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Abstract: Feature selection has perennially stood as a pivotal concern in the realm of time-series
forecasting due to its direct influence on the efficacy of predictive models. Conventional approaches
to feature selection predominantly rely on domain knowledge and experiential insights and are,
therefore, susceptible to individual subjectivity and the resultant inconsistencies in the outcomes.
Particularly in domains such as financial markets, and within datasets comprising time-series infor-
mation, an abundance of features adds complexity, necessitating adept handling of high-dimensional
data. The computational expenses associated with traditional methodologies in managing such data
dimensions, coupled with vulnerability to the curse of dimensionality, further compound the chal-
lenges at hand. In response to these challenges, this paper advocates for an innovative approach—a
feature selection method grounded in ensemble learning. The paper explicitly delineates the formal
integration of ensemble learning into feature selection, guided by the overarching principle of “good
but different”. To operationalize this concept, five feature selection methods that are well suited to
ensemble learning were identified, and their respective weights were determined through K-fold
cross-validation when applied to specific datasets. This ensemble method amalgamates the outcomes
of diverse feature selection techniques into a numeric composite, thereby mitigating potential bi-
ases inherent in traditional methods and elevating the precision and comprehensiveness of feature
selection. Consequently, this method improves the performance of time-series prediction models.

Keywords: ensemble learning; feature selection; time-series prediction

1. Implication and Contributions of the Research

Time-series data prediction has perennially occupied a position of paramount im-
portance, manifesting widespread applications across diverse domains, such as finance,
weather forecasting, traffic planning, and sales forecasting. In the financial sector, the pre-
diction of time-series data serves as the bedrock for investment decisions. Investors heavily
lean on precise forecasts of time-series data, encompassing variables like stock prices,
exchange rates, and commodity prices to formulate astute buying and selling strategies.
Concurrently, governmental and regulatory bodies also utilize accurate time-series data to
vigilantly monitor the stability of the financial markets. In meteorology, the prediction of
time-series data assumes critical significance in the accurate forecasting of weather patterns,
climate changes, and the onset of natural disasters. Within the domain of traffic planning,
the prediction of traffic flow is instrumental in aiding urban planners to adeptly manage
traffic congestion and enhance overall traffic efficiency. Equally vital is sales forecasting,
which empowers retailers to ascertain optimal inventory requirements, ensuring timely
product supply while minimizing inventory costs.

The challenges associated with feature selection in time-series data primarily stem
from the unique characteristics of such data. Time-series data exhibit temporal correlations,
sequence patterns, and seasonality, often making traditional feature selection methods less

Appl. Sci. 2024, 14, 40. https://doi.org/10.3390/app14010040 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14010040
https://doi.org/10.3390/app14010040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14010040
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14010040?type=check_update&version=1


Appl. Sci. 2024, 14, 40 2 of 16

suitable. Dealing with time-series data requires consideration of various complex factors,
including the influence of historical information on current observations, the extraction of
temporal features, and addressing issues such as missing values and noise. Consequently,
developing feature selection methods tailored for time-series data is a crucial research
area with the goal of constructing more precise, efficient, and interpretable time-series
prediction models.

Against this backdrop, this paper introduces a pioneering innovation designed to
improve the efficacy of feature selection in time-series data prediction. We leverage an
ensemble learning approach that seamlessly integrates five distinct feature selection meth-
ods. This integrative framework aims to redress the limitations inherent in various feature
selection methods, consequently yielding more precise and resilient feature selection out-
comes. The chosen five feature selection methods span diverse dimensions, each endowed
with its distinct strengths. Through the amalgamation of these methods, our objective
was to comprehensively capture information and patterns within time-series data, thereby
enhancing the performance and resilience of the prediction model.

The specific innovations and contributions of this paper are outlined as follows:
1. This paper introduces a feature selection method grounded in ensemble learning.

It furnishes a formal definition of the application of ensemble learning to feature
selection and, adhering to the principle of “good but different”, identifies five feature
selection methods for integration. The weights of these methods were determined
through K-fold cross-validation when applied to specific datasets. This ensemble
approach considers the outcomes of multiple feature selection methods, consolidating
them into a numerical outcome. This process aids in mitigating potential biases
in traditional methods, thereby enhancing the accuracy and comprehensiveness of
feature selection;

2. This paper deploys an LSTM model, incorporating features selected through ensemble
learning and those identified by five different feature selection methods as inputs to
the model. A series of experiments was conducted to validate the effectiveness of
this approach. Through the practical applications in time-series prediction tasks, the
paper presents concrete data and results to demonstrate the performance and efficacy
of the proposed feature selection method in real-world scenarios.

By introducing ensemble learning into the field of feature selection, this study broadens
the application scope of ensemble learning and empirically supports its effectiveness
in feature selection tasks. We conducted robust comparisons with traditional methods,
highlighting the innovative aspects of ensemble learning in enhancing both the accuracy
and comprehensiveness of feature selection. Adopting an ensemble learning approach, our
research offers a more comprehensive consideration of the strengths of various methods
compared to traditional single-method approaches. The experimental results on different
datasets demonstrate the superior performance of ensemble learning in terms of MAE and
MSE metrics, validating its theoretical value in enhancing the robustness and effectiveness
of feature selection.

2. Background

Time-series prediction has always been a daunting challenge. Scholars in this domain
have diligently delved into the intrinsic laws governing time-series data through extensive
exploration and research. Consequently, they have amassed a considerable repertoire of
prediction methods based on the evolving patterns of this data, broadly categorized into
linear and nonlinear prediction methods.

During the initial stages, prediction methods heavily leaned towards linear approaches,
employing classic algorithms like the exponential smoothing method [1,2] and the au-
toregressive integral moving average prediction method [3–5]. These methods boasted
advantages such as simplicity, reduced computational demands, and superior performance
in short-term predictions. However, they fell short in capturing the inherent nonlinear
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relationships within financial time-series data, particularly when tackling long-term predic-
tions. Consequently, they exhibited certain limitations in such scenarios.

To overcome the limitations of linear methods, subsequent research proposed the
integration of nonlinear models to enhance the comprehension of complex data, thereby
giving rise to nonlinear prediction methods. Prominent among these methods are BP neural
networks [6–8], support vector machines, recurrent neural networks [9–11], generative
adversarial networks [12,13], and reinforcement learning [14–16]. By employing these
methodologies, researchers have achieved a more comprehensive capture of the nonlin-
ear relationships embedded in financial time-series data, leading to relatively accurate
prediction outcomes. This direction represents the focal point of future research and the
prevailing trend in the field of financial time-series data.

In recent years, deep learning has attracted considerable attention from researchers
in various fields. Deep learning methods have demonstrated remarkable performance
when compared to traditional algorithms in time-series prediction tasks, which have under-
gone extensive development and widespread application. Of particular note, deep neural
networks possess superior capabilities in extracting both linear and nonlinear features,
outperforming shallow neural networks in this regard. This advantage enables them to cap-
ture underlying patterns that may be overlooked by their shallower counterparts, making
them well suited for high-precision prediction tasks [17]. In light of these advancements,
this section aims to introduce three primary categories of deep learning models that are
particularly suitable for addressing challenges in time-series forecasting.

Convolutional Neural Networks (CNNs) represent a class of deep feed-forward neural
networks that center around convolution and pooling operations. Originally developed for
image recognition in the domain of computer vision [18,19], CNNs have since demonstrated
their versatility in various fields. In 2018, Shaojie Bai et al. [20] proposed an innovative
architecture called Temporal Convolutional Networks (TCNs), a variant of CNNs designed
with reduced memory consumption and increased parallelizability. TCNs introduced
causal convolution to ensure that future information is not accessed during training, thus
mitigating issues related to gradient vanishing and gradient explosion. Additionally,
the backpropagation path in TCNs differs from the temporal direction, providing added
stability. To address the problem of information loss caused by an excessive number of
layers in CNNs, TCNs incorporate residual connectivity, facilitating seamless information
transfer across layers within the network.

Recurrent Neural Networks (RNNs) are a form of deep learning model introduced by
M. I. Jordan in 1990 specifically designed to capture time-dimensional features. Later, in
1997, Mike Schuster et al. [21] extended the RNN architecture, leading to the creation of
Bidirectional Recurrent Neural Networks (Bi-RNNs).

To address some limitations of RNN models, Hochreiter proposed Long Short-term
Memory (LSTM) in 1997 [22]. Subsequently, in 2005, A. Graves et al. [23] further expanded
LSTM to create Bidirectional Long Short-term Memory (BiLSTM). The structure of BiLSTM
closely resembles that of Bi-RNN, incorporating two independent LSTM units concatenated
together. By doing so, the BiLSTM model effectively addresses the limitation of LSTM’s
inability to incorporate future information, enabling feature data obtained at time t to
encompass both past and future information [24].

Vaswani et al. [25] introduced the Transformer in 2017 as an innovative deep learning
framework, distinct from the conventional structures of CNNs or RNNs. The Transformer
relies entirely on the attentional mechanism to capture global dependencies between
model inputs and outputs. This remarkable ability to handle long-term dependencies and
interactions renders the Transformer well suited for time-series modeling tasks, leading to
high performance in various time series-related endeavors [26].

To address specific limitations of the Transformer in long time-series prediction, Haoyi
Zhou et al. [27] proposed the Informer model in 2021. Building upon the classical Trans-
former encoder–decoder structure, the Informer model aims to tackle challenges encoun-
tered in long time-series prediction tasks. In the same year, Lim B et al. [28] presented
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Temporal Fusion Transformers (TFTs), implementing a multiscale prediction model with a
static covariate encoder, a gated feature selection module, and a temporally self-attentive de-
coder. TFTs not only deliver accurate predictions but also retain interpretability, considering
global, temporal dependencies, and events.

3. Feature Selection Based on Ensemble Learning

The incorporation of ensemble learning in feature selection endeavors to improve
the robustness, comprehensiveness, and stability of models, thereby mitigating the risk
of overfitting and enhancing predictive accuracy. These advantages position ensemble
learning as a potent tool in time-series prediction tasks, thereby contributing significantly
to the enhancement of model performance and reliability.

Given a dataset D, consisting of m samples and p features, we propose a set of feature
selection methods M1, M2, . . . , Mn. Each method Mi employs a specific feature selection
rule, assigning a score sij to each feature, where i denotes the index of the method and j
represents the index of the feature.

For each method Mi, a binary function fi(X, Y) can be defined, where X represents
the original feature set and Y represents the target variable. This function returns a subset
containing the selected features, denoted as Si. The specific definition is as follows:

Si = fi(X, Y) (1)

Each Si is a subset of the original feature set X, representing the features selected by
method Mi. Combining the selection results of all methods forms a feature selection set
{S1, S2, . . . , Sn}.

The objective of ensemble learning methods is to combine these individual methods to
select the final feature subset S, maximizing a performance metric P, typically representing
the performance of a predictive model. The formal expression is as follows:

Sfinal = arg max
P

n

∑
i=1

wiPi
(
si1, si2, . . . , sip

)
(2)

where Sfinal represents the final feature subset, i.e., the indices of the selected features. P
is the performance metric function, which could be accuracy, mean squared error, etc.,
measuring the model’s performance. Pi is the performance metric function for the i-th
feature selection method, assessing the performance of the feature subset based on the
scores sij. wi is the weight used to balance different methods and can be determined based
on the performance of each method.

This formula expresses that the objective of ensemble learning is to optimize the
weights of features to select the final feature subset Sfinal , aiming to achieve the best
performance metric P. The optimization of weights can be realized through the combination
and adjustment of various methods, tailored to meet the requirements of the problem and
the characteristics of the data.

Therefore, to obtain a feature selection subset that maximally enhances the accuracy
of a time-series prediction model, i.e., maximizing the performance metric function p for
Sfinal , we need to evaluate the weights λi for each feature selection method and calcu-
late the importance scores sij for each feature. For the former, we must determine an
appropriate method for weight calculation that comprehensively considers the varying
performances of different feature selection methods when dealing with diverse types of
datasets. Regarding the latter, we need to establish a set of alternative feature selection
methods {M1, M2, . . . , Mn}, covering diverse feature selection strategies to meet the re-
quirements of different scenarios. For each method Mi, performance metrics are employed
to assess its effectiveness, resulting in feature importance scores Si. Finally, adopting a
feature scoring weighting approach using Si, we generate the ultimate feature subset Sfinal .
The entire ensemble learning-based feature selection process is illustrated in Figure 1.
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Figure 1. Flowchart of feature selection based on ensemble learning.

3.1. Determination of Ensemble Learning Strategies

Given the set of feature selection methods {M1, M2, . . . , Mn}, an appropriate ensemble
learning strategy is needed to obtain the final postfiltered feature subset Sfinal . To integrate
information from multiple feature selection methods, mitigate dependence on a single
method, and enhance overall robustness, this study adopts the feature scoring weighting
approach as its ensemble learning strategy. The feature scoring weighting approach ex-
hibits comprehensive, flexible, and performance-enhancing characteristics across various
problems and data contexts. This method facilitates the amalgamation of information from
multiple feature selection methods, thereby improving model performance and robustness,
diminishing the risk of overfitting, all while upholding a certain level of interpretability.
The specific implementation steps are outlined as follows:

Firstly, through each feature selection method Mi, the score Si,j = fi,j(X, Y) for each
feature is calculated according to its respective feature scoring strategy. Here, si,j represents
the score assigned by method Mi to feature j.

To ensure comparability among importance scores under different feature selection
methods, it is imperative to constrain the scores of features within the range of 0 to 1.
Therefore, normalization of the feature scores provided by each method is requisite. This
paper employs a softmax transformation for the normalization of importance scores.

In this way, the raw feature score si is transformed into a probability representing each
feature, ensuring that they range between 0 and 1, with a total sum of 1. These normalized
scores can be utilized as comparable values across different feature selection methods.

Different feature selection methods may have varying applicability in different do-
mains and for different types of time-series data. In order to comprehensively consider the
scores from multiple methods, this paper introduces a weight vector W = [w1, w2, . . . , wn],
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where wi represents the weight assigned to method Mi. These weights are utilized to adjust
the relative contributions of each method.

This paper employs the K-fold cross-validation method to determine the weights for
each feature selection method. This method divides the dataset into K folds and performs
the following steps for each fold: First, select K − 1 folds as the training set, and reserve
one fold as the test set. Then, apply each feature selection method Mi on the training set,
obtaining the feature selection results Si for each method. Next, train the regression model
using the filtered feature subset and evaluate the model’s performance on the test set. Mean
Squared Error (MSE) is used as the performance metric for each method and is recorded.
For each feature selection method Mi, based on the performance metric results from K-fold
cross-validation, calculate the average performance metric avgi. These average performance
metrics serve as indicators for the weights wi. The weights wi are then normalized based
on the average performance metrics to ensure that they sum up to 1, i.e.,

wi =
avgi

∑5
i=1 avgi

(3)

Finally, the learned weights wi are utilized in the output of the feature scoring weight-
ing method, forming the ultimate feature selection results:

Sfinal =
n

∑
i=1

wi · Si (4)

where Sfinal represents the ultimate feature subset, which is the weighted sum of scores from
each method. The weight vector W governs the relative importance of each method. The fi-
nal feature subset Sfinal incorporates information from multiple method scores, representing
the features ultimately selected.

3.2. Determination of Feature Selection Methods

To establish a suitable set of feature selection methods {M1, M2, . . . , MN}, this paper
introduces a “good but different” principle. According to this principle, individual learners
should contribute to performance and exhibit differences among themselves. This en-
sures mutual complementarity and deficiency compensation during the ensemble process,
ultimately enhancing the overall performance.

When applying ensemble learning to feature selection, it is equally crucial to ensure
that the feature selection methods meet the “good but different” criteria. This implies that
they should exhibit diversity, independence, stability, reliability, efficiency, adaptability,
and robustness. Adhering to these requirements is essential in guaranteeing that feature
selection methods can offer robust support for ensemble learning, thereby improving the
performance and reliability of the model.

Grounded in the principles outlined above, this paper selects the Pearson correlation
coefficient method, recursive feature elimination method, random forest method, gradi-
ent boosting decision tree, and XGBoost algorithm as the foundational feature selection
methods. The specific rationale was as follows:

The Pearson correlation coefficient method (Pearson) is a statistical approach employed
to measure the linear correlation between two continuous variables. It was deemed suitable
as a feature selection method owing to its capability to identify the strength and direction
of the linear relationship between features and the target variable. This method proves
particularly valuable for features that manifest a linear relationship with the target variable.
Pearson correlation coefficient is calculated using the following formula:

r =
∑n

i=1(Xi − X)(Yi − Ȳ)√
∑n

i=1(Xi − X̄)
2
√

∑n
i=1(Yi − Ȳ)2

(5)
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where r represents the Pearson correlation coefficient, Xi and Yi denote the i-th observation
of the two variables, and X̄ and Ȳ represent the means of the two variables, respectively.

Recursive Feature Elimination (RFE) is a stepwise feature selection method that identi-
fies the most informative feature subset by iteratively training models and eliminating the
least important features. It is well suited as a feature selection method due to its ability to
automatically identify and select important features, mitigate overfitting, enhance model
interpretability, and the fact that it requires minimal manual intervention. Let X represent
the feature set, and M be the metric used to evaluate the performance of the model. The
process of Recursive Feature Elimination (RFE) can be expressed as follows:

RFE(X) =

{
X if |X| ≤ desired_num_features

RFE(remove_least_important_feature(X)) otherwise
(6)

where remove_least_important_feature(X) denotes the operation of removing the least
influential feature in terms of model performance from the feature set X.

The Random Forest method (RF) is an ensemble learning approach that improves
overall performance by aggregating predictions from multiple decision trees. It is well
suited as a feature selection method due to its capability to estimate feature importance and
utilize a voting method for classification problems. Random forests exhibit a notable level
of robustness against outliers and noise, rendering them suitable for addressing complex
data scenarios. The importance calculation for feature Xi is as follows:

Importance(Xi) =
1
N

N

∑
j=1

Impurity_Decreasej(Xi) (7)

where N is the number of decision trees in the random forest, and Impurity_Decreasej(Xi)
represents the decrease in impurity in the j-th decision tree due to the introduction of the
feature Xi.

Gradient Boosting Decision Trees (GBDTs) are ensemble learning algorithms that
amalgamate the principles of decision trees and gradient boosting, consistently enhancing
model performance through iterative training of multiple decision trees. They are well
suited as feature selection methods owing to their ability to automatically estimate the
importance of features, demonstrate adaptability to high-dimensional and large-scale
datasets, and furnish insights and understanding of the data. The update rule for gradient
boosting decision trees is as follows:

Fm(x) = Fm−1(x) + γ · hm(x) (8)

where Fm(x) represents the model’s prediction at the m-th round, γ is the learning rate, and
hm(x) is the decision tree fitted in the m-th iteration.

XGBoost is an efficient, flexible, and scalable machine learning algorithm based on the
gradient boosting framework. It consistently enhances predictive performance through the
iterative training of multiple decision tree models. In comparison to traditional gradient
boosting methods, XGBoost introduces additional regularization terms and tree depth
limitations, thereby improving model stability and generalization. It is well suited as a
feature selection method due to its notable advantages in both performance and robustness,
while also aiding in mitigating the risk of overfitting. The objective function of XGBoost
comprises the loss function, regularization term, and model complexity term. For regression
problems, the objective function is as follows:

Obj =
n

∑
i=1

L(yi, ŷi) +
K

∑
k=1

Ω( fk) (9)

where L is the loss function, Ω is the regularization term, and fk represents the k-th decision
tree model.
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The five methods mentioned above each exhibit distinct characteristics in feature
selection and all adhere to the “good but different” principle. From the linear relationship
measurement of the Pearson correlation coefficient method to the iterative feature elimi-
nation of the recursive feature elimination method, and from the robust performance of
the random forest and gradient boosting decision tree in handling outliers and noise to
the efficiency and versatility of XGBoost, each method is guided by the principle of being
“good but different”. The goal was to select features that contribute significantly while
possessing unique advantages to adapt to the varied requirements of different problems
and datasets.

By integrating these five diverse feature selection methods, this paper aims to derive
more powerful, robust, and comprehensive feature selection results, thereby contributing
to the construction of enhanced time-series prediction models.

4. Experimental Results and Analysis of Feature Selection Based on Ensemble Learning
4.1. Experimental Preparation
4.1.1. Initial Feature Set

To better illustrate the performance enhancement achieved by the ensemble learning-
based feature selection method for time-series data prediction models, this paper utilizes
financial time-series data to construct the initial feature set for subsequent experiments.
Financial time-series data typically encompass multiple features such as stock prices,
trading volume, market capitalization, financial indicators, etc. Financial time-series data
are characterized by their richness in information, high dimensionality, temporal nature,
and real-time aspects. These characteristics render them well suited for applying ensemble
learning methods to feature selection, thereby improving model performance, mitigating
risks, and fostering a more profound understanding of financial markets.

In theory, a broader range of features in the initial feature set implies a more compre-
hensive coverage of information, leading to more accurate predictive results for the model.
It is imperative to choose features that are highly correlated with stock prices or returns to
construct the initial feature set for the prediction model. This paper proposes selecting a
total of 20 candidate features from three major categories: market-related, trading-related,
and market capitalization-related features, with the objective of comprehensively consider-
ing various types of features.

The present study incorporates a set of market-related features, namely, high, open,
low, pre_close, pct_change, change, and avg_price, totaling seven features. These features
denote the daily stock trading metrics of highest price, opening price, lowest price, previous
day’s closing price, percentage change, and stock price change, respectively. Market-related
features can reflect short-term fluctuations and trends in the market, aiding in capturing
instantaneous changes in stock prices.

For trading-related features, we selected vol_ratio, vol, turn_over, amount, selling, and
buying, constituting six features. These features represent volume ratio, trading volume,
turnover rate, transaction amount, selling transactions, and buying transactions. Analyzing
these trading-related features can provide insights into market activity, trading volume,
price fluctuations, and other aspects, contributing to a better understanding of the overall
market conditions.

In terms of market value-related features, the study includes pe, float_mv, total_mv,
swing, activity, strength, and attack, totaling seven features. These features signify price-to-
earnings ratio, float market value, total market value, amplitude, activity level, strength,
and market aggressiveness, respectively. Changes in stock market value may be correlated
with investor sentiment, market cycles, and other factors, making market value-related
features crucial for predicting stock returns.

By comprehensively considering these three major categories of features, the initial
feature set can encompass information from different aspects, thereby enhancing the
predictive accuracy of the model. Table 1 displays the initial feature set selected from these
three major categories.
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Table 1. Initial feature set.

Categories of Features Specific Features

Market Features high, open, low, pre_close,
pct_change, change, avg_price

Trading Features vol_ratio, vol, turn_over
amount, selling, buying

Market Value Features pe, float_mv, total_mv, swing
activity, strength, attack

4.1.2. Experimental Dataset

In terms of dataset selection, to ensure diversity and representativeness, this paper
chose stock time-series data from three distinct industries: finance, power, and technology.
Specifically, the stock data from three datasets, namely, China Industrial and Commercial
Bank (ICBC), GD Power Development (GD Power), and China Unicom, were selected.
This approach enabled us to comprehensively explore and evaluate the applicability of
ensemble learning-based feature selection across different industry datasets.

Each stock dataset encompasses a total of 716 trading days, spanning from 1 January
2020 to 1 January 2023. Specifically, each dataset is composed of 20 features from the
initial feature set in Table 1, along with the closing prices used for prediction, forming a
716 × 21 dimensional data matrix. The datasets were sequentially split into training and
testing sets in an 8:2 ratio. Descriptive statistics for the closing prices in each dataset, includ-
ing mean, standard deviation, minimum, quartiles, and maximum values, are presented in
Table 2.

Table 2. Descriptive statistics for each dataset.

Statistical Metrics ICBC GD Power China Unicom

count 716 716 716
mean 4.87 2.72 4.35

std 0.38 0.80 0.68
min 4.06 1.80 3.31
25% 4.63 2.11 3.81
50% 4.85 2.42 4.26
75% 5.15 3.02 4.92
max 6.01 4.94 6.18

4.1.3. Data Preprocessing

To ensure the quality of the subsequent feature selection and model construction, data
preprocessing is an indispensable step. In this paper, three specific data preprocessing
methods were employed, namely, missing value handling, outlier treatment, and stan-
dardization. This series of preprocessing steps significantly enhanced the data quality,
reduced potential sources of errors in the models, facilitated a better understanding and
interpretation of the data, and also led to a reduction in the computational burden, thereby
improving computational efficiency. The specific procedures are outlined below.

Stock feature data may exhibit issues such as missing values, format errors, or precision
discrepancies due to network problems, time periods, or the absence of original data.
Typically, it is necessary to address missing values, which are often represented as NaN or
other placeholders and can be detected by examining the dataset. In this study, forward
filling was employed to address missing values, where previous values are used to fill the
gaps, preserving the continuity of the time series.

Individual feature data may contain exceptionally large deviations, which can impact
the standard deviation of the data and even lead to the distortion of the overall dataset. To
address this issue, this paper employed the Median Absolute Deviation (MAD) method.
For each feature, the median and MAD were calculated, where the median was the middle
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value, and MAD was the median of the absolute differences between each data point and
the median. Outliers are typically defined as data points deviating from the median by a
certain extent, and in this study, the threshold for identifying outliers was set at three times
the MAD. Subsequently, each data point for each feature was examined, comparing the
absolute difference between each data point and the median with the threshold for outliers.
If the absolute difference was greater than the threshold, the data point was flagged as
an outlier. Finally, each identified outlier was set to the median to mitigate its impact
on the data. Removing outliers contributes to enhancing the robustness and accuracy of
the model.

Stock feature data may exhibit differences in magnitude, necessitating standardization
to ensure comparability among different features. This paper employed the z-score normal-
ization method due to its simplicity in calculation and its suitability for data approaching
a normal distribution. This standardization method helps ensure that the magnitudes of
different features do not adversely affect the interpretability of the model and facilitates the
exploration of relationships between features and stock price trends. By transforming the
data into a standard normal distribution with a mean of 0 and a standard deviation of 1,
the values of different features share the same scale, making them suitable for comparison
and modeling.

4.2. Experimental Results and Analysis

Next, we employed the five feature selection methods determined in Section 3.2 to
assess the importance scores of each feature in the initial feature set for different stocks.
The results are presented in Figure 2.

Two main observations are clearly evident from the graph. Firstly, different feature se-
lection methods exhibited significant variations when analyzing the same stock data. Using
ICBC as an example, various methods assigned relatively high scores to the “low” feature,
but there were substantial score differences for the “pe”, “float_mv”, and “avg_price” fea-
tures among different methods. This indicates a noteworthy variability in the impact of
stock features under different feature selection methods.

Secondly, concerning stock data from different industry sectors, there were notable
variations in the importance score distributions for each feature. Using the GD Power
dataset as an example, the “low” and “avg_price” features received relatively high scores
across various evaluation methods, while other features had comparatively lower scores.
In contrast, in the dataset for ICBC, features such as “float_mv” and “pe” obtained
higher scores. This emphasizes the distinct importance of various features in different
industry sectors.

Therefore, to fully leverage the advantages of various feature selection methods on
different data types, it is essential to employ ensemble learning methods to integrate the
scores from different methods. Through the combination of scores from different methods,
a more comprehensive consideration of the importance of different features under diverse
data contexts can be achieved, thereby enhancing the model’s robustness and performance.

After obtaining the importance scores for each feature, weights for each feature se-
lection method were calculated using the K-fold cross-validation method, as outlined in
Section 3.2. In this study, K was set to 5, indicating the use of 5-fold cross-validation. The
conclusive results are presented in Table 3.

According to the data in Table 2, it is evident that the same feature selection method
carries different weights across various types of stock data. Higher weights indicate
that the features selected by that method exhibit superior predictive performance in the
corresponding stock data. Consequently, the method is more suitable for this type of data.

By assigning distinct weights to these methods, ensemble learning can select the most
suitable feature selection method for each time-series data context and conduct comprehen-
sive screening. Ultimately, this approach can achieve superior predictive performance and
higher robustness when facing diverse types of time-series data requirements.
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After obtaining the importance scores si,j for each feature and the weights wi for each
feature selection method, the feature score weighting method was applied to calculate the
top five ranked features for each stock dataset. The final feature subset Sfinal is presented in
Table 4.

Figure 2. Importance scores of features for each stock.
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Table 3. Table of weights for feature selection methods.

Feature Selection Methods ICBC GD Power China Unicom

GBDT 0.21 0.2 0.21
RFE 0.17 0.21 0.2

XGBoost 0.21 0.22 0.2
Pearson 0.2 0.16 0.18

RF 0.21 0.21 0.21

Table 4. The feature subsets obtained through various feature selection methods.

Feature Selection Methods Feature Subset of ICBC Stock
Data

Feature Subset of GD Power
Development Stock Data

Feature Subset of China
Unicom Stock Data

GBDT avg_price, pe, float_mv, low,
high

low, avg_price, total_mv,
float_mv, high

high, total_mv, avg_price,
float_mv, low

RFE avg_price, float_mv, low, pe,
pre_close

low, avg_price, total_mv,
float_mv, high

high, total_mv, avg_price,
float_mv, low

XGBoost low, pe, avg_price, float_mv,
open

low, avg_price, float_mv, high,
open

high, float_mv, avg_price,
total_mv, low

Pearson float_mv, avg_price, open,
high, pre_close

avg_price, low, high,
pre_close, open

high, total_mv, avg_price, low,
open

RF float_mv, avg_price, low, pe,
high

low, avg_price, total_mv,
float_mv, high

high, float_mv, avg_price,
total_mv, low

Ensemble Learning avg_price, float_mv, low, pe,
pre_close

low, avg_price, total_mv,
float_mv, high

high, float_mv, avg_price,
total_mv, low

Ultimately, to validate the effectiveness of the ensemble learning-based feature se-
lection method, this study applied the five features Si selected by each feature selection
method and the final five features Sfinal chosen by the ensemble method to the task of stock
price time-series prediction. The dataset, again, included the stock data of three companies:
ICBC, GD Power, and China Unicom. The time range remained from 1 January 2020 to 1
January 2023.

Long Short-Term Memory (LSTM) was chosen as the specific prediction model to
ensure accuracy in the forecasting task. LSTM networks are a variant of recurrent neural
networks specifically designed for processing and learning from time-series data. The
core components of an LSTM network include cells and gates, with three main gates: the
input gate, forget gate, and output gate. The memory cell is the heart of the LSTM network
and is responsible for storing and passing information. The input gate determines which
information will be written to the memory cell, the forget gate decides which information
will be removed from the memory cell, and the output gate determines which information
will be extracted from the memory cell. These gates govern the flow of information in and
out, and the updating of the memory state within the cell. The primary computational
processes of an LSTM network can be represented by the following equations:

ft = σ
(

W f · [ht−1, xt] + b f

)
it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft · Ct−1 + it · C̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot · tanh(Ct)

(10)
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where ft represents the output of the forget gate, it is the output of the input gate, C̃t is
the new candidate memory, Ct is the current state of the memory cell, ot is the output
of the output gate, ht is the hidden state of the LSTM, and W f , Wi, WC, Wo are weight
matrices, while b f , bi, bC, bo are bias vectors. The symbol σ denotes the sigmoid activation
function. These equations describe the primary computational processes of the LSTM
network, allowing the network to more effectively capture long-term dependencies when
handling time-series data.

For the evaluation of prediction performance, we utilized widely used metrics, namely,
Mean Absolute Error (MAE) and Mean Squared Error (MSE). The model parameters are
specified as outlined in Table 5.

Table 5. Table of prediction model parameter settings.

Parameter Name Parameter Value Parameter Description

input_size 5 Input Feature Dimension
hidden_size 64 Number of Hidden Units
num_layers 2 Network Depth

learning_rate 0.001 Learning Rate
batch_size 64 Batch Size

num_epochs 100 Epochs
seq_length 5 Sequence Length

The parameter input_size represents the dimensionality of the input features, indi-
cating the number of features input to the model at each time step. In the context of this
predictive task, each time step comprised five features, making this parameter equal to
5. Hidden_size denotes the number of hidden units. In LSTM, these units capture pat-
terns and relationships in time-series data. With 64 hidden units, the model exhibited a
more complex learning capacity. Num_layers determines the depth of the network, i.e.,
the number of stacked LSTM layers. Here, two LSTM layers were stacked together, each
with its own hidden state. Learning_rate is the learning rate, controlling the step size of
model parameter updates. A smaller learning rate promotes model stability. Batch_size
indicates the number of samples input to the model in each update, with larger batch sizes
enhancing training efficiency. Num_epochs specifies the number of iterations the model
underwent over the entire training dataset. Seq_length is the sequence length, representing
the temporal span of historical data considered at each time step. In this case, the model
utilized data from the past 5 days to predict the closing price on the 6th day; hence, this
parameter was set to 5. The model employed the Adam optimizer and was implemented
using the PyTorch framework.

The final prediction results are presented in Table 6, with the best-performing met-
rics highlighted in bold. It is evident from the table that the gradient boosting decision
tree method exhibited the best performance on one dataset, indicating that this method
effectively identified the most influential features in that dataset. On the other hand, the
recursive feature elimination and random forest methods achieved the best performance
on two different datasets each, emphasizing their effectiveness in specific contexts. More-
over, ensemble learning methods demonstrated optimal performance on all three different
datasets, underscoring their comprehensive applicability across various data types.

These findings underscore the crucial role of ensemble learning-based feature selection
methods in enhancing the accuracy of feature selection and optimizing the performance
of time-series predictions. Employing features selected through ensemble learning for
modeling demonstrated improved performance in terms of both the MAE and MSE metrics,
effectively enhancing the effectiveness of time-series prediction models. This outcome
emphasizes the potential of ensemble learning methods in improving the accuracy of
feature selection and predictive outcomes, providing robust support for research and
applications in the field of time-series prediction.
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Table 6. Predicted prices for typical stocks under different feature selection methods. The best values
are shown in bold.

Feature Selection Methods Dataset MAE MSE

GBDT
ICBC 0.2177 0.0618

GD Power 0.2548 0.0667
China Unicom 0.1469 0.0318

RFE
ICBC 0.192 0.049

GD Power 0.2548 0.0667
China Unicom 0.1469 0.0318

XGBoost
ICBC 0.2462 0.0789

GD Power 0.2635 0.0713
China Unicom 0.1469 0.0318

Pearson
ICBC 0.235 0.0716

GD Power 0.2723 0.0761
China Unicom 0.1438 0.0305

RF
ICBC 0.2177 0.0618

GD Power 0.2548 0.0667
China Unicom 0.1386 0.0284

Ensemble Learning
ICBC 0.192 0.049

GD Power 0.2548 0.0667
China Unicom 0.1386 0.0284

5. Conclusions

This paper proposes a feature selection method based on ensemble learning. Firstly,
we clearly defined the application of ensemble learning to feature selection and selected
five feature selection methods based on the “good but different” principle for integration.
When dealing with specific datasets, we determined the weights of each feature selection
method through K-fold cross-validation. Ultimately, we adopted a feature score weighting
approach, synthesizing the advantages of each method to select the final feature subset.
Subsequently, a series of experiments were conducted to validate the effectiveness of this
method. We utilized stock data from ICBC, GD Power, and China Unicom to construct
a dataset, employing ensemble learning to filter out the top five features with the most
significant impact on prediction results from the dataset’s twenty features. Following this,
we employed LSTM to build a time-series prediction model, comparing the predictions
of the five features selected by each method with those selected by the ensemble learning
method. The experimental results demonstrate the superior performance of the ensemble
learning method in terms of the MAE and MSE metrics, effectively showcasing the method’s
efficacy and robustness.

In summary, this study not only offers profound insights into the theoretical applica-
tion of ensemble learning in feature selection but also validates its effectiveness in practical
applications across various domains. It provides valuable insights for research and practice
in related fields. Future research directions could include further optimizing the deter-
mination methods for ensemble learning weights and extending the application of this
method to other time-series data domains, such as electricity and weather. These efforts will
contribute to deeper insights and beneficial revelations for both the research and practical
applications in the field of feature selection.
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