
Citation: Ko, H.; Oh, J.; Kim, S.U.

Digital Content Management Using

Non-Fungible Tokens and the

Interplanetary File System. Appl. Sci.

2024, 14, 315. https://doi.org/

10.3390/app14010315

Academic Editor: Antonio

Fernández-Caballero

Received: 16 October 2023

Revised: 19 December 2023

Accepted: 26 December 2023

Published: 29 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Digital Content Management Using Non-Fungible Tokens and
the Interplanetary File System
Hoon Ko 1 , Juhee Oh 2 and Sung Uk Kim 2,*

1 Security R&D Center, CMT Info. & Comm. Co. Ltd., #803, 37 Seongsu-ro 22-gil, Seongdong-gu, Seoul 04798,
Republic of Korea; skoh21@cmtinfo.co.kr

2 AINTCHAIN SOFT Co., Ltd., 131, Mihang-ro, Mokpo-si 58750, Jeollanam-do, Republic of Korea;
itsmarvin0208@aintchain.co.kr

* Correspondence: ksubest@aintchain.co.kr

Abstract: Non-fungible tokens (NFTs) are digital identifiers containing metadata, such as token
number, title, content, and image URL, and are linked to digital assets, which are characterized by
the fact that, unlike conventional virtual assets, they have their own unique value and cannot be
replaced. NFTs cannot be deleted or forged; therefore, they can be used to authenticate the ownership
of digital assets. The metadata of the NFTs are uploaded to the interplanetary file system (IPFS),
which is a distributed file system, and converted into unique content identifiers (CIDs) that are stored
on the blockchain. Digital content (DC) is divided into multiple pieces; it also has its own unique
value and is distributed and stored using the IPFS. This study built an NFT-based IPFS testbed and
experimented with the process of generating unique values for DC divided into three groups and
sharing them. The results confirmed that each DC had a unique hash value and no duplicates existed.

Keywords: non-fungible token; blockchain; digital contents; interplanetary file system; content pro-
tection

1. Introduction

Industry 4.0 has resulted in revolutionary changes in automation, monitoring, and
supply chain analysis through the implementation of smart technologies such as big data,
artificial intelligence (AI), cloud computing, metaverse-based augmented reality (AR),
industrial Internet of Things (IIoT), robotics, digital twins, and cybersecurity. Among them,
metaverse-based digital content (DC) is used in various smart industry applications [1].
In particular, DC generated in smart industries, i.e., DC linked to the metaverse, such as
digital training programs and digital biological cultivation training programs, are drawing
considerable attention [2]. However, despite the creation of various types of industrial DC
based on the metaverse, safeguarding against the criminal act of forging is challenging [3,4].
Conventional DC employs digital rights management (DRM) to address this issue; however,
the significance of conventional digital certificates is decreasing with the rise of AI-based
cybercrime [5]. DRM technology has been conventionally used to protect simple digital
documents and videos, and it is not easy to apply it to AR/VR-based digital documents
stored in the metaverse [6]. Additionally, cybercriminals employ AI to forge digital cer-
tificates quickly with such sophistication that distinguishing them from the real ones is
difficult. Therefore, not only is it difficult to verify the authenticity of digital certificates but
their verification process is also complicated, rendering the entire process complex.

This study proposes a method that employs blockchain-based non-fungible tokens
(NFTs) and the interplanetary file system (IPFS) to address these challenges and enable
a large amount of DC to be shared [7,8]. This paper is organized as follows: Section 2
summarizes the current security issues of DC and related works on addressing them.
Section 3 describes the proposed digital content platform. Section 4 outlines the processes

Appl. Sci. 2024, 14, 315. https://doi.org/10.3390/app14010315 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14010315
https://doi.org/10.3390/app14010315
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4604-1735
https://doi.org/10.3390/app14010315
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14010315?type=check_update&version=1

Appl. Sci. 2024, 14, 315 2 of 18

of the digital content management system. Section 5 describes the experiment and presents
the results, and finally, Section 6 outlines the conclusions and directions for future research.

2. Related Work
2.1. Limitations of DC

NoonooTV is a piracy site that has claimed to have servers in foreign countries,
including the Dominican Republic, and has allowed users to watch high-quality videos
without age verification or a sign-up process. It was illegally streaming videos without the
authorization of copyright holders, such as broadcasters and over-the-top (OTT) service
providers. The videos received approximately 1.538 billion views in total, and the site
had approximately 10 million active monthly users. Broadcasters such as MBC, KBS,
JTBC, TVing, and Wave and the production studio SLL took legal action against noonooTV
in early March 2023, after which the Korean National Policy Agency announced that
it was launching an investigation into the website. Currently, MBC, KBS, JTBC, TVing
TV, Wave, and SLL are creating the Video Copyright Protection Council to jointly file
a complaint against noonooTV for copyright infringement [9]. Netflix is also filing a
complaint against noonooTV through ACE, the world’s largest organization fighting against
illegal reproductions.

2.2. NFTs

Unlike conventional virtual assets authenticated with digital certificates, NFTs assign
unique values to digital assets, making them irreplaceable and unforgeable. Furthermore,
as they are stored on the blockchain, deleting or counterfeiting them is impossible [10,11].
Consequently, they can be used to authenticate the ownership of digital assets [12]. Recently,
South Korean universities have awarded diplomas and prizes using NFTs. Additionally,
they are being used for various purposes on campuses, and their uses are continuously
expanding. NFTs offer the advantage of authenticating qualifications through their proof
function, thereby enhancing transparency. Moreover, they can save time and costs because
they can be easily authenticated using an electronic wallet. Furthermore, certificates
can be easily issued on the Internet, which increases administrative accessibility and
convenience [13].

If we define the existing problems with NFTs, we can highlight issues related to
copyright and ownership, security and privacy, and technical complexity. Here are the
explanations for each:

Issues with copyright and ownership: NFTs are used to prove ownership of digital
content but do not fundamentally alter the ownership of the actual content [9]. For in-
stance, purchasing an NFT of digital art does not transfer the copyright or intellectual
property rights of the art itself. Additionally, the link between the original artwork and
its associated NFT can be unclear, leading to potential ownership disputes. Therefore,
the new ownership model brought by NFTs raises debates regarding how it aligns
with existing copyright laws [14].

Security and privacy: Certain NFT platforms may possess security vulnerabilities, po-
tentially allowing hackers to expose user information or attempt fraudulent activities,
like forging transactions [15]. Moreover, due to the immutable nature of blockchain,
there are concerns about user data privacy since transaction records are publicly
available, risking the exposure of personal information on the blockchain [16].

Technical complexity: For users unfamiliar with blockchain and cryptocurrency tech-
nology, purchasing and trading NFTs can be complex and challenging. Technical
aspects such as wallet creation, transaction fees, gas costs, etc., can pose difficulties,
making entry into the NFT market challenging for the general public [17].

Appl. Sci. 2024, 14, 315 3 of 18

2.3. Use Cases
2.3.1. Case 1

On 11 March 2021, Christie’s auction house in the United States sold the NFT associated
with “Everydays: The first 5000 days”, a digital artwork created by the digital artist Beeple,
for USD 69.8 million (Figure 1a). This work was published as an NFT in the form of a JPG
file created using photos that the artist had been posting online since 2007. The successful
auction of this NFT significantly increased the popularity of NFT-based digital art [18].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 18

2.3. Use Cases
2.3.1. Case 1

On 11 March 2021, Christie’s auction house in the United States sold the NFT associated
with “Everydays: The first 5000 days”, a digital artwork created by the digital artist Beeple,
for USD 69.8 million (Figure 1a). This work was published as an NFT in the form of a JPG
file created using photos that the artist had been posting online since 2007. The successful
auction of this NFT significantly increased the popularity of NFT-based digital art [18].

Figure 1. Use cases of NFTs.

2.3.2. Case 2
In 2016, a video of a historic Go game wherein Lee Sedol defeated Google’s AlphaGo

computer program, developed by DeepMind Technologies, was published as an NFT on
the Ethereum blockchain and auctioned (Figure 1b). It was ultimately sold for ETH 60 (ap-
proximately USD 210,000 at the time) on OPENSEA, the world’s largest NFT marketplace
[18].

2.3.3. Case 3
The NBA Top Shot marketplace allows fans to directly own a piece of NBA history,

such as Kevin Durant’s three-point shot, in digital form. It made record NFT transactions
of USD 600 million (approximately KRW 690 billion) in the first half of 2021. Furthermore,
Daffer Labs, the developer of NBA TOPSHOT, successfully launched the cat breeding
game “CryptoKit” in 2017. The keyword that runs through the utilization of NFTs is “as-
setization of DC” (Figure 1c) [18].

3. Digital Content Platform
3.1. System Structure and Procedure

Figure 2 shows a block diagram of an NFT-based digital certificate called BApp. The
required components comprise the file system, front end, backend, blockchain network,
smart contract, ERC-721 standard, IPFS, and Ethereum virtual machine (EVM) [19,20]. The
front end and blockchain network components are responsible for the user interface and
communicate with the blockchain through the front end’s caver.js library, issue certificates,

Figure 1. Use cases of NFTs.

2.3.2. Case 2

In 2016, a video of a historic Go game wherein Lee Sedol defeated Google’s AlphaGo
computer program, developed by DeepMind Technologies, was published as an NFT on
the Ethereum blockchain and auctioned (Figure 1b). It was ultimately sold for ETH 60
(approximately USD 210,000 at the time) on OPENSEA, the world’s largest NFT market-
place [18].

2.3.3. Case 3

The NBA Top Shot marketplace allows fans to directly own a piece of NBA history,
such as Kevin Durant’s three-point shot, in digital form. It made record NFT transactions
of USD 600 million (approximately KRW 690 billion) in the first half of 2021. Furthermore,
Daffer Labs, the developer of NBA TOPSHOT, successfully launched the cat breeding game
“CryptoKit” in 2017. The keyword that runs through the utilization of NFTs is “assetization
of DC” (Figure 1c) [18].

3. Digital Content Platform
3.1. System Structure and Procedure

Figure 2 shows a block diagram of an NFT-based digital certificate called BApp. The
required components comprise the file system, front end, backend, blockchain network,
smart contract, ERC-721 standard, IPFS, and Ethereum virtual machine (EVM) [19,20]. The
front end and blockchain network components are responsible for the user interface and
communicate with the blockchain through the front end’s caver.js library, issue certificates,
and execute inquiries. As the DC must be stored and processed for proof after issuance, it

Appl. Sci. 2024, 14, 315 4 of 18

is stored on a blockchain network to ensure its integrity and processed using the IPFS and
EVM [21,22]. EVM is a virtual machine that provides a secure environment for executing
smart contracts on the Ethereum network, whereas IPFS is used to store DCs individually.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 18

and execute inquiries. As the DC must be stored and processed for proof after issuance, it is
stored on a blockchain network to ensure its integrity and processed using the IPFS and
EVM [21,22]. EVM is a virtual machine that provides a secure environment for executing
smart contracts on the Ethereum network, whereas IPFS is used to store DCs individually.

Figure 2. System structure of the DC platform.

3.2. ERC-721
NFTs that are used to authorize digital certificates are issued using the Ethereum

standard ERC-721, which is represented by CryptoKit and allows the assignment of a
unique identification value to each token. As only one issued token exists on the Ethereum
network, the owner can be easily identified [23]. Figure 3 shows the flow of CryptoKit,
which comprises a hash function, symmetric key cryptography, public key cryptography,
and an insecure module (hash functions) [24].

Figure 3. CryptoKit flow.

The processing sequence of CryptoKit involves opening the crytpKitTutorial.play-
ground to check the hashItem(item:) function of the Hashable protocol and writing “the
quick brown fox” [24]. The hashing algorithm is one-way with non-linear operations that
generate a unique hash value, as shown in Algorithm 1. When explaining the algorithm,
first, the hashItem function takes a string named item as a parameter. Then, it creates a hash
function object called hasher using Hasher(). Subsequently, it hashes the item into the hasher
using the hash(into:) method, which generates a hash value based on the content of the
string. Next, by using hasher.finalize(), it obtains the final hash value of the hash function.
Finally, this function returns the ultimate integer hash value obtained by hashing the string
item.

Figure 2. System structure of the DC platform.

3.2. ERC-721

NFTs that are used to authorize digital certificates are issued using the Ethereum
standard ERC-721, which is represented by CryptoKit and allows the assignment of a
unique identification value to each token. As only one issued token exists on the Ethereum
network, the owner can be easily identified [23]. Figure 3 shows the flow of CryptoKit,
which comprises a hash function, symmetric key cryptography, public key cryptography,
and an insecure module (hash functions) [24].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 18

and execute inquiries. As the DC must be stored and processed for proof after issuance, it is
stored on a blockchain network to ensure its integrity and processed using the IPFS and
EVM [21,22]. EVM is a virtual machine that provides a secure environment for executing
smart contracts on the Ethereum network, whereas IPFS is used to store DCs individually.

Figure 2. System structure of the DC platform.

3.2. ERC-721
NFTs that are used to authorize digital certificates are issued using the Ethereum

standard ERC-721, which is represented by CryptoKit and allows the assignment of a
unique identification value to each token. As only one issued token exists on the Ethereum
network, the owner can be easily identified [23]. Figure 3 shows the flow of CryptoKit,
which comprises a hash function, symmetric key cryptography, public key cryptography,
and an insecure module (hash functions) [24].

Figure 3. CryptoKit flow.

The processing sequence of CryptoKit involves opening the crytpKitTutorial.play-
ground to check the hashItem(item:) function of the Hashable protocol and writing “the
quick brown fox” [24]. The hashing algorithm is one-way with non-linear operations that
generate a unique hash value, as shown in Algorithm 1. When explaining the algorithm,
first, the hashItem function takes a string named item as a parameter. Then, it creates a hash
function object called hasher using Hasher(). Subsequently, it hashes the item into the hasher
using the hash(into:) method, which generates a hash value based on the content of the
string. Next, by using hasher.finalize(), it obtains the final hash value of the hash function.
Finally, this function returns the ultimate integer hash value obtained by hashing the string
item.

Figure 3. CryptoKit flow.

The processing sequence of CryptoKit involves opening the crytpKitTutorial.playground
to check the hashItem(item:) function of the Hashable protocol and writing “the quick
brown fox” [24]. The hashing algorithm is one-way with non-linear operations that generate
a unique hash value, as shown in Algorithm 1. When explaining the algorithm, first, the
hashItem function takes a string named item as a parameter. Then, it creates a hash function
object called hasher using Hasher(). Subsequently, it hashes the item into the hasher using
the hash(into:) method, which generates a hash value based on the content of the string.
Next, by using hasher.finalize(), it obtains the final hash value of the hash function. Finally,
this function returns the ultimate integer hash value obtained by hashing the string item.

Appl. Sci. 2024, 14, 315 5 of 18

Algorithm 1. //Hash Function

func hashItem(item: String) -> Int {
var hasher = Hasher()
item.hash(into: &hasher)
return hasher.finalize()
}

Let hashValue = hashItem(item: “the quick brown fox”)

Symmetric key cryptography comprises message authentication codes and authenti-
cation encryption, which generate the hash-based message authentication code (HMAC);
this code safeguards against malicious changes by signing the message digest using a
symmetric key. The HMAC uses a secret key for internal/external processing, generates an
internal hash from the data (image), and obtains an inner key [25,26].

3.3. IPFS

IPFS is a shared distributed file system that enables sharing files across multiple
computers (Figure 4). NFTs are issued using smart contracts based on the ERC-721 standard
and the Solidity programming language. The token metadata are uploaded to the IPFS
distributed file system and converted into content identifier (CID) values [27,28]. Data
management can be made more efficient by storing the CID values on the blockchain, which
also enables the decentralization of web services as data are not stored on a central server.
NFTs comprise metadata such as the token number, title, content, and image URL, which
are linked to the NFT on the blockchain. The higher the amount of information stored in
the token, the higher the amount of information stored on the blockchain, which can render
the operation inefficient. Thus, to address this limitation, the NFT metadata are efficiently
stored on the blockchain using the IPFS [29].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 18

Algorithm 1. //Hash Function
func hashItem(item: String) -> Int {

var hasher = Hasher()
item.hash(into: &hasher)
return hasher.finalize()
}

Let hashValue = hashItem(item: “the quick brown fox”)

Symmetric key cryptography comprises message authentication codes and authenti-
cation encryption, which generate the hash-based message authentication code (HMAC);
this code safeguards against malicious changes by signing the message digest using a
symmetric key. The HMAC uses a secret key for internal/external processing, generates
an internal hash from the data (image), and obtains an inner key [25,26].

3.3. IPFS
IPFS is a shared distributed file system that enables sharing files across multiple com-

puters (Figure 4). NFTs are issued using smart contracts based on the ERC-721 standard
and the Solidity programming language. The token metadata are uploaded to the IPFS
distributed file system and converted into content identifier (CID) values [27,28]. Data
management can be made more efficient by storing the CID values on the blockchain,
which also enables the decentralization of web services as data are not stored on a central
server. NFTs comprise metadata such as the token number, title, content, and image URL,
which are linked to the NFT on the blockchain. The higher the amount of information
stored in the token, the higher the amount of information stored on the blockchain, which
can render the operation inefficient. Thus, to address this limitation, the NFT metadata
are efficiently stored on the blockchain using the IPFS [29].

content address -> /ipfs/QmahZg6Ju3iM5nU3Ry2X2Kx4rFdxUHa3DP9biDP29yFGYT

Figure 4. Processing sequence of an IPFS-based DC call. Figure 4. Processing sequence of an IPFS-based DC call.

Appl. Sci. 2024, 14, 315 6 of 18

4. Digital Content Management (DCM) System

IPFS is a new protocol that addresses the limitations of the existing hypertext transfer
protocol (HTTP). Figure 4 shows the processing of an IPFS-based DC call. The processing se-
quence after the content address is addressed as follows: DHT/routing->BITTORRENT/File
exchange->DAG/merkledag->SFS/naming->application. Herein, IPFS is invoked through
the content hash instead of the traditional method of addressing the domain name.

NFT-based DCMs employ the tamper-proof characteristic of IPFS files to the DC
procedure on the blockchain and check for changes in the DC metadata, as shown in
Algorithm 2. If we explain the procedure in Algorithm 2, the digital content (DC) is
comprised of blocks (b), each having three components, such as b1, b2, b3. Utilizing these
three elements (b1, b2, b3), a hash function (H) is employed to generate a single value,
represented as p{p1, p2, p3}. The ‘generate’ function maps the digital contents to each block,
where, for instance, p1 is mapped to b1 and p2 is mapped to b2. The interplanetary file
system (IPFS) is responsible for storing digital content and includes users (u) and servers,
such as S1, S2, S3, Sn. Each server (S1, S2, S3, Sn) currently holds subsets of digital content,
and lastly, S4 does not hold any content.

Algorithm 2. //Procedure of DCM

DC: Digital Contents
b: block = {b1, b2, b3}
p{p1, p2, p3} = H(b1, b2, b3)
generate = (p1,b1)(p2,b2)(p3,b2)
IPFS = {u, S1, S2, S3, Sn}DC
S1 = {p1, p2, p3}
S2 = {p1, p2, p3}
S3 = {p1, p2, p3}
S4 = {}

First, IPFS allows node u to request a DC sent via a smart contract using the systems
connected to the IPFS. If the system sends a DC that is not stored at u, the node constructs
the complete DC by assembling the partially received pieces of information. The DC, which
comprises multiple blocks, is processed block-by-block using a hash and then assigned a
unique name. After storing the names of all files in a database, duplicate files are eliminated,
and the version information of each file is tracked. Subsequently, each node (u, S1, S2, S3,
S4) stores only the required files, and the indexing information is used to determine the file
stored at each node. To find a file on the network, the file name is first searched; thereafter,
the node that has the file stored is contacted.

4.1. Distributed Hash Table (DHT)

DHTs comprise six APIs, namely findPeer, findProvs, get, provide, put, and query,
that manage the routing process and DHTs, as shown in Table 1. A P2P network can be
realized without a centralized server by allowing nodes participating in the network to
manage their own hash tables.

Table 1. APIs of DHTs.

API Name Function

dht.findPeer Find multi-addresses using the PeerID

dht.findProvs Find peers to provide a specific value (CID)

dht.get Query the routing system for a given key

dht.provide Alarm the network with the given values

dht.put Write a key or value pair to the routing system

dht.query Find the closest PeerID to the given PeerID or CID

Appl. Sci. 2024, 14, 315 7 of 18

Rather than using a centralized system, DHTs use hash tables to locate files by mapping
the name of each node to a value (Figure 5). The DHT operation determines network
efficiency and how nodes enter or leave the network and register new content. Therefore, it
reduces the network load and allows searching the network content quickly and accurately,
depending on the configuration.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 18

dht.query Find the closest PeerID to the given PeerID or CID

Rather than using a centralized system, DHTs use hash tables to locate files by map-
ping the name of each node to a value (Figure 5). The DHT operation determines network
efficiency and how nodes enter or leave the network and register new content. Therefore,
it reduces the network load and allows searching the network content quickly and accu-
rately, depending on the configuration.

Figure 5. Hash function in a DHT.

Explaining the DHT algorithm defined in Algorithm 3, initially, ‘contents1 (DC.p1):
S1’ denotes a portion of digital contents allocated to server S1, while ‘contents2 (DC.p2):
S2’ and ‘contents3 (DC.p3): S3’ represent different segments of digital contents assigned
to S2 and S3, respectively. ‘n’ represents the total number of servers, and the distributed
hash table (DHT) contains pairs of keys and values. Here, ‘key’ signifies the content name,
and ‘value’ represents the IP address. ‘peers(DATABASE)’ refers to querying peers re-
garding the database. ‘query’ performs a query on the database, and if the database
matches a specific key, it returns that database. In cases of inserting values into the data-
base, ‘insert(key, value) by peers into database’ indicates peers inserting key–value pairs
into the database. Within these operations, the message count is O(log(N)), and state
changes are O(log(N)). Here, ‘O(log(N))’ represents the algorithm’s time complexity, in-
dicating that the execution time of operations is logarithmically proportional to the data-
base size (N).

However, it is important to define an optimal nearness metric, maintain a minimum
hop count, and define a minimum hash table for optimal DHT routing and fast processing.
Hence, efficient generates O(log(N) messages for each lookup, and scalable generates
O(log(N) states.

Figure 5. Hash function in a DHT.

Explaining the DHT algorithm defined in Algorithm 3, initially, ‘contents1 (DC.p1):
S1’ denotes a portion of digital contents allocated to server S1, while ‘contents2 (DC.p2): S2’
and ‘contents3 (DC.p3): S3’ represent different segments of digital contents assigned to S2
and S3, respectively. ‘n’ represents the total number of servers, and the distributed hash
table (DHT) contains pairs of keys and values. Here, ‘key’ signifies the content name, and
‘value’ represents the IP address. ‘peers(DATABASE)’ refers to querying peers regarding the
database. ‘query’ performs a query on the database, and if the database matches a specific
key, it returns that database. In cases of inserting values into the database, ‘insert(key,
value) by peers into database’ indicates peers inserting key–value pairs into the database.
Within these operations, the message count is O(log(N)), and state changes are O(log(N)).
Here, ‘O(log(N))’ represents the algorithm’s time complexity, indicating that the execution
time of operations is logarithmically proportional to the database size (N).

However, it is important to define an optimal nearness metric, maintain a minimum
hop count, and define a minimum hash table for optimal DHT routing and fast processing.
Hence, efficient generates O(log(N) messages for each lookup, and scalable generates
O(log(N) states.

Algorithm 3. //DHT API Algorithm

define contents1 (DC.p1): S1
define contents2 (DC.p2): S2
define contents3 (DC.p3): S3
n = the total number of servers

DHT <- pair(key, value);
key <- content name
value <- IP address

query <-peers(DATABASE)
if database == key

returns (database)
insert (key, value) by peers into database
messages == O(log(N))
state == O(log(N))

Appl. Sci. 2024, 14, 315 8 of 18

4.2. Bit Torrent (File Exchange)

The IPFS is a peer-to-peer file exchange protocol implemented on a distributed network
as it shows in Algorithm 4. In BitTorrent, a single file is divided into multiple pieces, and
each node informs the other nodes about the pieces it has and requests from them the ones
it requires. Therefore, numerous sessions are generated to exchange information between
nodes, and the download speed increases as the number of sessions increases (Figure 6).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 18

Algorithm 3. //DHT API Algorithm
define contents1 (DC.p1): S1
define contents2 (DC.p2): S2
define contents3 (DC.p3): S3
n = the total number of servers

DHT <- pair(key, value);

 key <- content name
 value <- IP address

query <-peers(DATABASE)
if database == key

returns (database)
insert (key, value) by peers into database
messages == O(log(N))
state == O(log(N))

4.2. Bit Torrent (File Exchange)
The IPFS is a peer-to-peer file exchange protocol implemented on a distributed net-

work as it shows in Algorithm 4. In BitTorrent, a single file is divided into multiple pieces,
and each node informs the other nodes about the pieces it has and requests from them the
ones it requires. Therefore, numerous sessions are generated to exchange information be-
tween nodes, and the download speed increases as the number of sessions increases (Fig-
ure 6).

Figure 6. File sharing among nodes in BitTorrent.

Algorithm 4. //File Share & Exchange
p = {p1, p2, p3}
S1 = {p3}
S2 = {p2}
S3 = {p1}
S4 = {}

(S2, S3, S4)_share(p3) <- S1
(S2, S3, S4).request(p1, p2) <- S1
session_establishment (S1-S2, S1-S3, S1-S4)

(S1, S3, S4)_share(p2) <- S2
(S1, S3, S4).request(p1, p3) <- S2
session_establishment (S2-S1, S2-S3, S2-S4)

Figure 6. File sharing among nodes in BitTorrent.

Algorithm 4. //File Share & Exchange

p = {p1, p2, p3}
S1 = {p3}
S2 = {p2}
S3 = {p1}
S4 = {}

(S2, S3, S4)_share(p3) <- S1
(S2, S3, S4).request(p1, p2) <- S1
session_establishment (S1-S2, S1-S3, S1-S4)

(S1, S3, S4)_share(p2) <- S2
(S1, S3, S4).request(p1, p3) <- S2
session_establishment (S2-S1, S2-S3, S2-S4)

(S1, S2, S4)_share(p1) <- S3
(S1, S2, S4).request(p1, p3) <- S3
session_establishment (S3-S1, S3-S2, S3-S4)

(S1, S2, S3)_share() <- S4
(S1, S2, S3).request(p1, p2, p3) <- S4
session_establishment (S4-S1, S4-S2, S4-S2)

4.3. Merkle Directed Acyclic Graphs (DAGs)

The IPFS employs Merkle DAGs, wherein each node has a unique hash representing
its content. This hash is used to identify an object or node and serves as a representation of
the data location (Figure 7).

The Merkle DAG comprises three important features: content addressing, tamper
resistance, and deduplication.

- Content addressing: All content has self-organizing links, and their integrity is verified
through their multihash checksums.

- Tamper resistance: The self-integrity of the content is checked using a checksum. In
cases of forgery, the hash value of the Merkle root is changed; thus, the integrity is
automatically checked.

Appl. Sci. 2024, 14, 315 9 of 18

- Deduplication: Content cannot be duplicated in a Merkle DAG because identical
content will have the same hash value, which is not allowed.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 18

(S1, S2, S4)_share(p1) <- S3
(S1, S2, S4).request(p1, p3) <- S3
session_establishment (S3-S1, S3-S2, S3-S4)

(S1, S2, S3)_share() <- S4
(S1, S2, S3).request(p1, p2, p3) <- S4
session_establishment (S4-S1, S4-S2, S4-S2)

4.3. Merkle Directed Acyclic Graphs (DAGs)
The IPFS employs Merkle DAGs, wherein each node has a unique hash representing

its content. This hash is used to identify an object or node and serves as a representation
of the data location (Figure 7).

Figure 7. Structure of a Merkle DAG.

The Merkle DAG comprises three important features: content addressing, tamper re-
sistance, and deduplication.
- Content addressing: All content has self-organizing links, and their integrity is veri-

fied through their multihash checksums.
- Tamper resistance: The self-integrity of the content is checked using a checksum. In

cases of forgery, the hash value of the Merkle root is changed; thus, the integrity is
automatically checked.

- Deduplication: Content cannot be duplicated in a Merkle DAG because identical con-
tent will have the same hash value, which is not allowed.

4.4. Self-Certifying File System (SFS)
The SFS is the underlying technology for enforcing the interplanetary name system

(IPNS) and follows the syntax /sfs/location:HostID. The user verifies that the server
matches the address based on the public key of the server (Figure 8).
- Location: server address
- HostID: hash_value(public _key(from Server), location)

The IPNS used in SFS creates a Merkle DAG with filenames comprising the hashed
values of files. Every file has a permanent, immutable name; however, sometimes a mu-
table name is required. Hence, the IPNS can be used to generate mutable names in the
IPFS.

Figure 7. Structure of a Merkle DAG.

4.4. Self-Certifying File System (SFS)

The SFS is the underlying technology for enforcing the interplanetary name system
(IPNS) and follows the syntax /sfs/location:HostID. The user verifies that the server
matches the address based on the public key of the server (Figure 8).

- Location: server address
- HostID: hash_value(public _key(from Server), location)

The IPNS used in SFS creates a Merkle DAG with filenames comprising the hashed
values of files. Every file has a permanent, immutable name; however, sometimes a mutable
name is required. Hence, the IPNS can be used to generate mutable names in the IPFS.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 18

(S1, S2, S4)_share(p1) <- S3
(S1, S2, S4).request(p1, p3) <- S3
session_establishment (S3-S1, S3-S2, S3-S4)

(S1, S2, S3)_share() <- S4
(S1, S2, S3).request(p1, p2, p3) <- S4
session_establishment (S4-S1, S4-S2, S4-S2)

4.3. Merkle Directed Acyclic Graphs (DAGs)
The IPFS employs Merkle DAGs, wherein each node has a unique hash representing

its content. This hash is used to identify an object or node and serves as a representation
of the data location (Figure 7).

Figure 7. Structure of a Merkle DAG.

The Merkle DAG comprises three important features: content addressing, tamper re-
sistance, and deduplication.
- Content addressing: All content has self-organizing links, and their integrity is veri-

fied through their multihash checksums.
- Tamper resistance: The self-integrity of the content is checked using a checksum. In

cases of forgery, the hash value of the Merkle root is changed; thus, the integrity is
automatically checked.

- Deduplication: Content cannot be duplicated in a Merkle DAG because identical con-
tent will have the same hash value, which is not allowed.

4.4. Self-Certifying File System (SFS)
The SFS is the underlying technology for enforcing the interplanetary name system

(IPNS) and follows the syntax /sfs/location:HostID. The user verifies that the server
matches the address based on the public key of the server (Figure 8).
- Location: server address
- HostID: hash_value(public _key(from Server), location)

The IPNS used in SFS creates a Merkle DAG with filenames comprising the hashed
values of files. Every file has a permanent, immutable name; however, sometimes a mu-
table name is required. Hence, the IPNS can be used to generate mutable names in the
IPFS.

Figure 8. Content path.

The IPNS records can point to mutable or immutable paths; however, the IPFS can
only handle immutable paths because the CIDs contain multihashes.

Ipfs = immutable *pointer => content
ipns = **pointer => content

5. Experiment

The IPFS structure consists of multiple nodes, each organized on a peer-to-peer net-
work, wherein identical DCs have the same CID. It requests the required DC from multiple
nodes to obtain a file and involves the following steps:

Step 1: Unique identification via content addressing.

- Locates a file using the CID, which is the hash of the file, and connects directly to
the nodes where the content is stored to obtain the file.

Step 2: Content linking via DAGs.

- The IPFS splits the DC into multiple blocks and stores them as DAGs.
- When DC is uploaded using the DAG builder, it is separated into three blocks: DC1,

DC2, and DC3.
- Each DC is created as a single file using the BitTorrent method, and each DC block

generates its own CID using a hash value.

Step 3: Content discovery via DHTs.

- To find a file, each node uses the DHT to determine the node containing the desired file.

Appl. Sci. 2024, 14, 315 10 of 18

- A query is sent to the DHT using the library peer-to-peer (libp2p) framework. Once
the file is located, it connects to the nodes through the Bitswap module.

- The blocks are acquired using the want list (list of desired blocks).

Step 4: Verification.

- The arriving blocks are hashed to obtain their CIDs, which are verified as the
requested CIDs.

- The content delivery process is verified by checking whether the CID values match.

5.1. IPFS

For the experiments, both the server and node were implemented on Ubuntu 18.20.
It employed the characteristics of the IPFS, and the experiments were conducted using
the go-ipfs package. The component is organized as a peer-to-peer (P2P) network with
nodes in the network. All identical files had the same CID, and the files were obtained
by requesting them from multiple nodes where they were stored. First, the IPFS daemon
(sudo ipfs daemon) was run, as shown in Figure 9, and the CID was verified using the “ipfs
ID” value (Figure 10).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 18

Figure 8. Content path.

The IPNS records can point to mutable or immutable paths; however, the IPFS can
only handle immutable paths because the CIDs contain multihashes.

Ipfs = immutable *pointer => content
ipns = **pointer => content

5. Experiment
The IPFS structure consists of multiple nodes, each organized on a peer-to-peer net-

work, wherein identical DCs have the same CID. It requests the required DC from multi-
ple nodes to obtain a file and involves the following steps:
Step 1: Unique identification via content addressing.

- Locates a file using the CID, which is the hash of the file, and connects directly
to the nodes where the content is stored to obtain the file.

Step 2: Content linking via DAGs.
- The IPFS splits the DC into multiple blocks and stores them as DAGs.
- When DC is uploaded using the DAG builder, it is separated into three blocks:

DC1, DC2, and DC3.
- Each DC is created as a single file using the BitTorrent method, and each DC

block generates its own CID using a hash value.
Step 3: Content discovery via DHTs.

- To find a file, each node uses the DHT to determine the node containing the
desired file.

- A query is sent to the DHT using the library peer-to-peer (libp2p) framework.
Once the file is located, it connects to the nodes through the Bitswap module.

- The blocks are acquired using the want list (list of desired blocks).
Step 4: Verification.

- The arriving blocks are hashed to obtain their CIDs, which are verified as the
requested CIDs.

- The content delivery process is verified by checking whether the CID values
match.

5.1. IPFS
For the experiments, both the server and node were implemented on Ubuntu 18.20.

It employed the characteristics of the IPFS, and the experiments were conducted using the
go-ipfs package. The component is organized as a peer-to-peer (P2P) network with nodes
in the network. All identical files had the same CID, and the files were obtained by re-
questing them from multiple nodes where they were stored. First, the IPFS daemon (sudo
ipfs daemon) was run, as shown in Figure 9, and the CID was verified using the “ipfs ID”
value (Figure 10).

Figure 9. Running the IPFS daemon.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 18

Figure 9. Running the IPFS daemon.

Figure 10. IPFS IDs obtained.

The ID of each node was verified using the same method. As shown in Figure 10, the
IDs of nodes 1, 2, 3, and 4 were as follows:

Node 1: QmahZg6Ju3iM5nU3Ry2X2Kx4rFdxUHa3DP9biDP29yFGYT
Node 2: QmWFSjvfttNUbzuW1MmhTfuS3nB74zZucdnkrSJv4EDgsw
Node 3: QmRqHonzHNQDjnEw3UexhqKEKCQyY5mUH9DueAKipcuSbj
Node 4: QmiM5afZaAfRat5yX2W1ucdnzZH3aAagZGeqGAaat4A4ax

5.2. Grouping in a Private Network
To join a group for content sharing, a swarm key is required, which is a private key

shared among peers to create a private network, i.e., to form a group by owning the same
swarm key. In this study, four nodes were used to create a group. Thus, all four nodes
shared the same swarm key (node 1).

As shown in Figures 11 and 12, nodes 1 and 2 share the same key. Moreover, nodes
3 and 4 also share the same key.

Figure 11. Swarm key generation at node 1.

Figure 12. Swarm key of node 2.

After sharing the swarm key, the nodes connected to each node are checked. The
following example shows the information of the nodes connected to node 3 obtained using
the ipfs bootstrap list command.

skoh21@skoh21-VirtualBox:~/.ipfs$ ipfs bootstrap list
/dnsaddr/bootstrap.libp2p.io/p2p/QmNnooDu7bfjPFoTZYxMN-
LWUQJyrVwtbZg5gBMjTezGAJN
/dnsaddr/boot-
strap.libp2p.io/p2p/QmQCU2EcMqAqQPR2i9bChDtGNJchTbq5TbXJJ16u19uLTa
/ip4/104.131.131.82/tcp/4001/p2p/QmaC-
pDMGvV2BGHeYERUEnRQAwe3N8SzbUtfsmvsqQLuvuJ

Figure 10. IPFS IDs obtained.

The ID of each node was verified using the same method. As shown in Figure 10, the
IDs of nodes 1, 2, 3, and 4 were as follows:

Node 1: QmahZg6Ju3iM5nU3Ry2X2Kx4rFdxUHa3DP9biDP29yFGYT
Node 2: QmWFSjvfttNUbzuW1MmhTfuS3nB74zZucdnkrSJv4EDgsw
Node 3: QmRqHonzHNQDjnEw3UexhqKEKCQyY5mUH9DueAKipcuSbj
Node 4: QmiM5afZaAfRat5yX2W1ucdnzZH3aAagZGeqGAaat4A4ax

5.2. Grouping in a Private Network

To join a group for content sharing, a swarm key is required, which is a private key
shared among peers to create a private network, i.e., to form a group by owning the same
swarm key. In this study, four nodes were used to create a group. Thus, all four nodes
shared the same swarm key (node 1).

Appl. Sci. 2024, 14, 315 11 of 18

As shown in Figures 11 and 12, nodes 1 and 2 share the same key. Moreover, nodes 3
and 4 also share the same key.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 18

Figure 9. Running the IPFS daemon.

Figure 10. IPFS IDs obtained.

The ID of each node was verified using the same method. As shown in Figure 10, the
IDs of nodes 1, 2, 3, and 4 were as follows:

Node 1: QmahZg6Ju3iM5nU3Ry2X2Kx4rFdxUHa3DP9biDP29yFGYT
Node 2: QmWFSjvfttNUbzuW1MmhTfuS3nB74zZucdnkrSJv4EDgsw
Node 3: QmRqHonzHNQDjnEw3UexhqKEKCQyY5mUH9DueAKipcuSbj
Node 4: QmiM5afZaAfRat5yX2W1ucdnzZH3aAagZGeqGAaat4A4ax

5.2. Grouping in a Private Network
To join a group for content sharing, a swarm key is required, which is a private key

shared among peers to create a private network, i.e., to form a group by owning the same
swarm key. In this study, four nodes were used to create a group. Thus, all four nodes
shared the same swarm key (node 1).

As shown in Figures 11 and 12, nodes 1 and 2 share the same key. Moreover, nodes
3 and 4 also share the same key.

Figure 11. Swarm key generation at node 1.

Figure 12. Swarm key of node 2.

After sharing the swarm key, the nodes connected to each node are checked. The
following example shows the information of the nodes connected to node 3 obtained using
the ipfs bootstrap list command.

skoh21@skoh21-VirtualBox:~/.ipfs$ ipfs bootstrap list
/dnsaddr/bootstrap.libp2p.io/p2p/QmNnooDu7bfjPFoTZYxMN-
LWUQJyrVwtbZg5gBMjTezGAJN
/dnsaddr/boot-
strap.libp2p.io/p2p/QmQCU2EcMqAqQPR2i9bChDtGNJchTbq5TbXJJ16u19uLTa
/ip4/104.131.131.82/tcp/4001/p2p/QmaC-
pDMGvV2BGHeYERUEnRQAwe3N8SzbUtfsmvsqQLuvuJ

Figure 11. Swarm key generation at node 1.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 18

Figure 9. Running the IPFS daemon.

Figure 10. IPFS IDs obtained.

The ID of each node was verified using the same method. As shown in Figure 10, the
IDs of nodes 1, 2, 3, and 4 were as follows:

Node 1: QmahZg6Ju3iM5nU3Ry2X2Kx4rFdxUHa3DP9biDP29yFGYT
Node 2: QmWFSjvfttNUbzuW1MmhTfuS3nB74zZucdnkrSJv4EDgsw
Node 3: QmRqHonzHNQDjnEw3UexhqKEKCQyY5mUH9DueAKipcuSbj
Node 4: QmiM5afZaAfRat5yX2W1ucdnzZH3aAagZGeqGAaat4A4ax

5.2. Grouping in a Private Network
To join a group for content sharing, a swarm key is required, which is a private key

shared among peers to create a private network, i.e., to form a group by owning the same
swarm key. In this study, four nodes were used to create a group. Thus, all four nodes
shared the same swarm key (node 1).

As shown in Figures 11 and 12, nodes 1 and 2 share the same key. Moreover, nodes
3 and 4 also share the same key.

Figure 11. Swarm key generation at node 1.

Figure 12. Swarm key of node 2.

After sharing the swarm key, the nodes connected to each node are checked. The
following example shows the information of the nodes connected to node 3 obtained using
the ipfs bootstrap list command.

skoh21@skoh21-VirtualBox:~/.ipfs$ ipfs bootstrap list
/dnsaddr/bootstrap.libp2p.io/p2p/QmNnooDu7bfjPFoTZYxMN-
LWUQJyrVwtbZg5gBMjTezGAJN
/dnsaddr/boot-
strap.libp2p.io/p2p/QmQCU2EcMqAqQPR2i9bChDtGNJchTbq5TbXJJ16u19uLTa
/ip4/104.131.131.82/tcp/4001/p2p/QmaC-
pDMGvV2BGHeYERUEnRQAwe3N8SzbUtfsmvsqQLuvuJ

Figure 12. Swarm key of node 2.

After sharing the swarm key, the nodes connected to each node are checked. The
following example shows the information of the nodes connected to node 3 obtained using
the ipfs bootstrap list command.

skoh21@skoh21-VirtualBox:~/.ipfs$ ipfs bootstrap list
/dnsaddr/bootstrap.libp2p.io/p2p/QmNnooDu7bfjPFoTZYxMN
LWUQJyrVwtbZg5gBMjTezGAJN
/dnsaddr/boot
strap.libp2p.io/p2p/QmQCU2EcMqAqQPR2i9bChDtGNJchTbq5TbXJJ16u19uLTa
/ip4/104.131.131.82/tcp/4001/p2p/QmaC
pDMGvV2BGHeYERUEnRQAwe3N8SzbUtfsmvsqQLuvuJ
/ip4/104.131.131.82/udp/4001/quic/p2p/QmaC
pDMGvV2BGHeYERUEnRQAwe3N8SzbUtfsmvsqQLuvuJ

However, the nodes with which the swarm key is shared are not listed. Thus, the ipfs
config address.API/gateway command is used to register them in the bootstrap.

skoh21@skoh21-VirtualBox:~/.ipfs$ ipfs config Address.API /ip4/10.0.2.15/tcp/5001
skoh21@skoh21-VirtualBox:~/.ipfs$ ipfs config Address.Gateway /ip4/10.0.2.15/tcp/8080

The following information is registered on node 2 after all commands have been
executed:

skoh21@skoh21-VirtualBox:~$ ipfs id
{

“ID”: “QmWFSjvfttNUbzuW1MmhTfuS3nB74zZucdnkrSJv4EDgsw”,
“PublicKey”:

“CAASpgIwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoI
BAQD6bIaT8/t13lCkJFZsQNoaCWyTOfqrFBImzSTRGDiaivhBhXwA
OMKakUr8q+HvQlI39nxuB/s/qaZjrniZJvPqN
dEzRs4zjVcjXBkfmWBdYL8FCU5ZhWv9RDThn44ThjI1/xv2pkw0JCAeUEaF14z44
Dk5XlCKBIKb+TFdVMIYs0axFhsLt5bm1wTmBUrQw/sYocH
dfEy49GZVD9B6EezBVu7shbePrN2csROnxTOQK3TAA+GLsIN
RoVCH93YkosxhmhbfxlkppFThc1LwDuqj50GpDAYem8oBCQRK
miFj4AYHT0Asz3FIAb0Pyuus8Kla/FiHTQgZZ1eBbvqIUqsVAgMBAAE=”,

“Addresses”: [
“/ip4/127.0.0.1/tcp/4001/p2p/QmWFSjvfttNUbzuW1MmhT

fuS3nB74zZucdnkrSJv4EDgsw”,
“/ip4/10.0.2.15/tcp/4001/p2p/QmWFSjvfttNUbzuW1MmhT

Appl. Sci. 2024, 14, 315 12 of 18

fuS3nB74zZucdnkrSJv4EDgsw”,
“/ip6/::1/tcp/4001/p2p/QmWFSjvfttNUbzuW1MmhT

fuS3nB74zZucdnkrSJv4EDgsw”
],
“AgentVersion”: “go-ipfs/0.5.0/”,
“ProtocolVersion”: “ipfs/0.1.0”

}

Thereafter, the ipfs bootstrap add command is used to add node 2 to node 3.

skoh21@skoh21-VirtualBox:~/.ipfs$ ipfs bootstrap
add/ip4/10.0.2.15/tcp/4001/ipfs/QmWFSjvfttNUbzuW1MmhT
fuS3nB74zZucdnkrSJv4EDgsw
added /ip4/10.0.2.15/tcp/4001/ipfs/QmWFSjvfttNUbzuW1MmhT
fuS3nB74zZucdnkrSJv4EDgsw

Finally, node 2 is registered on node 3. Thereafter, the ipfs add dc# command is used
to add a file. Once it is completed, all four nodes have the DC1, DC2, and DC3 blocks.

skoh21@skoh21-VirtualBox:~$ ipfs bootstrap list
/ip4/10.0.2.15/tcp/4001/p2p/QmWFSjvfttNUbzuW1MmhT
fuS3nB74zZucdnkrSJv4EDgsw
skoh21@skoh21-VirtualBox:~$ ipfs add dc1
added QmWFSjvfttNUbzuW1MmhTfuS3nB74zZucdnkrSJv4EDgsw dc1

5.3. Discussion

Certain characteristics of NFTs facilitate straightforward asset creation, enabling seam-
less verification of ownership rights through uncomplicated processes. Their inherent
advantages encompass resilience against forgery, intricate traceability, and the facilitation
of fractional transactions. In terms of preventing forgery, NFTs mitigate the depreciation
of digital assets by rendering the replication of critical data—such as origin, ownership
details, and transaction chronicles—challenging. As for traceability, the transparent nature
of blockchain data permits anyone to authenticate the origin, issuance time, quantity, and
ownership history of NFTs. Ownership authentication and traceability are ensured through
decentralized blockchain storage, facilitating easy recovery in case of loss. Additionally,
NFTs introduce the concept of fractional ownership, converting illiquid assets into liquid
ones by acknowledging partial ownership of assets. Table 2 presents an analysis of NFTs
from a security standpoint, outlining threats such as spoofing, tampering, repudiation,
information disclosure, and denial-of-service (DoS) attacks.

Table 2 demonstrates how it has provided clues to address existing issues following this
study. In response to threats from tampering with data external to the existing blockchain,
the proposed method enables buyers to share both original and hashed data, allowing
for early detection of manipulation. Moreover, the issue of combining hashed data with
attackers’ addresses has been resolved through the utilization of multi-signature usage.
In addressing concerns related to transaction exploitation, they have employed privacy-
preserving smart contract policies.

Spoofing poses a risk wherein attackers exploit authentication vulnerabilities, po-
tentially pilfering users’ private keys. However, the safeguarding of NFT private keys
can be achieved through the secure utilization of smart contracts and cold wallets. In
scenarios where an NFT’s blockchain data are stored externally, there exists a susceptibility
to tampering by malicious entities. Yet, sharing both the original and hashed data with the
buyer allows verification through hash comparison, thus detecting any tampering attempts.
Mitigating the threat of repudiation attacks—wherein attackers combine hashed data with
their own address—can be accomplished through the implementation of a multi-signature
method. Additionally, the security threat posed by information disclosure, arising from the

Appl. Sci. 2024, 14, 315 13 of 18

exploitation of hashes and transactions by attackers, can be mitigated by adopting privacy-
centric smart contracts. Consequently, addressing the issue of NFT aging errors stemming
from design flaws can be tackled by rigorously verifying the smart contracts in use.

Table 2. NFT security threats and solutions.

Type Potential Security Threat Solution

Spoofing Abuse authentication
vulnerabilities/steal private keys

Employ NFT-enabled smart
contracts/cold wallets

Tampering Manipulate data outside the
blockchain

Share both original and
hashed data with buyers

Repudiation Combining the hash data with the
attacker’s address Use multiple signatures

Information Disclosure Attackers exploit hashes and
transactions

Apply privacy-protecting
smart contracts

Evaluation of Privilege NFT property errors caused by
design issues Validation of smart contracts

To achieve scalability and time efficiency in research focusing on managing digital
content using non-fungible tokens (NFTs) and the interplanetary file system (IPFS), there
are several elements required in terms of technical specifications and infrastructure, as
shown in Table 3.

Table 3. Requirements of scalability and time efficiency.

Issue Contents

IPFS Nodes and
Network
Infrastructure

- IPFS is a distributed file system that identifies data via hashes and
stores them across a network.

- Adequate nodes are required for data retrieval based on these hashes,
necessitating a robust network infrastructure for high availability and
data integrity.

Smart Contracts
and Blockchain
Platforms

- Utilizing a blockchain platform is essential for creating and managing
NFTs.

- This involves executing smart contracts to guarantee the uniqueness
and ownership of NFTs, requiring consideration of security, scalability,
and transaction processing capabilities.

Data Security
and Encryption

- To uphold digital content security, encryption technologies are crucial.
- Establishing secure storage and transmission protocols through

encryption standards and robust key management systems is necessary.

Scalable
Databases and
Storage

- Managing and storing large volumes of files and metadata requires
scalable databases and storage solutions.

- Efficiently handling distributed storage, replication, and backups of
data is essential.

Distributed
Computing
Resources

- Processing and analyzing data necessitate distributed computing
resources.

- Cloud computing enables the distribution of large-scale tasks,
enhancing performance through parallel processing.

- These technical elements ensure the functionality and stability of
managing digital content using NFTs and IPFS.

- Designing and implementing systems considering aspects like network
establishment and maintenance, data security and integrity, as well as
distributed processing and storage are critical for constructing a
scalable and efficient digital content management system.

Appl. Sci. 2024, 14, 315 14 of 18

These technical elements ensure the functionality and stability of managing digital
content using NFTs and the IPFS. Designing and implementing systems considering as-
pects like network establishment and maintenance, data security and integrity, as well
as distributed processing and storage are critical for constructing a scalable and efficient
digital content management system.

5.4. Future Works
5.4.1. Future Research Prospect

The Fourth Industrial Revolution refers to the transformative changes driven by the
advancement and innovation of digital technologies. It signifies a revolutionary shift across
industries and societies through the convergence and interaction of diverse technologies.
In the context of research, the progression related to the Fourth Industrial Revolution can
evolve in the directions given in Table 4.

Table 4. Future research prospects.

Issue Contents

Integration of Digital
Assets and Blockchain

Technology

- The Fourth Industrial Revolution introduces new concepts of
digital assets. Blockchain-based digital assets like NFTs play
significant roles in various sectors such as art, media, gaming, real
estate, and more.

- The fusion of blockchain and NFTs can propose new business
models and innovative methods for content management.

Utilization of
Decentralized
Technologies

- The Fourth Industrial Revolution emphasizes the importance of
decentralized technologies. Systems like the interplanetary file
system (IPFS) offer distributed storage methods, enhancing data
reliability and security by avoiding centralization.

- Such technologies are expected to provide new opportunities for
trustworthy data management and sharing.

Integration with
Artificial Intelligence

(AI)

- The Fourth Industrial Revolution emphasizes the interaction
with AI.

- Content management systems based on NFTs and blockchain can
utilize AI for content recommendation, analysis, security
reinforcement, and innovation in various areas.

Integration with
Global Networks

- The Fourth Industrial Revolution stresses global connectivity.
- Hence, research can focus on confirming stability and efficiency

within global networks, exploring potential applications in
various regions and cultures.

The Fourth Industrial Revolution can contribute to the creation of new digital asset
innovations and decentralized data management systems by integrating technologies
like NFTs and the IPFS. Research exploring the potential development and industrial
applicability of these technologies can accelerate the ripple effects of the Fourth Industrial
Revolution.

5.4.2. Potential Future Improvements

Some potential future improvements could be considered, as given in Table 5.
These approaches aim to enhance scalability and reduce the time complexity of systems

using NFTs and the IPNS. Considering these improvements can significantly advance the
content of the paper and the system’s overall development.

Appl. Sci. 2024, 14, 315 15 of 18

Table 5. Potential future improvements.

Issue Contents

Efficient Distributed
Storage and Access

- Research and develop more efficient data distribution and storage
methods using NFT and IPNS.

- This could maintain data integrity while reducing the algorithm’s
time complexity. Designing efficient data partitioning and storage
methods could help achieve this.

Algorithm
Optimization

- Research optimization of existing algorithms and processes to
decrease time complexity.

- Devising efficient algorithms for data access and management
could enhance the overall system performance.

Enhancement of Smart
Contract Functionality

- Explore expanding the functionalities of smart contracts utilizing
NFT and IPNS.

- Adding more features to manage and access data could improve
the system’s scalability.

Improvements in
Security and Privacy

- Focus on enhancing data security and privacy in systems using
NFT and IPNS.

- Research methods to strengthen encryption techniques, access
control, and secure data transmission and storage.

Improving Network
Scalability

- Consider connecting NFT and IPNS to more users and enhancing
scalability for large-scale traffic.

- Researching efficient network structures and data processing
methods could enhance the overall system performance.

5.4.3. Algorithm Optimization Approaches

There are two optimization methods for this research: IPFS storage and management
optimization and smart contract optimization. First, IPFS storage and management opti-
mization involve maximizing the effectiveness of the interplanetary file system (IPFS), a
distributed file system used for storing and managing files. By optimizing data replication
and caching mechanisms, it is possible to enhance data access speeds. Additionally, smart
contract optimization involves streamlining the code of smart contracts associated with
NFT transactions to reduce execution costs.

And the results of scalability and time complexity affect how well a system can
accommodate many users and handle data. Good scalability supports numerous users and
enables swift transactions, while limited scalability can lead to performance degradation
and a decline in user experience. Lower time complexity signifies faster transactions and
efficient data processing, thereby enhancing the user experience and the system’s utility.
These outcomes have implications for the practical deployment and usability of systems
across various domains, such as art markets, academic research repositories, and gaming
industries, necessitating the need to design and utilize systems with these considerations
in mind.

5.4.4. Response Time, Scalability, Time Complexity Analysis

The Table 6 shows the result of the average response time, Table 7 is for the result of
the load condition. And Table 8 shows the Input Message Size(N) and Execution Time (ms).

- Response time: Response time measures the duration taken by the system to receive a
request, process it, and return a response. Through experiments, requests are sent to
the system, and the response times for these requests are measured to determine the
average, maximum, and minimum response times. This allows us to understand the
distribution of response times for each type of request.

- Scalability: Scalability refers to the system’s ability to maintain performance while
handling increasing loads. Through experiments, the system’s response times are

Appl. Sci. 2024, 14, 315 16 of 18

measured under various load conditions, analyzing performance changes with in-
creasing load. By comparing response times across scenarios like low, moderate, and
high loads, the system’s scalability is assessed.

- Time complexity: Time complexity represents the time taken by a specific algorithm
based on the input size. By implementing the algorithm and varying the input size,
one can measure the execution time. These data are presented in graphs or tables
to display the algorithm’s execution time over time, allowing us to understand the
relationship between input size and the algorithm’s time-based performance.

Table 6. The result of the average response time.

Avg. Response Time (ms) Max. Response Time (ms) Min. Response Time (ms)

30 70 20

Table 7. The result of the load condition.

Load Condition Avg. Response Time (ms) Max. Throughput
(Requests/min)

Low load 20 800

Moderate Load 40 600

High Load 80 400

Table 8. Input Message Size(N) and Execution Time (ms).

Input Message Size (N) Execution Time (ms)

100 5

500 15

1000 30

6. Conclusions

NFTs contain metadata, such as token number, title, content, and image URL, and
are characterized as having a unique value distinct from the digital asset, making them
irreplaceable. As NFTs are stored on the blockchain, they cannot be deleted or forged
after they are created. Therefore, they can be used to authenticate original content and
prove the ownership of digital assets. Hence, they are being increasingly used to specify
the ownership and copyright of DC. The IPFS, which has the characteristics of a shared
distributed file system, is used to employ these features of NFTs. The IPFS issues NFTs
using a smart contract based on the ERC-721 standard and the Solidity programming
language. Thereafter, the token metadata are uploaded to the IPFS distributed file system
and converted into a CID value, which is stored on the blockchain. Storing the CID value
on the blockchain enables more efficient data management and the decentralization of
web services as the data are not stored on a central server. This study described and
experimented with an NFT-based DCM method that can manage and share DC across
four nodes. The experiment results showed that the DC defines a unique CID value and
also confirmed that the content location can be identified using the hash value instead
of web link information. Moreover, the interconnection and sharing of DC in an NFT-
based IPFS were confirmed; however, the experiment was conducted using a testbed.
Therefore, in future work, we will focus on proving that the same results can be obtained
on a global network. Furthermore, based on the findings of this study, we will also conduct
experiments with and verify the proposed method across various domains.

Appl. Sci. 2024, 14, 315 17 of 18

Author Contributions: H.K.: conceptualization of this study and methodology; J.O.: analysis of
results with mathematics; S.U.K.: project administration. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Author Juhee Oh and Sung Uk Kim are employed by the AINTCHAIN SOFT
Co., Ltd. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Hwang, H.J.; Park, Y.J. Blockchain-Metaverse-NFT using Web 3.0 platform should be paid attention to virtual assets. Donga Ilbo,

28 June 2022.
2. Hwang, Y.A.; Han, H.Y. Metaverse Trends and Educational Suggestions: Focusing on Keyword Network Analysis. Future Educ.

Res. 2022, 12, 51–69. [CrossRef]
3. Go, D.W. An efficient regulatory system that reflects the characteristics of cryptographic assets is needed. Newspaper, 2 November

2022.
4. Lee, I.B. The Future of Metaverse That Has Already Begun-Another World Created by NFTs and Virtual Reality; Thousand Trees Forest:

Seoul, Republic of Korea, 2021.
5. Hong, K.H. NFT Future Class-New Opportunity to be Created by the Digital Economy Ecosystem; Korea Economic Daily: Seoul,

Republic of Korea, 2022.
6. Hyun, S.J. Issuance of NFTs and discussion of copyright issues. Bus. Law 2022, 32, 433–463.
7. Taherdoost, H. Non-Fungible Tokens (NFT): A Systematic Review. Information 2022, 14, 26. [CrossRef]
8. Wang, Q.; Li, R.; Wang, Q.; Chen, S. Non-fungible token (NFT): Overview, evaluation, opportunities and challenges. arXiv 2021,

arXiv:2105.07447.
9. Wilson, K.B.; Karg, A.; Ghaderi, H. Prospecting non-fungible tokens in the digital economy: Stakeholders and ecosystem, risk

and opportunity. Bus. Horiz. 2022, 65, 657–670. [CrossRef]
10. Rehman, W.; e Zainab, H.; Imran, J.; Bawany, N.Z. NFTs: Applications and challenges. In Proceedings of the 2021 22nd

International Arab Conference on Information Technology (ACIT), Muscat, Oman, 21–23 December 2021; pp. 1–7.
11. Maouchi, Y.; Charfeddine, L.; El Montasser, G. Understanding digital bubbles amidst the COVID-19 pandemic: Evidence from

DeFi and NFTs. Finance Res. Lett. 2022, 47, 102584. [CrossRef] [PubMed]
12. Sung, S.R.; Hoeffer, R.; McLaughlin, S. NFT Revolution—The Birth of a New Economic Ecosystem that Crosses Reality and the Metaverse;

The Quest: Seoul, Republic of Korea, 2021.
13. Yoon, H.J. Hot NFT-how much do you know? Magazine Hankyung, 21 March 2022.
14. Çağlayan Aksoy, P.; Özkan Üner, Z. NFTs and copyright: Challenges and opportunities. J. Intellect. Prop. Law Pract. 2021, 16,

1115–1126. [CrossRef]
15. Mukhopadhyay, M. Golden brush and evolving canvas—Navigating the digital art and Non-fungible tokens. J. Inf. Technol. Teach.

Cases 2023. [CrossRef]
16. Bhujel, S.; Rahulamathavan, Y. A survey: Security, transparency, and scalability issues of nft’s and its marketplaces. Sensors 2022,

22, 8833. [CrossRef] [PubMed]
17. Gupta, Y.; Kumar, J.; Reifers, D.A. Identifying security risks in NFT platforms. arXiv 2022, arXiv:2204.01487.
18. Kugler, L. Non-fungible tokens and the future of art. Commun. ACM 2021, 64, 19–20. [CrossRef]
19. Casale-Brunet, S.; Ribeca, P.; Doyle, P.; Mattavelli, M. Networks of Ethereum Non-Fungible Tokens: A graph-based analysis of the

ERC-721 ecosystem. In Proceedings of the 2021 IEEE International Conference on Blockchain (Blockchain), Melbourne, Australia,
6–8 December 2021; pp. 188–195.

20. Bao, H.; Roubaud, D. Recent Development in Fintech: Non-Fungible Token. FinTech 2021, 1, 44–46. [CrossRef]
21. Daniel, E.; Tschorsch, F. IPFS and Friends: A Qualitative Comparison of Next Generation Peer-to-Peer Data Networks. IEEE

Commun. Surv. Tutor. 2022, 24, 31–52. [CrossRef]
22. Dwivedi, S.K.; Amin, R.; Vollala, S. Smart contract and ipfs-based trustworthy secure data storage and device authentication

scheme in fog computing environment. Peer Peer Netw. Appl. 2023, 16, 1–21. [CrossRef]
23. Yue, Y.; Li, X.; Zhang, D.; Wang, S. How cryptocurrency affects economy? A network analysis using bibliometric methods. Int.

Rev. Financ. Anal. 2021, 77, 101869. [CrossRef]
24. Kodeco. Introducing CryptoKit. Available online: https://www.kodeco.com/10846296-introducing-cryptokit (accessed on 27

July 2020).

https://doi.org/10.26734/JFE.2022.12.02.03
https://doi.org/10.3390/info14010026
https://doi.org/10.1016/j.bushor.2021.10.007
https://doi.org/10.1016/j.frl.2021.102584
https://www.ncbi.nlm.nih.gov/pubmed/36406743
https://doi.org/10.1093/jiplp/jpab104
https://doi.org/10.1177/20438869231215085
https://doi.org/10.3390/s22228833
https://www.ncbi.nlm.nih.gov/pubmed/36433429
https://doi.org/10.1145/3474355
https://doi.org/10.3390/fintech1010003
https://doi.org/10.1109/COMST.2022.3143147
https://doi.org/10.1007/s12083-022-01376-7
https://doi.org/10.1016/j.irfa.2021.101869
https://www.kodeco.com/10846296-introducing-cryptokit

Appl. Sci. 2024, 14, 315 18 of 18

25. Jonáš, J. Economic Consequences of Cryptocurrencies and Associated Decentralized Systems. Bachelor’s Thesis, Masaryk
University, Brno, Czech Republic, 2015.

26. Sarkodie, S.A.; Ahmed, M.Y.; Owusu, P.A. COVID-19 pandemic improves market signals of cryptocurrencies–evidence from
Bitcoin, Bitcoin Cash, Ethereum, and Litecoin. Finance Res. Lett. 2022, 44, 102049. [CrossRef] [PubMed]

27. Kumar, S.; Bharti, A.K.; Amin, R. Decentralized secure storage of medical records using Blockchain and IPFS: A comparative
analysis with future directions. Secur. Priv. 2021, 4, e162. [CrossRef]

28. Athanere, S.; Thakur, R. Blockchain based hierarchical semi-decentralized approach using IPFS for secure and efficient data
sharing. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 1523–1534. [CrossRef]

29. Kang, P.; Yang, W.; Zheng, J. Blockchain private file storage-sharing method based on IPFS. Sensors 2022, 22, 5100. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.frl.2021.102049
https://www.ncbi.nlm.nih.gov/pubmed/35475023
https://doi.org/10.1002/spy2.162
https://doi.org/10.1016/j.jksuci.2022.01.019
https://doi.org/10.3390/s22145100
https://www.ncbi.nlm.nih.gov/pubmed/35890780

	Introduction
	Related Work
	Limitations of DC
	NFTs
	Use Cases
	Case 1
	Case 2
	Case 3

	Digital Content Platform
	System Structure and Procedure
	ERC-721
	IPFS

	Digital Content Management (DCM) System
	Distributed Hash Table (DHT)
	Bit Torrent (File Exchange)
	Merkle Directed Acyclic Graphs (DAGs)
	Self-Certifying File System (SFS)

	Experiment
	IPFS
	Grouping in a Private Network
	Discussion
	Future Works
	Future Research Prospect
	Potential Future Improvements
	Algorithm Optimization Approaches
	Response Time, Scalability, Time Complexity Analysis

	Conclusions
	References

