deviation values are reported in Table 6.
We reported the results of JBDC and our model. The proposed approach outperformed
the other approach in terms of recognition accuracy, standard deviation, training time,
and test time.
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Table 6. Action recognition for action bank features (processed data) [58] of the UCF sports action
database [59] with the five fivefold cross-validations experiment.

Method Accuracy (%) Test Time (ms) Training Time (min)

JBDC [24] 93.43 ± 4.37 15.44 30.32
Our Method 95.00 ± 1.75 4.98 22.00

10. Statistical Analysis

In conjunction with the performance evaluations based on classification accuracies,
standard deviations, test times, and training times presented in this paper, here, we present
a statistical analysis to obtain deep insight into the method by presenting a comparison
with the most relevant method (Bayesian), i.e., JBDC. Although numerous metrics are
available to gauge the performance, we present two metrics, i.e., confidence interval and
AUC–ROC metrics to evaluate the performance of the methods. Here, AUC stands for the
area under the curve, and ROC denotes the receiver operating characteristic curve. We
report this analysis in the following sections.

11. Confidence Intervals

We show, in Figure 8, the confidence intervals computed for face recognition experi-
ments on the YaleB and AR databases, and fifteen scene categorization experiments on the
Fifteen Scene Category database. We performed 10 experiments in each set of experiments
for these databases and computed average classification accuracy along with standard
deviation. As the number of experiments is 10 in each set of experiments, and 10 classifi-
cation accuracy values cannot determine the true mean, we followed the t-test based on
a 95% confidence level. Based on the 95% confidence level, we computed the confidence
intervals for the methods in each set of experiments. The bar graphs of the means along
with confidence intervals bars are shown in Figure 8. We explain the performance of the
methods based on confidence intervals in the following sections.

11.1. Confidence Intervals for Yaleb Dataset

Figure 8 presents the mean values along with error bars for the confidence intervals
of the methods. The confidence interval for our approach lies at the highest location
compared with the locations of the confidence intervals of other methods. Moreover, it
does not overlap with any of the other intervals. The width of the confidence interval
is also comparable to the intervals of the other methods. Our method predicts with a
higher rate than others with a confidence level of 95%. In other words, it outperforms
other approaches.

11.2. Confidence Intervals for Ar Database

We performed two sets of experiments for each method. We computed confidence
intervals for the set of experiments using 20 examples per class for training for each method.
The confidence intervals computed for these methods are visually shown in Figure 8.
The confidence interval mean value of our method is higher than the mean values of all
other intervals. Though it partially overlaps with one of the intervals, its narrow range and
higher position make it prominent for predicting higher true mean values within a small
range with a 95% confidence level.
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Figure 8. Comparison of Confidence Internals based upon a 95% confidence level. (a) For face
recognition experiment on the Extended YaleB database. (b) For face recognition experiment on
the AR database. (c) For the fifteen scene categorizations experiment on the Fifteen Scene Category
database (50 samples/class). (d) For the fifteen scene categorizations experiment on the Fifteen Scene
Category database (20 samples/class).

11.3. Confidence Intervals for Fifteen Scene Category Database

We performed two sets of experiments for each method. One set of 10 experiments is
based upon a random selection of 50 samples per class for training samples. We visually
show the confidence intervals of the methods in Figure 8. It clearly shows the highest
position of the confidence interval of our method. Moreover, the higher values of the mean
lie within a narrow range with a 95% confidence level. Its extraordinary performance is
very obvious. We also show the confidence intervals of the set of 10 experiments with
20 examples per class for a training set for each method. The confidence intervals computed
for these methods are visually shown in Figure 8. The confidence interval’s mean value
of our method is higher than the mean values of all other intervals. Though the interval
partially overlaps with one of the other intervals, comparatively, its higher position makes
it distinctive for predicting higher true mean values with a 95% confidence level.

12. Auc–Roc Analysis

We show, in Figure 9, the ROC (receiver operating characteristic) curves of all the
classes based upon One-vs-the-Rest (OvR) settings, considering one class as positive and all
others as negative. The curves show the trend of true positive rate with false positive rate for
different threshold values for all classes with positive–negative settings. The smaller values
of false positive rates and larger values of true positive rates favor the performance of the
model for a combination. In other words, a higher AUC (area under the curve) value of the
ROC of a class shows the good performance of the classifier in distinguishing between true
and false predictions. The average area under the ROC curves of all the positive–negative
combinations (all classes) determines the performance of the classification model. We listed
the AUC–ROC score of the models in these figures. The figures show that our approach
secured scores of 0.992 vs. 0.987 and 0.98 vs. 0.96 for experiments on the Extended YaleB
and Fifteen Scene Category databases. The overall score in favor of our approach is also
supported by a visual analysis of these figures. In the figures showing the performance of
our approach, i.e., Figure 9, the curves bend more towards the left top corner compared
with the curves of the JBDC approach. Moreover, the class-wise AUC–ROC scores shown
in the bar charts in Figure 10 clearly show the outstanding performance of our approach on
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a class-to-class basis. For further insight into the AUC–ROC-based analysis, we provided a
glimpse of the numerical figures of a few true positive rates and false positive rates with
different threshold values for a few classes in Table 7.
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Figure 9. ROC curves based on One-vs-the-Rest (OvR) of the classes. (a) Our approach ROC curves
for the experiment on the Extended YaleB database. (b) JBDC ROC curves for the experiment on
the Extended YaleB database. (c) Our approach ROC curves for the experiment on the Fifteen Scene
Category database. (d) JBDC ROC curves for the experiment on the Fifteen Scene Category database.
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Figure 10. Class-wise AUC–ROC scores for our model and JBDC based on One-vs-the-Rest (OvR)
strategy. (a) Training on the Face Recognition Extended YaleB database. (b) Training on the Fifteen
Scene Category database.
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Table 7. A glimpse of the AUC/ROC data of four classes (Cat-0, Cat-2, Cat-5, and Cat-12) computed
during the training of our model and JBDC on the Fifteen Scene Category database following the
One-vs-the-Rest (OvR) setting. These data only reveal a few underlying measures used during the
generation of the AUC/ROC data. AUC1 and AUC2 represent the scores for our approach and
JBDC, respectively.

Cat.
Ours (Model AUC = 0.983) JBDC (Model AUC = 0.960)

TPR FPR Threshold TPR FPR Threshold

cat-0

A
U

C
1

=
0.

99
6,

A
U

C
2

=
0.

98
2 0.905 0.007 0.567 0.697 0.009 0.881

0.905 0.007 0.567 0.719 0.009 0.873
0.914 0.007 0.553 0.719 0.010 0.872
0.914 0.007 0.540 0.733 0.010 0.868
0.928 0.007 0.526 0.733 0.010 0.858
0.928 0.008 0.520 0.751 0.010 0.837
0.941 0.008 0.501 0.751 0.010 0.835
0.941 0.008 0.477 0.778 0.010 0.816
0.946 0.008 0.471 0.778 0.011 0.813
0.946 0.008 0.470 0.819 0.011 0.758
0.950 0.008 0.465 0.819 0.011 0.754

cat-2

A
U

C
1=

0.
97

1,
A

U
C

2=
0.

94
7

0.786 0.006 0.517 0.325 0.007 0.989
0.805 0.006 0.509 0.325 0.007 0.985
0.805 0.006 0.509 0.380 0.007 0.932
0.808 0.006 0.508 0.380 0.007 0.931
0.808 0.007 0.508 0.403 0.007 0.904
0.815 0.007 0.496 0.403 0.007 0.903
0.815 0.007 0.495 0.422 0.007 0.868
0.818 0.007 0.494 0.422 0.008 0.862
0.818 0.007 0.490 0.429 0.008 0.860
0.834 0.007 0.477 0.429 0.008 0.860
0.834 0.008 0.477 0.442 0.008 0.844
0.841 0.008 0.475 0.442 0.008 0.839
0.841 0.008 0.474 0.490 0.008 0.794

cat-5

A
U

C
1=

0.
98

3,
A

U
C

2=
0.

95
9 0.791 0.006 0.587 0.432 0.008 0.974

0.808 0.006 0.563 0.432 0.008 0.971
0.808 0.007 0.561 0.500 0.008 0.909
0.811 0.007 0.561 0.500 0.008 0.909
0.811 0.007 0.553 0.551 0.008 0.879
0.839 0.007 0.533 0.551 0.009 0.873
0.839 0.007 0.530 0.576 0.009 0.856
0.867 0.007 0.507 0.576 0.009 0.855
0.867 0.007 0.505 0.579 0.009 0.855
0.881 0.007 0.495 0.579 0.009 0.853
0.881 0.008 0.485 0.633 0.009 0.810

Cat-12

A
U

C
1=

0.
98

,A
U

C
2=

0.
95

0.300 0.005 0.948 0.268 0.007 0.905
0.300 0.005 0.946 0.268 0.007 0.898
0.363 0.005 0.887 0.432 0.007 0.800
0.363 0.005 0.883 0.432 0.008 0.797
0.400 0.005 0.854 0.468 0.008 0.762
0.400 0.006 0.853 0.468 0.008 0.761
0.437 0.006 0.803 0.479 0.008 0.758
0.437 0.006 0.800 0.479 0.008 0.758
0.463 0.006 0.782 0.484 0.008 0.753
0.463 0.006 0.782 0.484 0.008 0.746
0.542 0.006 0.739 0.511 0.008 0.730

13. Discussion

We trained the same representations for data points and the corresponding labels at the
dictionary and the classifier learning stages. Instead of training a new set of representations
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for labels, in addition to training representations for training examples at the dictionary
learning stage, we further optimize the same representations at the dictionary classifier
training stage to tailor them to also represent labels of the corresponding classes. At the
prediction stage, the representations of test samples are computed over the dictionary, and
the same representations are used as input to the dictionary classifier for classifications.
In the case of two sets of representations, the second set of representations learned at
the dictionary classifier level to represent the labels is not available at the prediction
stage. In the case of using the same representations learned at the dictionary stage that
have also been optimized for classification, this will enhance the classification accuracy.
The results confirm our claim of improvement in accuracy. Additionally, our model also
gives the additive advantage of the improvement in training time, in conjunction with the
improvement in classification accuracy. Our approach frees computational resources that
would have been engaged in learning the second set of representations at the classifier
level, resulting in saving training time.

Moreover, we also tested our idea of learning dictionary and classifier atoms and
associated parameters in groups for the Caltech-101 database only, as this database is
comparatively bigger. We only compared the outcomes of this idea with JBDC just to reveal
its effect. Following this idea, we reduced the training time by a factor of 65 on average.

We tuned the hyperparameters of our model in conjunction with the theoretical
background mentioned in [24]. Accordingly, we conclude 0 < a0, b0 < min

c
|Ic|. Ideally,

we need N → ∞, but K > N is sufficiently large enough to serve the same purpose for
initialization of the size of the dictionary and the classifier. Its value finally reduces to a
number of dictionary atoms fewer than N, as the result of dictionary atoms pruning during
iterations of the Gibbs sampler. Analytical proof of dictionary atoms pruning is given
by [24]. We placed noninformative gamma priors on λa and λh. These parameters of the
model are adaptively learned to the values that produce the best classification accuracies.
The initialization of these parameters within a range of 106–109 produces acceptable results.
However, values below 106 degrade the classification accuracy, but higher values are
acceptable. We found that the value 109 produces the best results, except for the UCF
sports action database, in which case the value 1012 produces the best results. These values
explored in the learning process suit our data because most of the data are clean. The higher
value in the case of the UCF sports action database is also because of the availability of
only small amounts of training data. It may be noted that our data also carry noise due
to variance in illuminations and other factors. Our model also takes into consideration
these real-life problems and learns the model parameters adaptively to produce the best
results. We also placed noninformative gamma prior on λc

s, and this parameter is learned
accordingly. We observed that the initialization of λc

s with a value around 1 produces the
best sparse codes. We set the value of the precision hyperparameter λϕ0 for the dictionary
equal to the dimension of the atoms, i.e., M. Similarly, we set the value of the precision
hyperparameter λb0 equal to C. Small deviations in these values do not affect the results.
However, large deviations on the order of 20 degrade the results. We observed that sparsity
increases with increases in the sizes of the learned dictionaries. However, the values smaller
than the threshold values degrade the results. The threshold values that we found are
30, 40, 50, 40, and 30 for the YaleB, AR face, Caltech-101, Fifteen Scene, and UCF sports
action datasets. We set the values of the noninformative hyperparameters c0, d0, e0, and f0
equal to 106. No considerable change in classification accuracies was found by deviating
the values.

14. Conclusions

To solve our Bayesian network for posterior parameters, we used the Gibbs sampler
as an inference technique. The results are found to be improved compared with other
state-of-the-art approaches. This improvement in the results is attributed to the idea we
presented for learning the same weights for the representation of data samples and the
corresponding labels. We also achieved a gain in training time as an added advantage,
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as we reduced the computational cost by learning one set of weights for the representation
of data and labels at the dictionary and classifier learning stages. It was observed that the
formulation of the problem in Bayesian settings provides us an advantage of using the
robust optimization algorithm, i.e., the Gibbs sampler for efficiently solving probabilistic
Bayesian networks.
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