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Abstract: In order to safeguard image copyrights, zero-watermarking technology extracts robust fea-
tures and generates watermarks without altering the original image. Traditional zero-watermarking
methods rely on handcrafted feature descriptors to enhance their performance. With the advancement
of deep learning, this paper introduces “ZWNet”, an end-to-end zero-watermarking scheme that
obviates the necessity for specialized knowledge in image features and is exclusively composed of
artificial neural networks. The architecture of ZWNet synergistically incorporates ConvNeXt and
LK-PAN to augment the extraction of local features while accounting for the global context. A key
aspect of ZWNet is its watermark block, as the network head part, which fulfills functions such
as feature optimization, identifier output, encryption, and copyright fusion. The training strategy
addresses the challenge of simultaneously enhancing robustness and discriminability by producing
the same identifier for attacked images and distinct identifiers for different images. Experimental
validation of ZWNet’s performance has been conducted, demonstrating its robustness with the
normalized coefficient of the zero-watermark consistently exceeding 0.97 against rotation, noise, crop,
and blur attacks. Regarding discriminability, the Hamming distance of the generated watermarks
exceeds 88 for images with the same copyright but different content. Furthermore, the efficiency of
watermark generation is affirmed, with an average processing time of 96 ms. These experimental
results substantiate the superiority of the proposed scheme over existing zero-watermarking methods.

Keywords: zero-watermarking; deep learning; robustness; discriminability; ConvNeXt; LK-PAN

1. Introduction

In contrast to cryptography, which primarily focuses on ensuring message confidential-
ity, digital watermarking places greater emphasis on copyright protection and tracing [1,2].
Classical watermarking involves the covert embedding of a watermark (a sequence of data)
within media files, allowing for the extraction of this watermark even after data distribution
or manipulation, enabling the identification of data sources or copyright ownership [3].
However, this embedding process necessarily involves modifications to the host data,
which can result in some degree of degradation to data quality and integrity. In response to
the demand for high fidelity and zero tolerance for data loss, classical watermarking has
been supplanted by zero-watermarking. Zero-watermarking focuses on extracting robust
features and their fusion with copyright information [4,5]. Notably, a key characteristic of
zero-watermarking lies in the generation or construction of the zero-watermark itself, as
opposed to its embedding.
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Commonly, zero-watermarking algorithms are traditionally reliant on handcrafted
features and typically involve a three-stage process. The first stage entails computing
robust features, followed by converting these features into a numerical sequence in the
second stage. The third stage involves fusing the numerical sequence with copyright
identifiers, resulting in the generation of a zero-watermark without any modifications to
the original data. Notably, the specific steps and features in these three stages are intri-
cately designed by experts or scholars, thereby rendering the performance of the algorithm
contingent upon expert knowledge. Moreover, once a zero-watermarking algorithm is es-
tablished, continuous optimization becomes challenging, representing a limitation inherent
in handcrafted approaches.

Introducing deep learning technology is a natural progression to overcome the reliance
on expert knowledge and achieve greater optimization in zero-watermarking algorithms.
Deep learning has recently ushered in significant transformations in computer vision and
various other research domains [6–9]. Numerous tasks, including image matching, scene
classification, and semantic segmentation, have exhibited remarkable improvements when
contrasted with classical methods [10–14]. The defining feature of deep learning is its
capacity to replace handcrafted methods reliant on expert knowledge with Artificial Neural
Networks (ANNs). Through training ANNs with ample samples, these networks can
effectively capture the intrinsic relationships among the samples and model the associa-
tions between inputs and outputs. Inspired by this paradigm shift, the zero-watermarking
method can also transition towards an end-to-end mode with the support of ANNs, elimi-
nating the need for handcrafted features.

In addressing watermark performance, conventional handcrafted methods encounter
challenges in simultaneously enhancing robustness and discriminability. To address
this limitation and achieve concurrent improvements, this paper proposes a novel zero-
watermarking network named ZWNet, which employs distinct strategies. Firstly, ZWNet
combines ConvNeX and LK-PAN to enhance the extraction of local features and consider
the global context more comprehensively. Secondly, the watermark block is strategically
designed as the leading component, integrating with copyright information, encrypting
the watermark, and generating a distinctive image identifier. Thirdly, the training strategy
for ZWNet focuses on the image identifier it produces. To enhance robustness, ZWNet
is trained to yield the same image identifier for both the original and attacked images.
Simultaneously, to improve discriminability, ZWNet is trained to produce different image
identifiers for distinct images. Experimental results further validate the effectiveness of
ZWNet, as evidenced by the normalized coefficient of the zero-watermark consistently
exceeding 0.97 for robustness and the Hamming distance between watermarks with the
same copyright and different images surpassing 88 for discriminability.

The contributions of this paper can be summarized as follows:
(1) Introduction of a novel approach that combines ConvNeXt and LK-PAN to enhance

feature extraction, effectively addressing both global context and local features.
(2) Transformation of the problem of improving watermark performance into a classi-

fication task, leveraging the common framework provided by deep learning.
(3) ZWNet exhibits notable discriminability, ensuring that the generated zero-watermark

is distinct enough to differentiate between different images sharing the same copyright.
This capability addresses the challenge of zero-watermark confusion.

The structure of this paper is organized as follows: Section 2 provides a concise back-
ground on zero-watermarking, ConvNeXt, and LK-PAN. Section 3 introduces the proposed
zero-watermarking scheme, “ZWNet”. Section 4 delves into the presentation of experimen-
tal results and subsequent discussion. Finally, Section 5 presents the concluding remarks.

2. Related Work

This section introduces three key components of related work. Section 2.1 provides
a concise introduction to zero-watermarking and analyzes similar methods based on
deep learning. Section 2.2 presents an overview of ConvNeXt as a feature extraction
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network. Furthermore, Section 2.3 introduces LK-PAN, delineating its role in providing an
optimization structure to enhance ConvNeXt.

2.1. Zero-Watermarking

The concept of zero-watermarking in image processing was originally introduced by
Wen et al. [15]. This technology has garnered significant attention and research interest due
to its unique characteristic of preserving the integrity of media data without any modifica-
tions. Taking images as an example, the zero-watermarking process can be broadly divided
into three stages. The first stage involves the computation of robust features. In this phase,
various handcrafted features such as Discrete Cosine Transform (DCT) [16,17], Discrete
Wavelet Transform (DWT) [18], Lifting Wavelet Transform [19], Harmonic Transform [5],
and Fast Quaternion Generic Polar Complex Exponential Transform (FQGPCET) [20] are
calculated and utilized to represent the stable features of the host image. The second
stage focuses on the numerical conversion of these features into a numerical sequence.
Mathematical transformations such as Principal Component Analysis (PCA) and Singular
Value Decomposition (SVD) are employed to filter out minor components and extract major
features [16,21]. The resulting feature sequence from this stage serves as a condensed
identifier of the original image. However, this sequence alone cannot serve as the final
watermark since it lacks any copyright-related information. Hence, the third stage involves
the fusion of the feature sequence with copyright identifiers. Copyright identifiers can
encompass the owner’s signature image, organization logos, text, fingerprints, or any
digitized media. To ensure the zero-watermark cannot be forged or unlawfully generated,
cryptographic methods such as Advanced Encryption Standard (AES) or Arnold Trans-
formation [22] are often utilized to encrypt the copyright identifier and feature sequence.
The final combination can be as straightforward as XOR operations [16]. Consequently, the
zero-watermark is generated and can be registered with the Intellectual Property Rights
(IPR) agency. Additionally, copyright verification is a straightforward process involving the
regeneration of the feature sequence and its comparison with the registered zero-watermark.
The process of zero-watermarking technology is illustrated in Figure 1.
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Figure 1. The process of zero-watermark generation and verification. Figure 1. The process of zero-watermark generation and verification.

Presently, several research efforts focus on deep-learning-based watermarking meth-
ods, encompassing both classical watermarking of embedding style and zero-watermarking
of generative style. In the domain of embedding-style watermarking, a method inspired
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by the architecture of Autoencoder has been proposed. In this approach, Autoencoders
encode the watermark and embed it using convolutional networks. For watermark extrac-
tion, Autoencoders are also employed to extract and decode the watermark [23]. Other
Autoencoder-based methods aim to enhance robustness or improve efficiency [24,25].
Despite their superior performance in robustness and elimination of reliance on prior
knowledge, embedding-style watermarking significantly differs from zero-watermarking
methods, as the latter maintains the original data unchanged. Additionally, it is note-
worthy that zero-watermarking places greater emphasis on discriminability, a focus less
pronounced in embedding-style watermarking.

In the realm of deep-learning-based zero-watermarking methods, a hybrid scheme
that combines traditional Discrete Wavelet Transform (DWT) and the deep neural network
ResNet-101 has been proposed. This approach involves applying DWT to the host image
and subsequently sending the wavelet coefficients to ResNet-101 [26]. While exhibiting
strong robustness against translation and clipping, this scheme falls short of being an
end-to-end solution. Regarding end-to-end zero-watermarking, some studies employ Con-
volutional Neural Networks (CNN), VGG-19 (developed by the Oxford Visual Geometry
Group), or DenseNet to generate robust watermark sequences [27–29]. Another line of
research predominantly revolves around the concept of style transfer [30]. In the watermark
generation phase, it utilizes VGG to merge the content of the copyright logo with the style
of the host image. In the verification stage, another CNN is employed to eliminate the style
component and extract the copyright content. Although these approaches have demon-
strated promising levels of robustness compared to handcrafted methods, we believe they
fall short in adequately considering multi-level features within the image. This limitation
arises because when using CNN or VGG to upsample the image, the higher-level features
have a less effective receptive field than the theoretical receptive field [31]. Furthermore,
one drawback of these zero-watermark networks is the insufficient emphasis on discrim-
inability. This means the generated zero-watermarks for different images should be distinct
enough to prevent copyright ambiguity.

2.2. ConvNeXt

As discussed in Section 2.1, Convolutional Neural Networks (CNN) have been em-
ployed as the feature extraction component in existing watermarking methods. However, it
is noteworthy that the performance of CNN has become outdated in various tasks. Hence,
Liu et al. introduced ConvNeXt, a nomenclature devised to distinguish it from traditional
Convolutional Networks (ConvNets) while signifying the next evolution in ConvNets [32].
Rather than presenting an entirely new architectural paradigm, ConvNeXt draws inspira-
tion from the ideas and optimizations put forth in the Swin Transformer [33] and applies
similar strategies to enhance a standard ResNet [8]. These optimization strategies can be
summarized as follows:

(1) Modification of stage compute ratio: ConvNeXt adjusts the number of blocks
within each stage from (3, 4, 6, 3) to (3, 3, 9, 3).

(2) Replacement of the stem cell: The introduction of a patchify layer achieved through
non-overlapping 4 × 4 convolutions.

(3) Utilization of grouped and depthwise convolutions.
(4) Inverted Bottleneck design: This approach involves having the hidden layer di-

mension significantly larger than that of the input.
(5) Incorporation of large convolutional kernels (7 × 7) and depthwise convolution

layers within each block.
(6) Micro-level optimizations: These include the replacement of ReLU with GELU,

fewer activation functions, reduced use of normalization layers, the substitution of Batch
Normalization with Layer Normalization, and the implementation of separate downsam-
pling layers.
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Remarkably, the amalgamation of these strategies results in ConvNeXt achieving a
state-of-the-art level of performance in image classification, all without requiring substantial
changes to the network’s underlying structure. Furthermore, a key feature of this paper lies
in its detailed presentation of how each optimization incrementally enhances performance,
effectively encapsulated in Figure 2.
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Figure 2. Incremental improvement through optimization steps in ConvNeXt [32]. The fore-
ground bars represent results from ResNet-50/Swin-T, while the gray bars represent results from
ResNet-200/Swin-B.

From Figure 2, it is evident that employing the strategy of stage ratio modification
and patchify stem leads to an improvement in accuracy, increasing from 78.8% to 79.5%.
Further enhancements are observed with the introduction of depth convolution and larger
width, resulting in an accuracy improvement of 80.5%. The utilization of an inverted
bottleneck and larger kernel size contributes to a higher accuracy of 80.6%. Finally, with
micro-optimizations, the accuracy of ConvNeXt reaches 82.0%, surpassing that of Swin.

2.3. LK-PAN

While ConvNeXt offers a straight-line structure that effectively captures local features,
it may fall short in dedicating sufficient attention to the global context. To address this
limitation and enhance the capabilities of ConvNeXt, a path aggregation mechanism, LK-
PAN, is introduced. LK-PAN originates from the Path Aggregation Network (PANet),
which was initially introduced in the context of instance segmentation to bolster the
hierarchy of feature extraction networks. The primary structure of PANet is depicted in
Figure 3.
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In Figure 3, we observe that part (a) represents the classical network structure of the
Feature Pyramid Network (FPN), which is named for its pyramid-like arrangement [35].
However, it’s important to note that the influence of low-level features on high-level
features is limited due to the long paths, as indicated by the red dashed lines in Figure 3.
These paths can comprise over 100 layers. As mentioned in Section 1, while the theoretical
receptive field of P5 may be quite large, it does not manifest as such in practice due to the
numerous convolution, pooling, and activation operations. Therefore, PANet introduced a
bottom-up path augmentation, as depicted in Figure 3b. This approach aggregates the top-
most features from both the low-level features and features at the same level. Consequently,
this mechanism substantially shortens the connection between low-level features and the
top-most features to around 10 layers. Thus, it effectively enhances feature expression
for local areas and minor details. PANet’s contributions also encompass adaptive feature
pooling (Figure 3c) and fully-connected fusion (Figure 3d). However, these two mechanisms
are more closely related to the task of instance segmentation and will not be elaborated
upon here.

Building upon the foundation of PANet, the Large Kernel-PANet, abbreviated as
LK-PAN [36], introduces some improvements. The primary feature of LK-PAN is the
enlargement of the convolution kernel size. In contrast to PANet, LK-PAN utilizes 9 × 9
convolution kernels instead of the original 3 × 3 size. This augmentation is aimed at
expanding the receptive field of the feature map, thereby enhancing the ability to discern
minor features with greater precision. Another key change in LK-PAN is the adoption of a
concatenation operation, replacing Figure 3c, for fusing features from different levels.

3. Proposed Scheme
3.1. Main Idea

At the heart of zero-watermarking technology lies the extraction of robust image
features. While ConvNeXt offers deep insights for extracting dense features, it alone may
not provide sufficient attention to fine-grained image semantics and local details. This can
result in situations where the watermark differences between substantially different images
are not distinct enough, affecting the discriminability of the zero-watermark. To fully
leverage both local features and global context, ZWNet integrates ConvNeXt and LK-PAN
as the backbone and neck components, enhancing the robustness and distinctiveness of
multi-level features.

After the image feature extraction, a crucial challenge remains in training ZWNet
to achieve robustness and discriminability. Additionally, there are requirements such as
combining the watermark with copyright logos and encrypting the watermark. To address
these issues, the watermark block is introduced as the head component of ZWNet. This
block includes a linear layer for generating an image identifier, encryption layers, and
copyright-mixture layers. In summary, the primary architecture of ZWNet is illustrated in
Figure 4, with further network details elucidated below.
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3.2. Backbone Component

Prior to entering ZWNet’s backbone component, training images undergo various at-
tacks, which are managed by the preprocessing module depicted in Figure 4. Subsequently,
they are fed into the ConvNeXt network, the details of which are illustrated in Figure 5.
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Figure 5. ZWNet’s backbone details. (a) Main structure. (b) ConvNeXt block details. (c) Downsample
layers details.

The input image has dimensions of 224 × 224 with three color channels (Red, Green,
and Blue). Both the training and test datasets are formatted as JPG images with a resolution
of 72 dpi. The image initially undergoes processing through a convolutional layer and
layer normalization. Subsequently, it is directed through four ConvNeXt blocks and three
downsample blocks. Each ConvNeXt block includes a residual connection, a depthwise
convolution layer, and standard convolution layers. The downsample layer comprises
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a normalization layer and a convolution layer. Importantly, it should be noted that the
feature maps generated after each ConvNeXt block are then passed to LK-PAN, which
serves as the neck component of ZWNet.

3.3. Neck Component

The neck component of ZWNet draws inspiration from LK-PAN, and its specifics are
outlined in Figure 6.
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Figure 6. ZWNet’s neck details.

The input to ZWNet’s neck component comprises four branches, each corresponding
to a feature map generated by one of the four ConvNeXt blocks from the backbone. Each
branch begins with a 1 × 1 convolution operation, followed by the addition of upsampled
features from higher levels and subsequent upsampling to match the low-level branch.
These features then pass through a larger-kernel convolutional layer (9 × 9). Following the
convolution operation, the features are combined with downsampled features and split
into two branches. The first branch is downsampled using a 3 × 3 convolutional layer and
sent to the higher level. The other branch undergoes an additional 9 × 9 convolutional
layer and ultimately contributes to the final concatenate layer.

3.4. Head Component

The head component is the watermark block, encompassing four key functions: op-
timizing the feature maps, generating image identifiers, encryption, and merging with
copyright information. The intricate structure is illustrated in Figure 7.

Within the watermark block, the input comprises feature maps generated by the
neck component. These feature maps undergo processing through an exceptionally large
depthwise convolutional layer, utilizing a 21-unit kernel. Subsequently, they are subjected
to adaptive max pooling to maintain the size of the output feature map, fixed at 16 × 16 × 1.
This 16 × 16 × 1 feature map can be viewed as the robust features of the input host image.

The feature map is then divided into two branches. The first branch is directed
through a linear layer to produce an image identifier. This image identifier serves as a
unique code differentiating the input image from others, which will be further elucidated
in Section 3.5. The second branch is funneled through an encrypt-conv layer within a loop
function. This loop function emulates the encryption process of the Arnold transformation,
where the encrypt-conv layer, abbreviated as the encryption-convolution layer, executes
a single permutation of the Arnold transformation. Key1 represents the secret key of the
Arnold transformation, which is fed into the loop function. Post-encryption, the feature
map undergoes quantization based on a threshold, T, resulting in the conversion of the
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feature map into a binary sequence. This binary sequence is then merged with copyright
information through an XOR operation.
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3.5. Training

The image identifier plays a crucial role in distinguishing the input image from others
and serves as the training target for ZWNet. There are various methods for generating
an image identifier, such as assigning a unique value or utilizing a hash function. The
key requirement is that different images should map to distinct identifiers. In the case of
ZWNet, the training process can be conceptualized as optimizing the identifier output by
the entire network to match the target identifier.

To ensure the robustness and discriminability of ZWNet simultaneously, we employ
two strategies. The first strategy involves training ZWNet to generate the same identifier
for both the original input image and the attacked versions. This approach encourages
the network to extract consistent features even for images subjected to different attacks.
The second strategy entails training ZWNet to produce different identifiers for different
host images, promoting the network’s ability to create distinct feature maps for varying
images. Through these strategies, we reframe the problem of improving zero-watermark
performance as a common task in deep learning, akin to multi-label classification.

In terms of implementation details, the image identifier in ZWNet is represented as
a 256-bit binary sequence, and the network is treated as a multi-label task. Consequently,
BCEWithLogitsLoss is employed as the loss function. This loss function sigmoidalizes the
output first and then computes the difference between the target identifier Ti and the actual
output value Si as follows:

Loss = −∑(Ti × log(Si) + (1 − Ti)× log(1 − Si))

Here, i represents the sequence index.
It is important to note that the image identifier is solely used during the training

stage. In the testing phase or deployment, it remains unused, although it still generates
the identifier. This is because the image identifier is utilized to train the network, and the
network should not adapt beyond the training phase.
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3.6. Application Usage of ZWNet

Once ZWNet has been trained, the generation of a zero-watermark involves the
following steps:

(1) Input the host image with a size of 224 × 224 and jpg format into ZWNet to compute
the dense features. Note that other image sizes are also compatible, as the preprocessing
step will resample the input image to 224 × 224.

(2) Provide the key and copyright information to ZWNet to generate the final zero-
watermark.

(3) Register the zero-watermark and record the key and copyright information.
If an image with an uncertain copyright is encountered, the copyright can be identified

through the following steps:
(1) Input the suspected copyright image into ZWNet to generate the dense feature.
(2) Select the corresponding recorded key and copyright to generate the verification

zero-watermark.
(3) Calculate the normalized correlation coefficient (NC) to assess the similarity be-

tween the original zero-watermark and the verification zero-watermark. NC is calculated
as follows:

NC =
∑N

i=1 WiW′i√
∑N

i=1 W2
i

√
∑N

i=1 W′2i
Here, W, W′, and N represent the original zero-watermark sequence, the verification

zero-watermark sequence, and the sequence length.
(4) If the NC value exceeds a predefined threshold, it indicates that the copyright of

the image matches the registered copyright information. Otherwise, the image does not
belong to the recorded copyright.

4. Experimental Results and Analysis
4.1. ZWNet Training

For this experiment, ZWNet is implemented using PaddlePaddle (https://github.
com/PaddlePaddle/Paddle (accessed on 30 July 2023)) and executed on the PaddlePaddle
AI Studio (https://aistudio.baidu.com (accessed on 30 July 2023)) with cloud computation
powered by Nvidia A100. The optimizer employed is Adamax, and a Step Decay strategy
is applied to the learning rate. The initial learning rate is set to 0.0001, with a gamma factor
of 0.8. The learning rate is adjusted for each epoch.

The training dataset comprises a selection of images from mini-ImageNet (https:
//www.kaggle.com/datasets/arjunashok33/miniimagenet (accessed on 30 July 2023)) and
additional images collected from the internet. The images are selected to train ZWNet with
varied image features, aiming to improve its generalization ability. The training dataset
consists of 2000 images; a subset of these images is displayed in Figure 8 for visualization.
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We employed data augmentation as a preprocessing step to expand the training
dataset and enhance ZWNet’s robustness. The image processing methods used in data
augmentation are detailed in Table 1. These methods encompass a mix of techniques, and
following data augmentation, the number of training images increased to 100,000.

https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/Paddle
https://aistudio.baidu.com
https://www.kaggle.com/datasets/arjunashok33/miniimagenet
https://www.kaggle.com/datasets/arjunashok33/miniimagenet
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Table 1. Methods of data augmentation.

Methods Method Description

Noise Includes white noise and salt-and-pepper noise
Filter Includes Average filter, median filter and Gaussian filter

Rotation Rotates the image around the center with different angles
Crop Crop out part of the image with different sizes

Mirror Horizontal mirror and vertical mirror

When training ZWNet, two principles were adhered to, as mentioned in Section 3.5.
First, an image and its augmented versions were assigned the same image identifier. Second,
different images (including their augmented versions) were allocated different identifiers.
We used an auto-incrementing number as the image identifier for simplicity.

To assess ZWNet’s performance, we employed a test dataset consisting of one hundred
images. Four of these test images are presented in Figure 9 for visualization. It is noted that
none of these images are in the training dataset.
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Figure 9. Four test images. (a) Lena. (b) Mandrill. (c) Tree. (d) Girl.

The training process involved updating ZWNet using the training data for each epoch
and then evaluating the loss with the test images. If the loss on the test data no longer
decreased or even began to increase, the training was terminated. Consequently, the test
data was solely used to verify whether the training process was sufficient and did not
impact the updating of ZWNet. Furthermore, once successfully trained, ZWNet remained
stable and deployable. It could process arbitrary images for zero-watermark service without
the need for retraining or adjustments. The changes in loss during the training stage are
illustrated in Figure 10.
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4.2. Robustness

Robustness is a critical feature of digital watermarking technology. We assess ZWNet’s
robustness by comparing the zero-watermark of the original image with the zero-watermark
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of the attacked image. The evaluation index employed is NC, as explained in Section 3.6,
with a threshold set to 0.8. The attack methods used are consistent with those applied in
data augmentation. Using the image Lena (Figure 9a) as an example, the visuals of the
original image and the attacked image are displayed in Figure 11.
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The NC results of the images in Figure 9 under different attacks are listed in Table 2.

Table 2. NC results of four test images under different attacks.

Attack Description Lena Mandril Tree Girl

Rotation (15◦) 0.9688 0.9609 0.9765 0.9688
Rotation (30◦) 0.9258 0.9297 0.9258 0.9375
Rotation (45◦) 0.8555 0.9063 0.8320 0.8203

Pepper and salt noise
(intensity = 0.01) 0.9922 0.9961 0.9727 0.9805

Pepper and salt noise
(intensity = 0.05) 0.9531 0.9609 0.9531 0.9375

Pepper and salt noise
(intensity = 0.1) 0.9219 0.9336 0.9609 0.8750

Gaussian noise
(mean = 0, variance = 0.005) 1 0.9843 0.8828 0.9570

Random crop (1/8) 0.9063 1 1 0.9336
Random crop (1/6) 1 0.8945 0.8164 0.8984
Random crop (1/4) 0.8633 0.8984 0.8203 0.8710

Crop upper-left corner (1/4) 0.9414 0.8750 0.9570 0.8086
Crop lower-left corner (1/4) 0.9922 0.9258 0.9531 0.8867

Crop upper-right corner (1/4) 0.8945 0.9531 0.9375 0.8789
Crop lower-right corner (1/4) 0.9883 0.9609 0.9414 0.8086
Crop upper-left corner (1/8) 0.9961 0.9219 0.9805 0.9297
Crop lower-left corner (1/8) 1 0.9766 1 0.9922

Crop upper-right corner (1/8) 0.9882 0.9922 0.9883 0.9453
Crop lower-right corner (1/8) 1 0.9727 1 0.9453

Blur (3 × 3) 1 0.9883 0.9922 0.9882
Blur (5 × 5) 1 0.9883 0.9922 0.9922
Blur (9 × 9) 1 0.9766 0.9922 0.9883

Blur (11 × 11) 0.9961 0.9805 0.9609 0.9883
Gaussian Blur (3 × 3) 1 0.9883 0.9922 0.9883
Gaussian Blur (5 × 5) 0.9961 0.9727 0.9609 0.9844
Gaussian Blur (9 × 9) 0.9844 0.9766 0.9492 0.9766

Gaussian Blur (11 × 11) 0.9922 0.9844 0.9609 0.9766
Median Blur (3 × 3) 0.9922 0.9688 0.9063 0.9688
Median Blur (5 × 5) 0.9688 0.9648 0.9258 0.9688
Median Blur (9 × 9) 0.9883 0.9805 0.9570 0.9805

Median Blur (11 × 11) 0.9766 0.9648 0.8984 0.9688
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The results in Table 2 clearly indicate that the test images, even when subjected to
different types and intensities of attacks, all exhibit NC values above the 0.8 threshold.
These results demonstrate the robustness of the proposed scheme. The robustness can be
attributed to two key factors: the utilization of ConvNeXt combined with LK-PAN and the
effective training strategy for image identifiers.

Beyond the numerical results, it is essential to address overfitting when evaluating
the effectiveness of a neural network. Overfitting occurs when a network memorizes the
training data instead of learning the target function. In the context of zero-watermarking,
overfitting could lead to a network that memorizes images under various attacks instead
of extracting robust features. However, ZWNet effectively avoids overfitting. This is
primarily due to the strict separation of training and testing images. During the training
stage, ZWNet has not been exposed to the four test images shown in Figure 9, preventing
it from memorizing these images based on prior knowledge. Therefore, it is evident
that ZWNet has successfully learned to extract robust image features rather than merely
memorizing them.

4.3. Discriminability

Discriminability is a crucial aspect of a zero-watermarking algorithm, ensuring that
different images generate distinct zero-watermarks, especially when copyright identifiers
are the same. In ZWNet’s training, we assessed the similarity between images of Koala and
Panda in the evaluation mode and observed the changes in the NC values, as depicted in
Figure 12.
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From Figure 12, it is evident that the NC value decreases from around 0.70 as the
training epoch increases. After the 14th epoch, the NC value drops to approximately 0.54.
Considering the NC threshold is set at 0.8, a value of 0.54 is relatively low, indicating that
the zero-watermarks are dissimilar and the copyright will not be confused.

To conduct a more precise assessment of ZWNet’s discriminability, we used the
Hamming distance to compare zero-watermarks generated by different images with the
same copyright. The Hamming distance is calculated as follows:

dist(A, B) =
n

∑
i=0

A[i]⊕ B[i]
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Here, A and B represent two zero-watermark sequences, n is the sequence length
(which is 256 for ZWNet’s watermark block) and ⊕ represents the exclusive OR operation.
Hamming distances among the zero-watermarks of the four test images are detailed in
Table 3.

Table 3. Hamming distances between the zero-watermarks of four test images.

Test Image Lena Mandril Tree Girl

Lena 0 90 88 113
Mandril 90 0 92 97

Tree 88 92 0 91
Girl 113 97 91 0

Table 3 displays the Hamming distances among the zero-watermarks of the four test
images. The high Hamming distances indicate that the zero-watermarks differ signifi-
cantly from one another, with more than 80 different bits. Given that the total length of
the zero-watermark is 256, this observation suggests that the zero-watermarks of each
image are substantially distinct from the others. Hence, the discriminability of ZWNet
is substantiated.

Two factors contribute to this discriminability. Firstly, using LK-PAN within ZWNet
helps extract local features and fuse them with the global context during feature map
generation, as described in Section 2.2. Secondly, incorporating unique identifiers in the
watermark block plays a crucial role. During the training phase, ZWNet is trained to extract
robust features, assigning the same identifier to identical images and different identifiers to
distinct images. As a result, ZWNet strives to produce dissimilar feature maps for different
inputs, resulting in its discriminative capability. Importantly, this discriminative feature
is not a result of overfitting since, as previously mentioned, ZWNet has not seen the test
images during training.

4.4. Comparisons with Existing Methods

To provide a more objective evaluation of ZWNet’s performance, we have chosen to
compare it with three other zero-watermarking methods. The first method, named Yang’s
method, is a classical zero-watermarking technique that utilizes FQGPCET and has been
recognized for its robustness and discriminability [20]. The second method, Liu’s method,
is an end-to-end neural network-based approach centered on style transfer and removal,
renowned for its robustness and is named after its creator, Liu [30]. The third method,
referred to as Nawaz’s method, is a hybrid scheme that combines DWT and ResNet-101
together [26]. These three methods will be assessed alongside ZWNet in terms of their
robustness, discriminability, and efficiency.

4.4.1. Robustness

To compare the robustness of ZWNet with Yang’s method, Liu’s method, and Nawaz’s
method, we conducted tests using the same test image, Lena, and subjected them to
identical attacks. The results are summarized in Table 4.

From Table 4, it is evident that under the same attack conditions, ZWNet exhibits
higher NC values compared to the other methods in most cases. It excels in robustness,
with only a slight decrease in performance under rotation attacks. This suggests that the
features extracted by the convolutional layer may not be highly robust when it comes to
rotation attacks. However, ZWNet still achieves a substantial NC value greater than 0.9 in
this scenario, which is more than adequate for copyright identification.
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Table 4. NC results of the comparison methods.

Attack Description ZWNet
(Proposed)

Yang’s
Method

Liu’s
Method

Nawaz’s
Method

Rotation (15◦) 0.9688 0.9943 0.9466 0.9247
Rotation (30◦) 0.9258 1 0.9466 0.9058

Pepper and salt noise
(intensity = 0.01) 0.9922 0.9375 0.9766 0.8935

Gaussian noise
(mean = 0, variance = 0.005) 1 0.9531 1 0.9340

Random crop (1/6) 1 0.9023 0.9522 0.8706
Blur (3 × 3) 1 0.9414 0.9766 0.9172

Blur (11 × 11) 0.9961 0.9414 0.9302 0.8388
Gaussian blur (3 × 3) 1 0.9063 1 0.8902

Gaussian blur (11 × 11) 0.9922 0.9375 0.9766 0.8253
Median blur (3 × 3) 0.9922 0.9297 0.9961 0.9049

Median blur (11 × 11) 0.9766 0.9648 0.9102 0.8138

4.4.2. Discriminability

We utilized the four test images from Figure 9, generating zero-watermarks with
identical copyrights using the comparison methods. To assess the differences in these
zero-watermarks, we employed Hamming distance, and the results are summarized in
Table 5.

Table 5. Hamming distance of comparison methods.

Hamming Distance of
Zero-Watermarks

ZWNet
(Proposed)

Yang’s
Method

Liu’s
Method

Nawaz’s
Method

Lena and Mandril 90 28 59 43
Lena and Tree 88 29 26 35
Lena and Girl 113 40 90 93

Mandril and Tree 92 21 61 66
Mandril and Girl 97 20 57 21

Tree and Girl 91 37 62 55

From Table 5, when calculating the Hamming distance among the test images, ZWNet
exhibits higher values compared to the other comparison methods. This result demonstrates
the excellent discriminability of the proposed ZWNet.

4.4.3. Efficiency

While enhancing efficiency was not the primary focus of our study, we conducted an
efficiency assessment as it is a crucial consideration for practical usage. For the same set of
test images, we ran each of the three zero-watermarking methods 10 times and calculated
the average processing time. The efficiency results for these methods are presented in
Table 6.

Table 6. Efficiency comparison.

Methods ZWNet
(Proposed)

Yang’s
Method Liu’s Method Nawaz’s

Method

Average cost time 96 ms 2100 ms 2440 ms 1384 ms

The efficiency comparison presented in Table 6 clearly shows that the time required
to generate a single zero-watermark with ZWNet is significantly lower than that of the
other two methods. Yang’s method appears to be less efficient than ZWNet due to the
utilization of the CPU for computation without GPU acceleration. In fact, classical zero-
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watermarking methods are generally impractical to run on GPUs, as many of their steps
cannot be efficiently implemented with tensor operations.

In the case of Liu’s method, although both it and ZWNet are based on neural networks
and can be accelerated by GPUs, Liu’s method involves learning different style features
for various host images. This learning process includes training and multiple epochs,
making it more time-consuming compared to ZWNet. In contrast, ZWNet can produce a
zero-watermark directly for different images without the need for retraining by passing the
host image through the ZWNet’s layers only once.

5. Conclusions

This paper introduced an end-to-end zero-watermarking approach built on neural
networks, which has practical applicability in scenarios such as image copyright registra-
tion, copyright authentication, and piracy detection. In contrast to traditional approaches
that rely on handcrafted features, our methodology employs pure neural networks to learn
robust features automatically. The structure of ZWNet consists of ConvNeXt and LK-PAN
as the backbone and neck, respectively. Furthermore, we introduced the watermark block
as the head component, transforming the challenge of enhancing robustness and discrim-
inability into a multi-label classification task based on image identifiers. The experimental
results clearly demonstrate that ZWNet effectively extracts resilient image features and
generates zero-watermarks without the need for retraining. Moreover, ZWNet exhibits
superior robustness, discriminability, and efficiency compared with existing methods. The
results suggest that through the implementation of the proposed training strategy on image
identifiers, the zero-watermark performance has been notably enhanced in terms of both
robustness and discriminability simultaneously.
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