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Featured Application: This article proposes a reasoning-based dialog agent to facilitate dialog
goal accomplishment through natural language interaction. The model can be applied in the
conversation recommendation, topic guidance, psychotherapy and education domains.

Abstract: Target-oriented dialog explores how a dialog agent connects two topics cooperatively and
coherently, which aims to generate a “bridging” utterance connecting the new topic to the previous
conversation turn. The central focus of this task entails multi-hop reasoning on a knowledge graph
(KG) to achieve the desired target. However, current target-oriented dialog approaches suffer from
inefficiencies in reasoning and the inability to locate pertinent key information without bidirectional
reason. To address these limitations, we present a bidirectional reasoning model for target-oriented
dialog implemented on a commonsense knowledge graph. Furthermore, we introduce an automated
technique for constructing dialog subgraphs, which aids in acquiring multi-hop reasoning capabilities.
Our experiments demonstrate that our proposed method attains superior performance in reaching
the target while providing more coherent responses.

Keywords: target-oriented dialog; response generation; topic guidance; graph reasoning; natural
language processing

1. Introduction

Recently, dialog agents have been classified into three categories: open-domain [1–4],
task-oriented [5,6], and target-oriented dialog systems [7–12]. Open-domain and task-
oriented dialog systems focus on chit-chat dialog and task fulfillment, whereas their
conversational guidance remains passive rather than active. However, target-oriented
dialog systems aim to proactively introduce new topics and guide the dialog toward a
predefined target topic. Specifically, when given a source and target topic expressed as two
brief utterances, the target-oriented dialog (TOD) agent must generate a transitional re-
sponse that connects the two topics seamlessly. Due to their purposeful and flexible nature,
target-oriented dialog agents possess a wide range of applications, spanning conversational
recommendation [13], psychotherapy [14], and education [15].

A typical example of a target-oriented dialog scenario is demonstrated in Table 1 as
follows: the source topic is “I like going to concerts”, and the target topic is “I usually have
to take a break during the week”. In this scenario, the dialog agent is expected to generate
an appropriate transition response that links the source topic “concert” to the target topic
“work”, and the transition is “I want to relax completely after a week’s work is done”. The
transition response helps to seamlessly shift the focus of the conversation from the initial
topic to the target topic.
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Table 1. An example of target-oriented dialog.

User A Source Topic: I like going to concerts.

User B Transition: Me too! I usually have to take a break during the week.
Target Topic: I want to relax completely after a week’s work is done.

Entity Path: concerts—break—work

In the domain of target-oriented dialog, the mainstream approach to address the
topic transitions issue is using reasoning techniques based on a knowledge graph (KG).
These methods can be categorized into two main types: supervised learning [10,16,17] and
reinforcement learning [18,19]. Reinforcement learning (RL) methods employ a policy-
based agent incrementally, extending its reasoning path until it reaches the target entity.
The agent’s state is typically defined as a tuple consisting of the query and the current
entity, and its action involves traversing the knowledge graph by following the outgoing
edges of the current entity. RL-based approaches heavily depend on the reward design
strategy [20,21], so reward shaping and action dropout have been proposed to improve
path searching and model learning. On the other hand, supervised-based methods heavily
rely on costly annotations of reasoning signals [22]. These methods can be further divided
into generating an entity path that connects the initial query to the target entity and ranking
entities based on their relevance to the user’s context.

While the mainstream methods mentioned above work well, there are still a couple
of issues: (1) the current external knowledge graph, especially the common sense graph,
has millions of nodes, affecting the efficiency and effectiveness of multi-hop reasoning;
(2) current methods do not fully take into account the impact of the source and target
information, leading to a dialog that feels unnatural or inefficient. Our approach tackles
this problem by using bidirectional reasoning.

To this end, we propose TodBR (Target-oriented dialog with Bidirectional Reasoning
on Knowledge Graph), aiming to effectively support the target-oriented process through
bidirectional reasoning on a knowledge graph enclosing the target topic. Our approach
considers two distinct perspectives when addressing the task setting: forward reasoning,
which explores the path from source entities to target entities, and backward reasoning,
which follows the reverse path from target entities to source entities. Our solution draws
inspiration from bidirectional graph search algorithms like bidirectional BFS and DFS.
While existing methods predominantly focus on forward reasoning, it is feasible to jointly
model the two reasoning processes, as both topic entities and target entities are known
at the start of the dialog. The bidirectional reasoning mechanism effectively reduces the
search space and enhances the reasoning efficiency. In addition, to further improve both
the performance and efficiency, we employ a pre-built context-relevant dialog subgraph
and conduct reasoning on it. This approach demonstrates clear advantages over reasoning
on the entire knowledge base.

Our main contributions are as follows.

(1) We introduce an automated method of constructing dialog subgraphs that aid target-
oriented dialog learning. These dialog subgraphs play a crucial role in this task as
they provide logically organized entities and their relations, which are instrumental in
reasoning the appropriate response keyword.

(2) We take the first step towards bidirectional reasoning and propose a corresponding
model. By incorporating bidirectional reasoning, we enable a more comprehensive
and efficient exploration of the knowledge graph, leading to improved results.

(3) We conduct evaluations using both automatic and human metrics, which demon-
strate that our proposed approach, TodBR, outperforms the baselines in terms of the
coherence of semantics and achieving the desired targets with a higher success rate.

The structure of this paper is as follows. Section 1 introduces the topic and the
motivation behind target-oriented dialog systems. Section 2 explores existing mainstream
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methods employed in target-oriented dialog systems and discusses multi-hop reasoning
methods applied in conversation. Section 3 delves into the comprehensive description of
the proposed algorithms. Then, Section 4 describes the dataset used for the task and the
results obtained for both algorithms and conducts quantitative and qualitative analysis.
Finally, Section 5 concludes the article by summarizing the essential findings and insights
gained from the study and suggests potential directions for future research.

2. Related Work
2.1. Target-Oriented Dialog Systems

The existing research on target-oriented dialog can generally be categorized into
two approaches: local target-oriented and global target-oriented methods. The local
target-oriented [7,10,16] methods primarily focus on the next-turn target. For instance,
Xu [18] proposed a hierarchical policy model that facilitates the planning and generation of
responses at different levels; a high-level policy is responsible for planning a topic, while a
low-level policy generates coherent replies to the selected topic. However, these methods
do not explicitly approach the global target. Moreover, these approaches often employ a
short-sighted and greedy strategy instead of incorporating explicit planning to optimize
the process towards achieving the global target. Global target-oriented methods [23–26]
employ a global target to guide the generation of responses at each turn. These methods
introduce a keyword predictor to determine the keyword to be discussed in the next turn
and generate a relevant response to the identified keyword.

2.2. Conversation with Knowledge Graph Reasoning

In recent years, there has been growing interest in incorporating commonsense knowl-
edge and employing graph reasoning techniques to generate relevant and informative
responses. Previous research [27] on knowledge graph (KG) reasoning can be broadly
categorized into three main approaches: path-based models [28], embedding-based mod-
els [29], and models that combine both embedding and path-based techniques to predict
missing links in the knowledge graph [30,31]. In our study, we align ourselves with the
third category of research, as it best suits our objective of knowledge selection on a graph.
Furthermore, our task differs from previous works due to considering the target topic
vertices within the graph. This distinction is a key motivation for utilizing bidirectional
reasoning in graph reasoning. By leveraging bidirectional reasoning, we aim to enhance
the effectiveness of our approach.

Our task often faces the challenge of response generation relying on external knowl-
edge bases or corpora. This is a common issue in question-answering (QA) tasks [32]. In
specific QA tasks, the fusion of knowledge graphs (KG) and text corpora is commonly
approached through late or early fusion strategies [33,34]. These strategies aim to overcome
the limited answer coverage of models that solely rely on KGs. Some works have also
introduced advanced retrieval-augmented generative models for open-domain question-
answering tasks [35,36]. We also employ a fusion mechanism to incorporate external
knowledge and prevent zero-shot scenarios in our task. By leveraging the fusion strategy,
we can introduce relevant external knowledge to improve the performance and coverage
of our model. This approach ensures that our system can handle a broader range of topics
and generate responses informed by external knowledge bases.

3. Methods

This section focuses on the solution developed, starting with describing the data used
in the study. Subsequently, the employed methodology is outlined and discussed. It begins
by presenting the formal definition of the tasks at hand. Then, the data preprocessing
methods used to construct dialog subgraphs are introduced. Finally, the bidirectional
reasoning model is presented in detail.



Appl. Sci. 2024, 14, 459 4 of 18

3.1. Task Definition

We define the target-oriented response generation task as follows:

ŷ = argmaxy P(y | c, t, G) (1)

Here, c represents the conversation context, G is a knowledge subgraph associated
with the context, t is the dialog target, and y is the transition response representing the
model’s output that connects the conversation context c and the target t. Equation (1)
signifies that ŷ is determined by selecting the response y that maximizes the conditional
probability. In simpler terms, the argmax function is used to find the response with the
highest probability of being the correct or most suitable transition response given the
context, target, and associated knowledge subgraph. Specifically, our method generates
a prompt keyword set z for transition based on subgraph G, which is extracted on the
knowledge graph ConceptNet. Then, we integrate the keywords z and the conversation
context c to generate a proper transition response y.

3.2. Method Overview

Three Steps Our method is divided into three steps: data preprocessing, training,
and prediction. The data preprocessing involves dialog data cleaning, keyword extraction
(the red font in Figure 1 is an example for keywords extraction), and dialog subgraph
construction. During the training phase, a supervised learning method minimizes negative
log-likelihood optimization. The prediction stage is based on the trained model and used
with the beam-search [37] algorithm to generate the response.

Main Components Our model comprises three main components, as shown in
Figure 1: an encoder and two decoders. The first component is the dialog encoder, which
utilizes a Transformer encoder to encode both the source and target utterances into an
embedding vector. The encoder plays a fundamental role in capturing the semantic informa-
tion of the dialogs, which arises from its attention mechanism for long-range dependency
capture, scalability, and parallelization, coupled with positional encoding and self-attention
for semantic comprehension. Our method’s following steps (bidirectional reasoning and
response generation) are based on the output embedding generated by the dialog encoder.
The second component is a bidirectional reasoning decoder. A graph neural network
initially encodes the dialog subgraph constructed during the data preprocessing stage.
Following this, the dialog embedding vector obtained from the dialog encoder is input into
the decoder, and an attention mechanism [38] is applied to focus on the dialog subgraph
and generate prompt keywords. The third component is a response generator based on
GPT. It inputs the dialog context and prompt keywords, generating the final response.

Figure 1. The process flowchart.

3.3. Data Cleaning

This section aims to improve the dataset quality and integrity. The specific process is
as follows.

1. Token Limit Filter: Remove long text segments over 512 tokens and keep text concise
and manageable.
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2. Profanity Detection Filter: Use a filter to find offensive language in dialogs. Check
for offensive words based on a list and patterns. The filter refers to Profanity-Check
(https://github.com/vzhou842/profanity-check, accessed on 1 December 2023), which is
a fast, robust Python library to check for profanities or offensive language in strings.

3. Check the filtered dataset manually. Ensure that there are no mistakes due to the
automated filters.

Finally, this filtering process results in a refined dataset suitable for subsequent analysis
and model training.

3.4. Subgraph Construction

We describe the construction of a dialog subgraph using c and t, represented as
G = (V, E). Here, V denotes the set of topic nodes, while E represents the edges connecting
these topics. The specific details are provided in Figure 2, and the numbers in the nodes of
Figure 2 indicate that the keywords are added to the dialog subgraph in order.

Figure 2. The process of dialog subgraph building.

Node Selection To determine the nodes in G, we employ a rule-based keyword extrac-
tor that combines TF-IDF [39] and Part-of-Speech [40] features to extract keywords from c
and t. The keywords in c serve as the source topic nodes denoted as Vc = {w1, w2, . . . , wp},
while the keywords in t serve as the target topic nodes denoted as Vt = {w1, w2, . . . , wq},
where p and q represent the number of keywords in the source c and target t, respec-
tively. Therefore, V = Vc ∪ Vt. Afterward, we retrieve the neighboring nodes of keywords
from ConceptNet, choosing N nodes to add to V and establish edges among them. The
appropriate value of N will be determined in the forthcoming ablation experiment sec-
tion. Furthermore, we add a particular neighbor node zstop for each keyword within the
subgraph. The zstop serves as a condition to terminate decoding generation.

Embedding Initialization After identifying the nodes, we utilize ConceptNet [41] to
obtain a node representation. Each topic node wi is initially aligned with the corresponding
node in ConceptNet and represented as hi = ConceptNet(wi), where hi denotes the initial
representation of the node wi. ConceptNet refers to the Numberbatch (https://github.com/
commonsense/conceptnet-numberbatch, accessed on 1 December 2023) embeddings, and
d represents the dimension of each node representation. Numberbatch is an embedding
space for word vectors that leverages a combination of semantic information from diverse
knowledge sources to enhance the representation of words. Developed by the team at
ConceptNet, Numberbatch exhibits improved performance in various natural language
processing tasks by capturing nuanced semantic relationships.

hNk
i
=

1
|Nk

i |
∑

wj∈Nk
i

ConceptNet(wj),

h̄i = hi +
K

∑
k=1

(WkhNk
i
+ b)

(2)

Additionally, to capture topic relations effectively, hi is updated by incorporating
the representations of its K-hop neighbors in ConceptNet, known as K-hop neighboring
representations. K represents the maximum number of hops considered, which is set to

https://github.com/vzhou842/profanity-check
https://github.com/commonsense/conceptnet-numberbatch
https://github.com/commonsense/conceptnet-numberbatch
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2. Nk
i denotes the k-th hop neighboring nodes of wi in the ConceptNet graph. Wk and b

correspond to the weight matrix and bias vector, respectively.

3.5. Dialog Encoder

The dialog encoder comprehends the dialog context and outputs an embedding of the
dialog. To obtain an embedded representation of the dialog, we concatenate the source
and target utterances into a single line and input it into the dialog encoder. Our approach
utilizes a multi-layer Transformer to encode the dialog context. Previous work [42,43] has
proven that a multi-layer structure is highly effective in capturing semantic information,
which offers parameter efficiency and feature abstraction, outperforming alternatives like
single-layer Transformers or sequential models, such as RNNs or LSTMs, and proving well
suited for tasks demanding comprehensive dialog comprehension.

Formally, given a dialog context C = {c, t}, where ci = {wi1, wi2, . . . , win} is a se-
quence of words, the Transformer encoder will convert ci into a sequence of hidden embed-
dings:

[ĥcls
1 , ĥcls

3 ] = Transformerθw([e
cls
i , ew

i1, . . . , ew
in]) (3)

In the above equation, [ĥcls
1 , ĥcls

3 ] represents a sequence of hidden embeddings. In this
case, it appears that the output embeddings correspond to specific positions. Transformerθw

refers to the Transformer encoder with parameters θw. This is the function that processes
the input sequence. ([ecls

i , ew
i1, . . . , ew

in]) is the input sequence to the Transformer encoder,
where each ew

ij is the embedding vector of the j-th word in the i-th sequence.

hcls = Transformerθu([ĥ
cls
1 , ĥcls

3 ]). (4)

Here, hcls is the utterance representation embedding that incorporates source and
target awareness. Transformerθu refers to another Transformer layer with parameters θu.
This layer is used to process the input sequence. [ĥcls

1 , ĥcls
3 ] is the input sequence to the

second Transformer layer, which is the output from the previous Transformer layer. The
output embeddings can be further used for tasks such as guiding the generation of a
keyword set in a bidirectional reasoning decoder.

3.6. Bidirectional Reasoning Decoder

The bidirectional reasoning module generates a keyword sequence as cue words to
give an “intermediate” utterance. Bidirectional graph scoring is utilized to fuse graph node
representations based on the dialog context representations, as shown in Figure 3.

Figure 3. The bidirectional reasoning process.

Graph Encoding To encode the topic entities in the dialog graphs and obtain repre-
sentations for concepts and relations, we employ multi-layer GCN encoders [44]. Inspired
by the TransE [45] model, we also update the concept embedding by subtracting the cor-
responding relation embedding from each neighboring concept embedding to obtain the
relation representation. At the (l + 1)th layer, we update the embedding of each entity vi
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by aggregating its neighbors Ni, which consist of pairs of concepts and relations that are
connected to vi:

h(l+1)
i = σ

W(l)
s h(l)i + ∑

(j,r)∈Ni

1
|Ni|

W(l)
n

(
h(l)j − h(l)r

), (5)

In the above equation, h(l)i , h(l)j and h(l)r represent the embeddings of node vi node

vj, and the relations between vi and vj at layer (l)th, W(l)
s and W(l)

n are specific trainable
parameter matrices for layer lth; σ is a non-linear active function. The relation embedding
is also updated at the (l + 1)th layer via h(l+1)

r = W(l)
R h(l)r . After L iterations, we are able

to obtain
{

h(L)
v1 , . . . , h(L)

v|V|

}
, a set of concept representations, and

{
h(L)

r1 , . . . , h(L)
r|R|

}
, a set of

relation representations.
Bidirectional Reasoning We employ bidirectional reasoning to compute concept

distributions on graphs. This approach incorporates neighboring information and the
current decoder state to adjust the weight of the bidirectional concept (source and target
entities) in the graph at each decoding step. Initially, a score of 1 is assigned to source and
target concepts, while others are given a score of 0. Subsequently, the information regarding
the scored concepts is disseminated throughout the graph to update unvisited concepts in
both directions. For an unvisited concept vi ∈ V, score(v) is computed by aggregating the
evidence from its visited neighboring concepts Ni

in:

R
(
vj, r, vi

)
= σ([h(L)

j ; h(L)
r ; h(L)

i ]Wrelationst),

score(vi) = ∑
(vj ,r)∈Ni

in

1∣∣∣Ni
in
∣∣∣
(
γ · score(vj) + R

(
vj, r, vi

))
,

(6)

Here, in the triple relevance R
(
vj, r, vi

)
, vj, vi denote nodes (or concepts) in the graph;

[h(L)
j ; h(L)

r ; h(L)
i ] denote the representations of nodes vj, vi at the L-th layer of a neural

network. Wrelation is the weight matrix relating the triple vj, r, vi, st is the current decoder
state at decoding step, and σ is the Sigmoid activation function.

In concept score update function score(vi), v is a node or concept in the graph, Ni
in is

a set of visited neighboring concepts for v, and γ is a discount factor. This equation updates
the concept score by aggregating information from its visited neighboring concepts. After
L-hop interactions, the distribution over the concepts is as follows:

P(V | st,G) = so f tmaxv∈V(score(v)). (7)

Here, P(V | st,G) represents the distribution over concepts in the graph G given
the current decoder state and st at decoding step t. In other words, it is the probability
of each concept in the graph being the next element in the sequence being generated.
so f tmaxv∈V(score(v)) is the softmax function applied to the scores assigned to each concept
in the graph. The score for each concept v is obtained from the bidirectional reasoning
mechanism described earlier.

The final generation distribution conjoins the distribution over the concepts in graphs
and the distribution over the standard vocabulary with a soft gate as follows:

P
(

zt | z<t,G, hcls
)
= gt · P(V | st,G) + (1 − gt) · P

(
V | st, hcls

)
. (8)

P
(

zt | z<t,G, hcls
)

represents the probability distribution of the token zt at decoding
step t given the previously generated tokens z<t, the graph G, and the classification state
hcls. gt is a soft gate that determines whether to refer to the graph G or not. P(V | st,G) is the
distribution over concepts in the graph G given the current decoder state, which represents
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the likelihood of each concept being the next token. P
(
V | st, hcls

)
is the distribution over

the standard vocabulary V given the current decoder state st and the state hcls, which
represents the likelihood of each standard vocabulary token being the next token.

Furthermore, the decoding stop condition of the decoder is as follows. (1) When
encountering a specially marked node zstop added to the neighbor nodes of G, the decoder
will regard zstop as a legal candidate node and automatically stop decoding when zstop is
selected. (2) The cue words set z exceeds Nmax. Moreover, we set all probabilities extracted
in step k(k < t) to 0 to avoid repeated extractions.

3.7. Response Decoder

As shown in Figure 1, the sequence of the keywords z generated by bidirectional
reasoning is sent to the response generator to generate a response containing relevant
keywords. Inspired by prompts using generative models [46], an explicit sequence of
entity keywords z can be regarded as prior knowledge, or cue words, in the generation
process [47].

ŷ0 = z, Êt = [ew
k |wk ∈ ŷt], (9)

Here, ŷ0 represents the initial value of the variable ŷ. In this case, it is set equal to z.
Meanwhile, z represents a sequence of keywords generated by bidirectional reasoning. Êt
represents a set of word embedding vectors at decoding step t. It is defined as a list that
includes the embedding vector ew

k for each word wk in the sequence ŷt.

p(wt, lt|C, ŷt−1) = Transformer(hcls, Êt−1). (10)

Subsequently, p(wt, lt|C, ŷt − 1) is a conditional probability distribution over the next
word wt and a length parameter lt, given some context C and the previous sequence ŷt − 1.
Transformer refers to a Transformer model commonly used in natural language processing
tasks. hcls is likely the output hidden state vector associated with the special token “[CLS]”
in the Transformer model. Êt−1 represents the set of word embedding vectors at the
previous decoding step, i.e., at step t − 1. At each decoding step t, the decoder combines
ŷt−1 and the probability distribution lt ∈ [0, |ŷt−1|] to be generated, where Êt is a list of
word embedding vectors for ŷt.

3.8. Training and Loss Functions

Given a list of entity keywords Z in the target response t, the bidirectional reasoning
decoder is trained as a sequence generation model while minimizing the negative log-
likelihood (NLL) loss as follows:

LZ =
1
|Z| ∑|Z|

t=1 −logp(zt|z1:t−1, c, t,G) (11)

We first sample a subsequence ŷ containing all target concepts in the target response
t to train the response generator. Then, for each k + 1 position l = 0, 1, . . . , k in ŷ,
(wil , wil+1, . . . , wjl ) are word ranges in the target response not yet generated at position l.
The loss function is finally defined as follows:

LR =
1

k + 1

k

∑
l=0

jl

∑
i=il

−logp(wi, l|c, t, ŷ) (12)

4. Experiment

This section presents a comprehensive overview of the dataset, including a detailed
analysis of its characteristics. We also describe the comparative methods employed and
thoroughly present the obtained results. We also explore four prominent mainstream
approaches. We specifically analyze the unique contributions of each component to develop
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our proposed solution. In particular, we focus on the significant impact of bidirectional
reasoning and the size of the dialog subgraph on the design of our model.

4.1. Dataset

We evaluate our solution and other baseline methods on the latest public single-turn
target-oriented dialog dataset, OTTers [48]. OTTers was created for target-oriented dialog,
which requires the agent to proactively generate a “bridging” utterance from the source to
the target topic. The dataset utilized in this study encompasses distinct train-dev-test splits,
namely in-domain and out-of-domain splits. The initial split, identified as out-of-domain
(ood), ensures the absence of shared topics between the test set and any topic pairs within
the train set. Conversely, the subsequent split, known as the in-domain (id) split, deviates
from this constraint, allowing for a partial overlap between a topic in each test set pair
and the corresponding train set, albeit with varying second topics. The “ood” split closely
aligns with a zero-shot scenario, wherein the model must generate outputs encompassing
topic transitions that have yet to be finetuned. Consequently, our expectations regarding
the achieved results for the “ood” split lie below those corresponding to the “id” split. The
specific statistical data are shown in Table 2.

Table 2. The dataset split statistics.

Split Train Dev Test

in-domain (id) 1929 1160 1158
out-of-domain (ood) 2033 1151 1129

4.2. Data Statistics

A statistical analysis was conducted to understand the structure and content of the
dialogs comprehensively. This analysis aimed to extract valuable insights and offer a
comprehensive overview. Key metrics such as the number of words, entities, and paths
were calculated to illuminate the dialogs’ characteristics. In this study, an “utterance”
referred to an independent linguistic unit within a dialog. The statistical findings in Table 3
outline the average number of tokens and entities per utterance or dialog. These metrics
provide quantitative information on the dialogs’ length and complexity.

Table 3. Sentence- and dialog-level statistical results.

In-Domain Out-of-Domain

Words per utterance 3–68 5–71
Average words per utterance 16.4 15.8

Entities per utterance 1–5 1–4
Average entities per utterance 3.3 3.8

Words per dialog 24–201 31–183
Average words per dialog 78.4 69.7

Entities per dialog 3–10 3–12
Average entities per dialog 5.4 6.1

Knowledge graph (KG) path per dialog 1–3 1–4
Average KG path per dialog 2.3 2.9

OTTers is a comprehensive collection of genuine dialogs encompassing various ev-
eryday situations. We have methodically categorized all conversation topics into eight
distinct categories to enhance comprehension and coherence. Table 4 illustrates the dis-
tribution of topics across the out-of-domain and in-domain sections of the dataset. Daily
life, interpersonal relationships, and workplace discussions consistently exhibit the highest
occurrence within the dataset. This alignment in frequency distribution closely aligns with
the communication demands encountered in real-world contexts.



Appl. Sci. 2024, 14, 459 10 of 18

Table 4. Number of topic statistics.

Topics Subtopics (The Most Common Are Listed) Quantity

entertainment cinema, museum, painting, concert 631
education history, math, school, university 589
family parent, friend, marriage, children 1143
workplace job, stress, interview, employee 1053
health sport, drinks, meal, vegetables 893
daily life hobby, money, relax, food 1454
travel transport, weather, outside, car 692

In particular, the daily life category involves informal interactions among individ-
uals in families or friendships. The family category encompasses dialogs during social
engagements, while the workplace category pertains to professional communication. The
dataset demonstrates a diverse range of utterance counts, bolstering the system’s ability to
generalize across various conversational contexts. By incorporating dialogs with varying
utterance counts, the model gains adaptability to handle a broad scope of conversational
complexities effectively. It enhances the model’s proficiency for real-world applications.

4.3. Baselines

Given the existing mainstream approaches, predominantly end-to-end and graph-
based methods, we have opted to employ four representative baselines for this study
specifically. In addition, this paper only considers single-turn dialog; the multi-turn dialog
model introduced in related work was not selected.

• DialoGPT [47]: DialoGPT is a SOTA large-scale pretrained dialog response generation
model for multi-turn conversations. We select the medium version accessible via Hug-
gingFace DialoGPT-medium (https://huggingface.co/microsoft/DialoGPT-medium,
accessed on 1 December 2023).

• MultiGen [17]: This model extends GPT-2 with multi-hop reasoning on commonsense
knowledge graphs.

• DKRN [16]: This model leverages a dynamic knowledge routing strategy for concept
prediction. The concept is predicted based on closeness to the target.

• CODA [12]: This model breaks down the response generation process into two steps:
generating explicit commonsense paths connecting the source and target concepts
and then conditioning the response generation on these generated paths. It aims
to replicate how humans bridge concepts and create conversation transitions by
leveraging commonsense knowledge.

4.4. Implementation Details

The experimentation conducted in this study utilized the publicly available target-
oriented dialog dataset OTTers. The word embedding dimension and hidden layer dimen-
sion were both configured to 300. The batch size was set to 32, and the AdamW optimizer
was employed. The initial learning rate for the model was established at 1 × 10−4, comple-
mented by dynamic learning rate decay. A dropout rate of 0.1 was implemented, along
with 12 attention heads within the model architecture. Notably, the comparative model’s
experimental setup and parameter configurations closely mirrored those employed in
TodBR.

4.5. Metrics
4.5.1. Automatic Evaluation

To assess the models’ proficiency in generating effective bridging responses, we
commence by conducting an automatic evaluation employing widely used text generation
metrics, as follows.

(1) BLEU [49], commonly known as bilingual evaluation understudy, has emerged
as a widely employed metric to assess the quality of machine-translated text. It proves

https://huggingface.co/microsoft/DialoGPT-medium
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applicable in evaluating translations in any language, given the presence of discernible
word boundaries within the text. Typically yielding a score ranging from 0 to 100, BLEU
quantifies the degree of similarity between a reference text and a hypothesis text. A higher
BLEU score indicates superior-quality translations.

BP =

{
1 if c > r

e1− r
c if c ≤ r

BLEU = BP · exp

(
N

∑
n=1

wn log Pn

) (13)

As shown in the above formula, BP is a factor that penalizes excessive abbreviation in
translations. It ensures that concise translations are appropriately penalized. c represents
the length of the candidate translation (the machine-generated translation). r is the effective
reference length, which is the length of the reference translation closest to the candidate
translation in terms of the number of words. exp is the exponential function, which is used
to weigh the precision of different N-grams. ∑N

n=1 signifies that the BLEU score considers
the precision of 1-g, 2-g, up to N-gram. wn corresponds to the weight coefficients assigned
to different N-grams. Pn is the precision of the N-gram. N denotes the characteristic
length of the N-gram under examination. The BLEU score considers precision up to N-
gram. Furthermore, we use SacreBLEU [50], which provides the hassle-free computation of
shareable, comparable, and reproducible BLEU scores. It reports the total BLEU score that
accounts for the overlap across 1–4 N-grams instead of only 4-g.

(2) ROUGE-L [51] relies on the longest common subsequence (LCS) approach, wherein
a comparison is made between the model output and the reference. Specifically, it identifies
the most extended sequence of words, which may not be consecutive but maintains the
same order standard to both the model output and reference. A lengthier shared sequence
signifies higher similarity between the two sequences.

Rlcs =
LCS(X, Y)

m

Plcs =
LCS(X, Y)

n

Flcs =

(
1 + β2)RlcsPlcs

Rlcs + β2Plcs

(14)

LCS(X, Y) is the length of the longest common subsequence of X and Y; m and
n represent the length of the reference text and generated text (usually the number of
words contained); Rlcs and Plcs represent recall and accuracy, respectively. Flcs is the final
calculated ROUGE-L.

(3) The evaluation of textual diversity incorporates Distinct-1 and Distinct-2 [52].
Distinct-1 measures the occurrence of distinct words or phrases within the generated
text, while Distinct-2 focuses on the frequency of unique adjacent word or phrase pairs,
commonly known as bigrams. Distinctness is quantified on a numerical scale from 0
to 1. A higher value approaching 1 signifies an augmented abundance of varied and
unique words or bigrams in the generated text. Consequently, these elevated values
indicate a more comprehensive and distinctive range of responses produced by the model.
To establish a formal representation of the distinct metric, the following mathematical
definition is provided:

Distinct -1 =
count

(
distinctwi∈R(wi)

)
count

(
allwi∈R(wi)

)
Distinct -2 =

count
(
distinctwiwi+1∈R(wiwi+1)

)
count

(
allwiwi+1∈R(wiwi+1)

) (15)
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The symbol R encompasses the entire set of outcomes obtained from the test dataset.
The function distinct() denotes the elimination of duplicate elements within R, while all()
implies the inclusive enumeration of all outcomes. Lastly, the variable count delineates the
numerical representation of statistical instances.

4.5.2. Human Evaluation

Given the considerable criticism surrounding the correlation between automatic met-
rics and human judgment [53], we supplement our evaluation with two dialog-level metrics
assessed through human evaluation: “coherence” and “logic”. The coherence metric in-
volves a manual examination of the fluency and target-oriented nature of the entire dialog.
On the other hand, the logic metric measures the extent to which the target of the dialog is
logically reached. For each model, one hundred dialogs are generated through simulation.

We recruited five evaluators to assess our work. They were undergraduate students
studying science and engineering, aged 20 to 25, with an English vocabulary ranging
from 4000 to 5000 words. We applied the mentioned conditions to minimize variations
among scorers, aiming to lessen their influence on the final results. These annotators
rated the generated dialogs on a scale of {0, 1, 2, 3}, with higher scores indicating superior
performance. We also computed the kappa to check for consistency in the evaluations. The
kappa calculation result is −1–1, but, usually, the kappa falls between 0 and 1. It can be
divided into five groups to represent different levels of consistency: 0.0–0.20, very low
consistency (slight); 0.21–0.40, average consistency (fair); 0.41–0.60, moderate consistency
(moderate); 0.61–0.80 high consistency (substantial); and 0.81–1 almost perfect.

4.6. Results
4.6.1. Automatic Evaluation

The results reported in Table 5 exemplify the outcomes of the automated evaluation
conducted on both the out-of-domain (ood) and in-domain (id) test datasets. It becomes
evident from the results that our approach surpasses other models across all evaluation
metrics, implying that the generated responses produced by our method exhibit excellent
proximity to the ground truth responses within the dataset. Notably, within the realm of
existing prevalent methodologies, despite its standing as a classic end-to-end generative
model, DialoGPT performs poorly in terms of the BLEU, distinct, and ROUGE metrics.
Conversely, multiple approaches rooted in graph reasoning exhibit superior performance.
These observations support the claim that knowledge-based reasoning methods are more
suitable for this particular task.

Table 5. Automatic evaluation.

In-Domain Out-of-Domain

BLEU Distinct-1 Distinct-2 ROUGE-L BLEU Distinct-1 Distinct-2 ROUGE-L

DialoGPT 3.61 0.15 0.54 23.41 3.51 0.21 0.43 21.62
Multi-Gen 6.12 0.21 0.64 28.22 4.90 0.28 0.59 25.36
DKRN 3.44 0.14 0.56 23.34 3.84 0.21 0.53 22.27
CODA 4.95 0.17 0.60 24.13 4.39 0.20 0.61 23.03
TodBR 6.26 0.23 0.67 28.56 4.88 0.32 0.65 25.98

In addition, our proposed methodology exhibited a modest improvement in the BLEU
and ROUGE-L metrics compared to the baseline models. This can be attributed to the
inherent nature of openness and diversity that characterizes the dialog scenarios in this
particular task, resulting in substantial differences in language and grammar between the
reference answers and the generated responses. Consequently, the effectiveness of the BLEU
and ROUGE-L metrics is limited by such disparities. However, significant advancements
were seen in the distinct metric, showcasing our model’s ability to avoid redundant content
and thoroughly comprehend logical information in the context. It generates responses that
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are both fluent and diverse. These findings were further supported by the subsequent
human evaluation.

4.6.2. Human Evaluation

Although the automatic evaluation compared the generated responses with the ground
truth in the dataset, there is a major challenge in that there can be many suitable responses
in a dialog context. The ground truth can only be used as a reference. Therefore, human
evaluation must be introduced. The specific results are shown in Table 6. It can be seen that
our model performs better than other models. It indicates that, compared to the baseline
model, our model generated responses that exhibited heightened consistency within the
semantic and logical context. This effect was particularly significant when considering
the logic metric, which emphasized the enhanced capability of our model to grasp the
intricate logical differences that underlie conversation and generate responses that align
contextually. Consequently, our model surpassed the baseline model’s ability to generate
contextually relevant and cohesive responses. Moreover, we calculated the kappa scores
of the manual evaluators’ scores on various indicators. For details, see the last row of the
Table 6. Through consistency verification, we found that the human evaluators’ scores had
moderate consistency, and, at the same time, the logical evaluation was more consistent.

Table 6. Human evaluation.

In-Domain Out-of-Domain

Coherence Logic Coherence Logic

DialoGPT 1.34 1.55 1.34 1.85
Multi-Gen 1.88 1.98 1.53 1.99

DKRN 2.03 2.22 1.58 2.21
CODA 2.01 2.45 1.61 2.34
TodBR 2.13 2.47 1.74 2.38
kappa 0.48 0.50 0.45 0.51

4.7. Ablation Studies

We conducted ablation studies to analyze the relative contributions of the main com-
ponents in TodBR. These studies involved removing the bidirectional reasoning module
and investigating the optimal number of prompt words and graph nodes. Our findings
indicate that the model’s performance exhibited varying degrees of decrease when these
components were ablated. Specifically, the absence of bidirectional reasoning, lack of
prompt words, and unsuitable dialog subgraph size resulted in observable declines in the
model’s performance.

Does the bidirectional reasoning work? The importance and indispensability of both
directions, namely the source direction and target direction reasoning, are exemplified in
the first two rows of Table 7, where “w/o source” and “w/o target” denote the removal
of source direction and target direction reasoning, respectively, such that only reasoning
from one direction is considered. The results from these experiments demonstrate that,
regardless of the direction, incorporating reasoning in the model contributes positively to its
overall performance. Additionally, the performance degradation resulting from removing
reasoning from the source and target is relatively similar, further highlighting the equal
significance of both directions in improving the model’s final performance.
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Table 7. The result of ablation experiment in in-domain dataset.

Model BLEU Distinct-1/2 ROUGE-L

TodBR 6.26 0.23/0.67 28.56
w/o source reasoning 5.5 0.17/0.60 21.01
w/o target reasoning 5.4 0.12/0.61 21.87
w. fewer prompt words (Nmax = 1) 4.3 0.19/0.65 23.63
w. more prompt words (Nmax = 5) 5.8 0.11/0.64 23.19

How many prompt words are suitable? The terms “w. fewer prompt words” and “w.
more prompt words” refer to the maximum number of prompt word sets generated during
the bidirectional reasoning and decoding processes. The analysis of the experimental results
reveals that the performance is significantly compromised regardless of whether there are
fewer or more prompt words. This can be attributed to the fact that fewer words decrease
the likelihood of obtaining the correct answer, while more words introduce noise during the
decoding process. However, the impact on performance is more pronounced when fewer
cue words are utilized. Notably, the degradation in performance is more evident when
employing more prompt word sets due to the response generator’s filtering capabilities
during decoding. Based on these findings, an average of three entity keywords per sentence
is a more suitable size for achieving optimal performance.

How much graph information do we need? While constructing a dialog subgraph,
our approach involved the utilization of pertinent keywords extracted from the dialog
utterance to search within the commonsense knowledge graph. The resulting neighboring
nodes were subsequently added to our evolving dialog subgraph. Notably, the precise
number of neighboring nodes incorporated was not predetermined, prompting an investi-
gation into the optimal quantity. To explore this matter, we conducted a series of systematic
experiments. As illustrated in Figure 4, augmenting the quantity of neighbor node informa-
tion only sometimes yields improved performance. Excess information can introduce noise
and adversely impact the model’s performance. Nonetheless, it is noteworthy that the
decline in performance as the number of nodes increases is not profoundly significant. Fol-
lowing thorough experimental validation, we determined that the most favorable trade-off
between performance and efficiency is achieved by considering up to 100 neighbor nodes
during graph reasoning.

Figure 4. The results of neighbors (denoted as N) and BLEU.

4.8. Case Study

To further substantiate the effectiveness of our methodology, a comprehensive in-
stance analysis was conducted, focusing on two specific cases extracted from the dataset
employed in our experimental assessment. The outcomes of this analysis are meticulously
documented and organized in Table 8.
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Table 8. Case study.

Context I have prior agriculture experience.

DialoGPT a lot of cooking. I am a lot of cooking.

Case 1—id

Multi-Gen My mom taught me how to cook.
DKRN My parents taught me how to grow.
CODA My mom loves to grow vegetables
TodBR I have been a farmer for many years.

Ground truth My parents were farmers.
Target I am a mom.

Context Me and them hang out and specate sports.

DialoGPT This is great, and I like it too.

Case 2—ood

Multi-Gen So I decided to play football.
DKRN Cool! I like sport too.
CODA I like reading comics.
TodBR I like comics and I also enjoy outside.

Ground truth I want to create cartoons for a major studio.
Target I like to read comics about sport.

Table 8 illustrates the results of a case analysis conducted on two split datasets, namely
“ood” (out-of-domain) and “id” (in-domain). This analysis enables a comprehensive under-
standing of the strengths and weaknesses inherent in each model under scrutiny. Notably,
when examining the performance of DialoGPT across both datasets, it becomes evident
that the generated sentences are too simple. This observation highlights the challenge for
end-to-end models and emphasizes the need for external information to generate coherent
and contextually relevant topics in target-oriented dialogs. In contrast, models based
on knowledge reasoning, such as Mult-Gen and DKRN, notably increase the amount of
information conveyed in their generated responses, despite occasional errors. This en-
hanced information content significantly aids in the task of guiding topics. Additionally,
our proposed model demonstrates robustness under challenging dialogs, such as dialogs
with excessively long pathways or incomplete graph structures. This resilience further
highlights the effectiveness of our bidirectional reasoning approach.

5. Conclusions, Limitations, and Future Research Directions
5.1. Conclusions

In this research, we introduce TodBR, an approach that leverages bidirectional rea-
soning on a knowledge graph (KG) to facilitate the effective steering of dialogs towards
a specified topic. Initially, we construct a dialog subgraph enriched with commonsense
knowledge to enable future reasoning. Subsequently, we train a bidirectional decoder
using the dialog subgraph, which effectively guides our model to achieve the desired target
word on ConceptNet. The efficacy of our proposed method is evaluated through both
automatic metrics and human judgment, surpassing the performance of baseline models
from both perspectives. Notably, bidirectional reasoning plays a crucial role in driving
these improvements.

5.2. Limitations

The limitations of the current method are as follows.

1. Existing methods struggle to understand more complex targets: The current method’s
understanding of the target only exists at the word level, and the semantics of the
entire sentence must be considered, as well as more comprehensive goals, such as
psychotherapy.

2. Existing methods are challenging to apply to limited resource languages: The cur-
rent method requires rich external commonsense knowledge graphs for reasoning.
However, except for English, the knowledge graphs of languages are too sparse and
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lack structured knowledge, and it is difficult for our method to perform on limited
language resources. We can resolve this problem by introducing an extra step to
construct a knowledge graph for low-resource languages.

Future developments could explore methods to enhance the sentence-level com-
prehension within the current framework to address these limitations. Additionally,
efforts to adapt the technique for languages with sparse knowledge graphs may in-
volve strategies like leveraging domain-specific data or exploring alternative knowledge
representation approaches.

5.3. Future Work

The future research directions may be as follows.

1. More diverse and complex conversation goals. Currently, goals are based on word
semantics, but higher-level objectives like psychotherapy and educational guidance
have yet to be explored. These areas have received little attention. Achieving such
goals could significantly enhance the capabilities of target-oriented dialog systems.

2. Introducing large-scale language models and integrating supervised learning and
reinforcement learning. With the popularity of large models, there is growing interest
in reinforcement learning for goal-oriented dialog systems. These systems could be
enhanced through reinforcement learning, and a simple yet effective approach is to
use large models to provide reinforcement signals, improving the active dialog and
guidance capabilities.

3. Introduce multi-modal models. Multi-modal methods can identify more appropriate
conversation guidance opportunities by identifying users’ facial expressions and tone,
thereby significantly improving the goal-oriented conversation capabilities.

To summarize, we advise exploring these directions collaboratively, ensuring a bal-
anced approach considering diverse conversational goals, leveraging large-scale language
models, and incorporating multi-modal information for a more comprehensive understand-
ing of user interactions. Embracing supervised learning and reinforcement learning is key
to advancing target-oriented dialog systems.
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