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Abstract: With the growth of data in the real world, datasets often encounter the problem of long-
tailed distribution of class sample sizes. In long-tailed image recognition, existing solutions usually
adopt a class rebalancing strategy, such as reweighting based on the effective sample size of each class,
which leans towards common classes in terms of higher accuracy. However, increasing the accuracy
of rare classes while maintaining the accuracy of common classes is the key to solving the problem of
long-tailed image recognition. This research explores a direction that balances the accuracy of both
common and rare classes simultaneously. Firstly, a two-stage training is adopted, motivated by the
use of transfer learning to balance features of common and rare classes. Secondly, a balanced weight
function called Balanced Focal Softmax (BFS) loss is proposed, which combines balanced softmax
loss focusing on common classes with balanced focal loss focusing on rare classes to achieve dual
balance in long-tailed image recognition. Subsequently, a Balanced Weight Learning Mechanism
(BWLM) to further utilize the feature of weight decay is proposed, where the weight decay as the
weight balancing technique for the BFS loss tends to make the model learn smaller balanced weights
by punishing the larger weights. Through extensive experiments on five long-tailed image datasets,
it proves that transferring the weights from the first stage to the second stage can alleviate the bias of
the naive models toward common classes. The proposed BWLM not only balances the weights of
common and rare classes, but also greatly improves the accuracy of long-tailed image recognition
and outperforms many state-of-the-art algorithms.

Keywords: long-tailedimage recognition; balanced weight; weight decay; Balanced Weight Learning
Mechanism; reweighting loss

1. Introduction

At present, the application of deep neural networks [1–4] has been popularized in
various fields [5–10], but the achievements of deep neural networks greatly rely on the
availability of real-world annotated datasets [11–14]. Such data often follow a long-tailed
distribution [15–18], where the quantity or cardinality of each type of data is severely
imbalanced [14,19,20]. In fact, rare classes are equally important in recognition tasks.
For example, in autonomous driving, vehicles and pedestrians are the common classes
with more available samples, but animals crossing the road also need to be detected for
safety reasons. [14,21]. Another sample is that the common and rare species should have
the same importance in animal recognition. [22]. This has sparked in-depth research in the
field of deep neural networks on long-tailed image recognition, with the aim of achieving
high accuracy averaging across all classes [17].

Due to having much more training data for common classes than rare classes, the train-
ing loss is dominated by common classes [17]. Therefore, in the naive models without any
strategy, the accuracy of common classes is always higher than rare classes. To alleviate
the challenges posed by the training data in the long-tailed problem and balance various
classes [23,24], existing research has mainly employed three types of strategies: resampling,
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loss function engineering, and stage-wise training. In resampling, many methods have
been proposed to balance the data distribution of each class by upsampling rare classes,
downsampling common classes, or both [25–27]. In loss function engineering, the loss
function is influenced by assigning low weights to common classes or high weights to rare
classes, which has been widely adopted before [28,29]. However, multiple research studies
have shown that artificially dividing weights can lead to poor training performance [30].
Therefore, there have been methods for implicitly defining common and rare classes, fo-
cusing on effective samples, sample difficulty, etc. [31,32]. In stage-wise training, some
methods use transfer learning to learn rare classifiers based on the features of common
classes [33–36]. Research has shown that the decoupling of feature learning and classifier
learning is superior to traditional integrated training models [2].

The estimation of the long-tailed data using ordinary loss functions may lead to bias
toward common classes. The current balanced weighted loss function either focuses on
common classes or rare classes, which prompts us to explore balancing loss functions that
simultaneously reduce the bias of common classes and increase the bias of rare classes.
In addition, the naive training model has a high weight bias towards common classes,
prompting us to explore further balancing network weights between classes.

To better balance common classes and rare classes, we train the model in two stages,
as shown in Figure 1. Considering the effect of feature learning and decoupling training
of classifier learning on long-tailed image recognition, we decide to transfer the feature
learning from the first stage to the second stage, which enables the second stage to inherit
the weights from the first stage. In the second stage, we propose the Balanced Focal Softmax
(BFS) loss function that considers both common and rare class weights by combining a
loss function that reduces redundancy of the common classes with a loss function that
increases attention to rare classes. In order to better balance network weights between
classes, we also propose a Balanced Weight Learning Mechanism (BWLM) that balances
network weights in the norm. We adopt the weight decay for “punishing large weights
and learning small weights” to further balance the weights of common and rare classes in
the BFS loss function. We summarize the main contributions as follows:

• We propose the BFS loss function that combines the weight balance characteristics of
common and rare classes. By adjusting the weights between the loss functions, the bal-
ance proportion of common and rare classes can be adjusted, which correspondingly
affects the accuracy of common and rare classes.

• We propose BWLM to balance network weights, and investigate the weight balancing
effect of weight decay on multiple balanced loss functions. We prove that weight
decay also learns smaller balanced weights to make the model more balanced and
improve the accuracy of multiple balanced loss functions, especially for BFS; BWLM
performs better when the Imbalance Factor (i.e., the ratio of common classes with the
most instances to rare classes with the least instances) is large. We use five long-tailed
distributions including the large-scale dataset ImageNet-LT with Imbalance Factor
(IF) = 256 and the dataset CIFAR100-LT with IF = [10, 50, 100, 200] to prove that
our method achieves optimal results with increasing IF. Therefore, it proves that our
method BWLM can handle more complex long-tailed image recognition problems.

• We adopt two-stage learning, which can narrow the weight norms gap between
common and rare classes in the native model.

The remainder of this paper is structured as follows: Section 2 introduces and analyzes
existing methods. Section 3 defines the problem and introduces our proposed method.
Section 4 introduces the experimental setup, dataset, and analysis of experimental results.
Section 5 concludes the study and introduces future research.
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Figure 1. Overview of our two-stage training framework. In the first stage, we use common class
samples to learn the stage 1 model, which uses a common cost function of cross-entropy loss LCE.

denotes training is in progress, while denotes that the transfer weights are frozen and cannot
be trained. In the second stage, after obtaining the weights Θ∗ of stage 1, we combine class balanced
loss LCB with a balanced softmax loss LBS to obtain BWLM, which is embedded in stage 2.

2. Related Work

Data Re-Balancing. Most previous research on long-tailed imbalanced data have fo-
cused on re-balancing during the training. The re-sampling strategy includes over-sampling
the rare image classes [15,37,38] and under-sampling the common image classes [15,39,40].
The purpose is to restore imbalanced training data to a regular and balanced distribution
state. Usually, over-sampling has a significant effect on large datasets, but for small datasets,
rare classes often exhibit over-fitting. Because the majority of the data in the common classes
are discarded in cases of under-sampling, the deep model’s capacity for generalization
declines. When the IF is too large, the under-sampling strategy is unreasonable. The core
idea of reweighting [29,35,41,42] is to assign different weights to the losses of the classes.
However, such a strategy often leads to unstable training when the IF is too large. When
the assigned weight is too large, the gradient will also be abnormally large, leading to a
deviation in the accuracy of the class.

Loss Function Engineering. For class-level reweighting methods, it is difficult to
find suitable and effective weights by directly setting weights based on the number of
classes. Thus, some methods do not clearly define the common and rare classes, shifting
attention to the effective sample size, the sample difficulty, etc. By assessing each class’s
degree of learning, Sinha et al. [43] determined loss weights and suggested a method called
Class Wise Differentially Balanced Loss (CDB loss). Wang et al. [44] considered all classes
as rare classes and proposed the loss function, which adaptively balances the negative
gradient between different classes to improve the classifier’s ability to distinguish rare
classes. Seesaw loss [45] dynamically adjusts the penalty for classes with fewer samples
based on the ratio of the number of samples in rare classes to that in common classes as
a mitigation factor. Li et al. [46] utilized the degree of imbalance between positive and
negative samples of different classes to rebalance the contribution of their losses, and
extended the idea of equalization loss to the object detector [47]. Cui et al. [31] proposed
the concept of effective sample size, believing that there is information overlap between
data, especially in common classes with large amounts of data. This reduces the marginal
benefits extracted by the model from the data. Hence, they proposed class-balanced loss
(CB), which adds the effective sample size as a weight to the loss function.Tan et al. [48]
found that, because the positive samples of each class are negative samples for other classes,
the gradient from the negative samples for rare classes is greater than that of positive
samples. Therefore, the negative gradient of common classes suppresses the learning of
rare classes. Therefore, they proposed equalization loss to ignore the gradient of rare classes
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in the softmax function to solve the problem of long-tailed rare classes. In Ren et al. [32],
based on the Bayesian theorem, the label distribution bias leads to Softmax regression,
which results in a classifier that leans more towards common classes. Therefore, they
considered the changes in label distribution and proposed a balanced softmax loss.

Stage-wise Training. Dividing the training task into multiple stages to train the deep
networks [8,49,50] is also a common strategy. The LFME [51] framework is a multi-stage
knowledge distillation method that divides a long-tailed dataset into multiple balanced
subsets and distills the knowledge in the trained expert models into the student models
to guide the learning of the student model. Decoupling feature learning with the usual
cross-entropy loss and classifier learning with the class balance loss, and treating them
as two separate stages, was the proposal put forth by Kang et al. [2]. This study proves
the important role of multi-stage training in long-tailed image recognition, as well as the
importance of class balance loss in the second stage. On the basis of decoupling feature
learning and classifier learning, Shaden et al. [52] used fine-tuning to balance the norm
through parameter regularization in the second stage to achieve good results in long-
tailed image recognition. In our paper, we drew inspiration from this stage-wise training
concept, and the focus is to balance the network weights of long-tailed image recognition
for different class-balanced loss functions.

3. Method

We provide a thorough explanation of our framework in this section. In Section 3.1,
we first give a summary of the particular problems with long-tailed picture identification.
Then, we introduce how to obtain a relatively balanced dataset and transfer the weights of
stage 1 to stage 2 in Section 3.2. Finally, we propose the BFS loss function and BWLM in
Section 3.3.

3.1. Preliminaries

For training datasets with long-tailed data distribution, long-tailed image recog-
nition attempts to learn high-performance classification models. Formally, we define
D = {xi, yi}, i ∈ {1, 2, . . . , n} as the long-tailed training set, where data sample xi is labeled
as yi ∈ [1, 2, . . . , C], C is the total number of classes, and nj is the number of samples in

class j , where ∑C
j=1nj = n. IF =

max(nj)

min(nj)
measures the degree of imbalance in the long-tailed

training set. For long-tailed image recognition, IF ≫ 1. The estimated class probabilities of
the model are P = [p1, p2, . . . , pC]

⊤, where pi ∈ [0, 1]∀i. We assume learning a classification
network f (·; Θ), where Θ =

{
θl,k
}

is the kth filter weights at layer-l. We denote θj as the
classifier weights of class-j and optimize Θ by minimizing the loss L throughout the entire
training set D to train the network:

Θ∗ = argmin
Θ

F(Θ; D) ≡
n

∑
i=1

L( f (xi; Θ), yi) (1)

The naive classifier is influenced by the long-tailed distribution of D, and the classifier
weights θj leans more towards common classes. Therefore, our motivation is to learn a
balanced classifier by transferring the weights of common classes to rare classes, balancing
the performance of the classifier by combining the advantages of two losses and further
balancing classifier weights of common and rare classes by regularizing classifier weights.
The specific implementation process can be seen in Figure 2.
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Figure 2. Detailed introduction of the second stage. We freeze the model parameters of stage 1
and add a new Fully Connected (FC) layer to achieve the weight transfer of the model. In BWLM,
LBFS balances the focus on common and rare classes by combining LCB and LBS as the loss function.
LBS correctly directs attention of loss to the rare class through a posterior distribution, while LCB

reduces the redundancy of the common sample through effective samples. Afterward, weight decay
is adopted to balance the classifier weights further.

3.2. Weights Transfer

We divide the training into two stages and transfer the weights from the first stage
to the second stage, and then use the proposed balanced loss function to balance the
long-tailed problem.

Data Balanced Review. In order to obtain a relatively balanced dataset, we propose
the data balanced review method in [53]. For class-j, Dj is the set of all its training samples.
We denote the middle number of classes as m = C/2 and obtain the first-stage training
data Dstage1 = ∑m

j=1Dj. In the second stage, we define the relatively balanced training set
D̂ = {x̂i, ŷi}, ŷi ∈ [1, 2, . . . , C] as:

D̂ = ∑m
j=1Dj[sam(nm+1)] + ∑C

j=m+1Dj (2)

where sam(·) is a random sampling method [54]. Figure 1 provides a more intuitive display.
Two-stage Transfer. Knowledge transfer currently has a wide range of research and

applications, and its main idea is to transfer knowledge-rich upstream tasks to knowledge-
scarce downstream tasks [55]. In the imbalanced long-tailed training set, which includes
classes with sufficient knowledge and classes with insufficient knowledge, we use the Data
Balanced Review [53] method to balance the dataset of downstream tasks based on the idea
of head-to-tail transfer. Therefore, we use two stages to train our framework: According to
Figure 1, we denote the training network for stage 1 as:

Θ∗ = argmin
Θ

F
(
Θ; Dstage1

)
(3)

At this stage, we use cross-entropy (CE) loss as the cost function denoted as LCE. Based
on the θ∗ from stage 1 of training, we freeze the model parameters of stage 1 and add a new
Fully Connected (FC) layer, and optimize FC layer weights Θ f c by minimizing the loss L
throughout the entire training set D̂ to train the stage 2 network:

Θ̂ = argmin
Θ f c

F
(

Θ f c; D̂
)

Θ∗
(4)



Appl. Sci. 2024, 14, 454 6 of 16

Through our exploration, the weight transfer method can improve the accuracy of
knowledge-deficient classes, but the accuracy of knowledge-sufficient classes relatively
decreases.

3.3. BWLM

We explain how BWLM works in our second stage starting by introducing the two
important elements in BWLM: BFS loss function and weight decay.

BFS Loss aims to solve the problem of training from long-tailed data by focusing on a
reweighting strategy that simultaneously focuses on common and rare classes.

We choose Class-Balanced (CB) [31] loss to focus on common classes. This method
introduces a weight factor

(1 − β)/(1 − βnj) (5)

We add it to the loss function to design a balanced loss function to solve the problem
of data imbalance in the training. It is inversely proportional to the number of effective
samples. As a hyperparameter β ∈ [0, 1), nj represents the total sample size contained in
class j and the balanced focal loss is defined as:

LCB(z, y) = − 1 − β

1 − βny
LFL(z,y) (6)

The focal loss LFL(z,y) [47] can reduce the weight of well-classified samples and make
the model focus on difficult samples during training. pt

j = 1/(1 + exp(−zt
j)) is the esti-

mated probability of class j, where t means the target. The focal loss is

LFL(z, y) =
C

∑
j=1

(1 − pt
j)

γlog(pt
j) (7)

where γ is the focusing parameter that can reduce the weight of simple samples. The bal-
anced focal loss is expanded as:

LCB(z, y) = − 1 − β

1 − βny

C

∑
j=1

(1 − pt
j)

γlog(pt
j) (8)

Overall, the idea can be summarized as follows: By estimating the number of effective
samples and reweighting the focal loss, it captures the marginal decreasing effect of the
data and reduces redundant information in the common samples.

To remove the discrepancy between the test set’s and the training set’s posterior
distributions [56], we use a balanced softmax [32]

ϕj =
nje

zj

∑C
i=1 niezi

(9)

In order to avoid bias in testing and training, it considers label distribution shifts and
derives softmax suitable for the long-tailed problem using the exponential family form of
Multinomial. This tends to focus on rare classes. Similarly, we obtain the Balanced Softmax
(BS) loss:

LBS(z, y) = −log
(
ϕy
)
= −log

(
nyezy

∑C
i=1 niezi

)
(10)

Based on the characteristics of class-balanced focal loss and balanced softmax loss, it
can be analyzed that class-balanced focal loss pays more attention to selecting effective
samples for the common classes. Balanced softmax loss reduces the preference of the
classifier towards the common classes caused by the difference in posterior distributions
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between the training and testing sets. Therefore, we propose a balanced loss function BFS
loss that can address both common and rare classes. BFS is denoted as:

LBFS = α
1 − β

1 − βny
LFL(z,y) + [−(1 − α)log(ϕy)] (11)

= α
1 − β

1 − βny
LFL(z,y) + (α − 1)log(ϕy)] (12)

= (α − 1)log(
nyezy

∑C
i=1niezi

)− α(1 − β)

1 − βny

C

∑
j=1

(1 − pt
j)

γlog(pt
j) (13)

We discuss the selection of α as a weight and hyperparameter in Section 4.3.
Weight Decay is a relatively mature research [57,58] that constrains the networks by

limiting the growth of the network weights [52], which can reduce network complexity, re-
duce over-fitting, and improve the generalization ability of the network. Weight decay [52]
applies the L2-norm to the network weights:

Θ̂ = argmin
Θ f c

F
(

Θ f c; D̂
)

Θ∗
+ λ ∑

j

∥∥θj
∥∥2

2 (14)

We select the value of hyperparameter λ based on [52]. Weight decay increases the
penalty for larger weights to prevent them from growing larger while emphasizing the
learning of smaller weights. However, we find that using weight decay after Weights
Transfer can improve the overall performance of long-tailed image recognition, which is
beneficial for the accuracy of rare classes. To further balance the weight of common and
rare classes, we adopt weight decay to adjust the impact of the model complexity on the
balance loss function. Adopting weight decay can narrow the weight gap between common
and rare classes, which can be reflected in Section 4.3 . Therefore, we attempt to further
balance the weights for LCE, LBS, and our proposed LBFS:

(1) By combining the encouragement of learning weight decay with LCB, we obtain:

LCBW(z, y) = − 1 − β

1 − βny

C

∑
j=1

(1 − pt
j)

γlog(pt
j) + λ

∥∥θj
∥∥2 (15)

which can prevent over-fitting while balancing the weight difference between the common
and rare classes.

(2) By combining the encouragement of learning weight decay with LBS, we obtain:

LBSW(z, y) = −log
(
ϕy
)
= −log

(
nyezy

∑C
i=1 niezi

)
+ λ

∥∥θj
∥∥2 (16)

(3) Similarly, our proposed balanced weight learning of LBFS is denoted as:

LBWLM = (α − 1)log(
nyezy

∑C
i=1niezi

)− α(1 − β)

1 − βny

C

∑
j=1

(1 − pt
j)

γlog(pt
j) + λ

∥∥θj
∥∥2 (17)

which balances the attention to common and rare classes appropriately, and punishes
larger weights more heavily, allowing for learning smaller balance weights, thus facilitating
long-tailed image recognition tasks.

4. Experiments

In this part, we test the proposed BWLM using CIFAR100-LT and ImageNet-LT, two
popular long-tailed benchmarks. In addition, we carry out several ablation studies to assess
the significance of every BWLM component in detail.
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4.1. Datasets

We obtain five long-tailed image recognition datasets based on CIFAR100 and Ima-
geNet for training (Table 1). The testing sets used for evaluation are all balanced.

CIFAR100-LT. Following [59], we use the CIFAR100 [60] dataset by downsampling the
training samples to generate five long-tailed datasets of CIFAR100-LT with IF∈ [200, 100, 50, 10].
CIFAR100-LT includes 100 classes with the class frequency distributions of four IFs
(Figure 3—left).

ImageNet-LT. The authors of [34] artificially truncate the balanced ImageNet [11]
into a long-tailed version. Imagenet-LT has 1000 classes with a maximum of 1280 and a
minimum of five samples of training data (Figure 3—right).

Figure 3 summarizes the class frequency distribution of these datasets. The detailed
information of all the datasets is shown in Table 1. ImageNet-LT is the long-tailed distri-
bution data with the largest IF and data volume, while CIFAR100-LT contains multiple
long-tailed distributions with different IFs and relatively small data volumes.

Figure 3. The class frequency distributions of five datasets. (Left): it indicates that as IF increases,
the larger the class index, the less the class sample. (Right): we use the large-scale dataset ImageNet-
LT, which has IF = 256.

Table 1. The specific information of five long-tailed image recognition datasets.

Dataset IF Training Samples Testing Samples Classes Max Class Size Min Class Size

ImageNet-LT [34] 256 115,846 50,000 1000 1280 5

CIFAR100-LT [59]

200 9502 10,000 100 500 2
100 10,847 10,000 100 500 5
50 12,608 10,000 100 500 10
10 19,573 10,000 100 500 50

4.2. Implementation

We train the models by using a long-tailed training set and evaluate them by using a
balanced test set. Following [34], we divide the training set into three types based on the
sample size of each category to further report accuracy: Many (greater than 100), Medium
(Between 20 and 100), and Few (less than 20).

We use the PyTorch toolbox [61] to train our models. We use ResNet32 [8] on CIFAR100-
LT and ResNeXt50 [62] on ImageNet-LT. The models are trained with a batch size of 64 on
a single NVIDIA GeForce RTX 3090 GPU for 320 epochs on CIFAR100-LT and 500 epochs
on ImageNet-LT. The momentum of the SGD optimizer is 0.9. According to the findings
of [31], when the data is imbalanced, loss and validation errors gradually increase after the
learning rate drops. We use a cosine learning rate regulator [63] to gradually decay the
learning rate from 0.01 to 0.

4.3. Ablation Study

Choose α of BWLM. In Formula (17), we set the hyperparameter α to adjust the
usage weights of CB and BS. α represents the usage weight of CB, and 1 − α represents the
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usage weight of BS. Figure 4 shows the accuracy of various classes on the five datasets,
and analyzes the impact of α on All, Many, Medium, and Few classes of five datasets with
different IFs. From the impact of α on the accuracy of Many classes in Figure 4b, it can be
seen that almost all datasets can achieve the optimal results when α reaches its maximum
value. It can be proven that CB reduces the redundancy of Many classes and focuses more
on the accuracy of Many classes. In Figure 4c,d, Medium and Few classes can achieve
optimal results when the value of α is small. Therefore, BS focuses more on classes with
less data volume, which can also be proven. For All classes in Figure 4a, as α changes,
the accuracy of all classes shows a slow downward trend in five datasets with different
IFs. Since the number of Few classes is much more than that of Many classes, the overall
performance of All classes is aligned with Few classes, that is, the optimal performance can
be reached when α is set to be small. Although the optimal value of IF = 100 is obtained
when α = 0.7, the accuracy difference is only 0.01 when α = 0.1 and α = 0.7. Therefore, we
suggest using BWLM by first setting α = 0.1 by default. In the comparison experiments,
we select α based on the optimal value of BWLM on the different datasets in Figure 4a.

(a) All (b) Many

(c) Medium (d) Few

Figure 4. The impact of parameter α on the accuracy of classes for datasets with different IFs. The blue
star denotes the highest accuracy. (a) The impact of α on the accuracy of All classes. (b) The impact of
α on the accuracy of Many classes. (c) The impact of α on the accuracy of Medium classes. (d) When
IF = 10, all classes are with more than 20 samples so Few classes do not exist and the accuracy of
other IFs shows an irregular downward trend.

The effect of each component. To make our proposed balancing technique more
suitable for application in the second stage, we also include weight decay in the first stage.
This effective non-learning technique can perform post hoc scales on the classifier learned
in the first stage. Our results are based on the ImageNet LT results in Table 2, where the
accuracy of different classes is listed for all algorithms. We divide it into two categories
for comparison: CE, CB, BS, and BFS is the reweighting loss function; CEW, CBW, BSW,
and BWLM is the method after adding weight decay to the reweighting loss function.
Firstly, as the weight transfer CE for the first stage increases from 39.6% of the naive model
to 44.6%, it indicates the importance of weight transfer. Secondly, it is also very important
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to use the balance loss function to learn classifiers based on weight transfer. Then we find
that using only the equilibrium loss function without weight decay slightly improves the
accuracy for only Few classes. Our method BFS balances out the accuracy of Many and
Few of CB and BS, indicating that our idea is effective. This compensates for the lack of CB
for Few classes and BS for Many classes. But when weight decay is used to further balance
weights, the accuracy can be improved greatly. In particular, CEW reaches 46.4%. BWLM
learns the weights of Few classes from BSW and Many classes from CBW, increasing the
accuracy to 47.5%.

Table 2. Ablation study on ImageNet-LT with respect to accuracy (%). “naive”: single model with
cross-entropy loss; “+”: after weight transfer in the second stage; “CE”: cross-entropy; “CB”: Class-
Balanced focal loss; “BS”: balanced softmax; “BFS”: Balanced focal and softmax; “CEW”: CE with
weight decay; “CBW”: CB with weight decay; “BSW”: BS with weight decay. The best and the
second-best results are shown in underline bold and bold, respectively.

ImageNet-LT

Many Medium Few All

naive 57.6 32.5 13.4 39.6
weight transfer
+CE 55.5 48.5 19.4 44.6
+CB 51.6 45.2 18.0 41.5
+BS 52.9 47.7 25.3 44.6
+BFS 52.8 47.7 24.3 44.5
+CEW 62.8 51.6 13.1 46.4
+CBW 61.7 50.2 26.3 47.0
+BSW 58.2 50.1 29.7 47.3
+BWLM 60.0 50.8 26.9 47.5

Classifier’s weight norms. Figure 5a, using the classifier weight norms of the ImageNet-
LT validation set, further proves the effectiveness of weight learning. The classifier weight
norms of the naive model have a relatively large numerical span from Many classes to
Few classes and show a “top-heavy” downward trend. The addition of weight decay to
other models has greatly shortened the weight gap between the Many and Few classes.
Especially for our proposed BWLM, the classifier weight norm shows a small upward trend,
which gives the Medium and Few classes a “fighting power” in the image recognition.

(a) Weight Norms (b) Descending Speed of Accuracy

Figure 5. (a) The classifier weight norms of the ImageNet-LT validation set, when the classes are
sorted in descending nj order (black dashed line). Blue line: a single model to learn the classifier
weights. There is a significant difference between Many and Few classes. Orange line: weights
after using weight decay for LCB. Green line: weights after using weight decay for LBS. Red line:
weights after using weight decay for LBFS. (b) Descending speed of All classes accuracy between
compared methods in CIFAR100-LT different IFs. The dashed line represents the comparison method
in [64]. “Focal+CR”: focal loss with curvature regularization; “CE+CR”: cross entropy with curvature
regularization; “CB+CR”: CB with curvature regularization.
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4.4. Long-Tailed Image Recognition

Comparison Methods. Considering the rapid development of long-tailed image
recognition, we have compared it with multiple related methods, including the method of
modifying the loss function in one stage and the transfer strategy method in two stages.
For better comparison, the method we chose and our commonality is that we did not add
feature enhancement methods such as Mixup. For example, BS [32] for loss reweighting,
NCM [2], τ-Norm [2], and cRT [2] split the training process into two stages: classifier
and representation learning, while LFME [51] used transfer learning, etc. Tables 3 and 4,
respectively, list the test results for the large-scale ImageNet-LT dataset and the different
IFs distributions CIFAR100-LT datasets.

Table 3. The accuracy (%) on ImageNet-LT. In terms of results, our method has achieved competitive
results compared to existing loss methods and two-stage transfer methods. Although not as advanced
as some recent methods, these training methods added additional techniques such as Mixup and
data augmentation. The best and the second-best results are shown in underline bold and bold,
respectively.

Method One-stage Many Medium Few All

CE [2] ✓ 65.9 37.5 7.7 44.4
CE+CB [31] ✓ 39.6 32.7 16.8 33.2
KD [65] ✓ 58.8 26.6 3.4 35.8
Focal [31] ✓ 36.4 29.9 16.0 30.5
OLTR [34] % 43.2 35.1 18.5 35.6
LFME [51] % 47.1 35.0 17.5 37.2
Range Loss [30] ✓ 35.8 30.3 17.6 30.7
Equalization Loss [48] ✓ - - - 36.4
BS [32] ✓ 50.3 39.5 25.3 41.8
NCM [2] % 53.1 42.3 26.5 44.3
τ-Norm [2] % 56.6 44.2 26.4 46.7
cRT [2] % 58.8 44.0 26.1 47.3
CE+CR [64] ✓ 65.1 40.7 19.5 47.3

Our methods
naive ✓ 57.6 32.5 13.4 39.6
Weights Transfer
+CE % 55.5 48.5 19.4 44.6
+CEW % 62.8 51.6 13.1 46.4
+CBW % 61.7 50.2 26.3 47
+BSW % 58.2 50.1 29.7 47.3
+BWLM % 60.0 50.8 26.9 47.5

Results. Dividing the long-tailed image recognition task into two stages and trans-
ferring the model weights from the first stage to the second stage can effectively improve
the performance of long-tailed image recognition and outperform many existing methods.
This conclusion can be drawn from ImageNet-LT in Table 3. Our weights transfer achieved
44.6% using the naive model with normal CE loss, which is superior to the naive model
with an accuracy of 39.6%. It even outperforms other multi-stage learning methods includ-
ing OLTR (35.6%) [34] and NCM (44.3%) [2]. By learning the CE classifier to regularize
with weight decay, we improve accuracy from 44.6% to 46.4%. Using the weight decay
to regularize the balanced loss classifier, the accuracy of the Few classes is improved by
13–16%. The accuracy of the Many classes in CBW is better than that in BSW, but the
accuracy of the Few classes is lower than that in BSW. Therefore, the BWLM proposes to
combine the two balanced loss functions to better balance the accuracy of Many classes and
Few classes, and then reach the highest overall accuracy. For some balanced losses, such as
Focal [31], Range Loss [30], Equalization Loss [48], BS [32], etc., they often choose to focus
on common or rare classes, resulting in addressing one side and ignoring the other. BWLM
addresses both common and rare classes, providing a more comprehensive retention of
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its classification ability for Many classes, in the meantime improving its classification
performance for Medium and Few classes.

Table 4. The accuracy (%) on CIFAR100-LT with different IFs. We can combine Figure 5b to analyze
the rate of accuracy decline.The best results are shown in underline bold.

Imbalance Factor (IF) 10 50 100 200

CE [31] 55.71 43.85 38.32 34.84
CE+CB [31] 57.99 45.32 39.60 36.23
KD [65] 59.22 45.49 40.32 -
Focal [47] 55.78 44.32 38.41 -
LDAM [1] 56.91 - 39.60 -
Mixup [66] 58.02 44.99 39.54 -
Focal+CB [31] 57.99 45.17 39.60 35.62
CE+DRW [1] 58.10 46.50 41.00 36.90
CE+CR [64] 57.40 45.10 40.50 36.90
Focal+CR [64] 58.30 45.20 40.20 37.50
CB+CR [64] 59.20 46.80 40.70 38.50

Our methods
Weights Transfer
+CE 38.8 40.5 37.8 34.8
+CEW 50.0 43.8 41.1 38.3
+CBW 51.3 44.7 41.5 39.5
+BSW 51.5 44.9 40.9 39.1
+BWLM 51.6 45.1 41.5 39.6

In Table 4, this conclusion is also valid on other long-tailed distribution datasets with
different IFs. On the four small CIFAR100-LT with different IFs, our model performs best
at IF = 100 and IF = 200. We find that as IF increases, the accuracy of existing methods
decreases faster than our BWLM. When the IF = [10, 100], the accuracy decreases by 17–25%,
while our method controls the accuracy decrease to around 10%. In order to visually observe
the descent speed, we have selected several comparison methods in Figure 5b to compare
with our method. We can intuitively see that the accuracy of CE+CR [64], Focal+CR [64],
and CB+CR [64] decreases significantly with the increase of IF. When IF < 100, they still
have an advantage. When IF ≥ 100, our model surpasses other comparison methods,
and our BWLM performs best among all IFs compared to other methods that add weight
decay. To sum up, our method performs better on long-tailed datasets with large IF,
which also proves that our model can solve more extreme long-tailed image recognition
problems. Training curves on ImageNet-LT and CIFAR100-LT are shown in Figure 6. It can
be seen that BWLM has a significant advantage in big data and has been proven through
150 generations of training.

Figure 7 shows the per-class accuracy for CIFAR100-LT (IF = 200). The impact of
the long-tailed problem on the naive model is evident, as there is a significant decline in
performance as the class IDs go from small to large. In contrast, the BWLM mitigates the
steepness of this decline. It is visually apparent that BWLM substantially improves the
classification results for Medium and Few classes without compromising the classification
performance of Many classes. This improvement is particularly pronounced for Few classes,
providing compelling evidence of the significant balancing capability of BWLM.
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Figure 6. Training curves of ResNext-50 on ImageNet-LT and ResNet-32 on CIFAR100-LT, where
IF ∈ [256, 100, 50, 10]. α of BWLM is set to be the one achieving the highest value in the corresponding
dataset in Figure 4.

Figure 7. The per-class accuracy of CIFAR100-LT (IF = 200). The X-axis uses the numbers 0–99 to
represent the classes sorted by the number of classes.

5. Conclusions

Long-tailed image recognition is a necessary challenge for the imbalanced data that
often occurs in the real world. Based on our observations, the weight allocation strategy for
common and rare classes on long-tailed data is divided into paying attention to common
class weights or paying attention to rare class weights. We suggest focusing on both
common and rare classes in the same balanced loss function by combining the balanced
loss functions that focus on common class weights with the balanced loss functions that
focus on rare class weights and learning the balanced weights through weight decay.
Extensive experiments have shown that the correct use of regularization and balanced
loss functions can greatly improve the performance of long-tailed image recognition. We
introduce a relatively simple and easy-to-implement method that outperforms various
existing balanced loss functions and is validated on multiple long-tailed datasets. Since
our BWLM performs the best in large-scale long-tailed datasets, we believe that it can
contribute to solving real-world problems related to large-scale long-tailed distributions.
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