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Abstract: This paper aims to address the increasingly severe security threats in financial systems by
proposing a novel financial attack detection model, Finsformer. This model integrates the advanced
Transformer architecture with the innovative cluster-attention mechanism, dedicated to enhancing
the accuracy of financial attack behavior detection to counter complex and varied attack strategies. A
key innovation of the Finsformer model lies in its effective capture of key information and patterns
within financial transaction data. Comparative experiments with traditional deep learning models
such as RNN, LSTM, Transformer, and BERT have demonstrated that Finsformer excels in key
metrics such as precision, recall, and accuracy, achieving scores of 0.97, 0.94, and 0.95, respectively.
Moreover, ablation studies on different feature extractors further confirm the effectiveness of the
Transformer feature extractor in processing complex financial data. Additionally, it was found that
the model’s performance heavily depends on the quality and scale of data and may face challenges
in computational resources and efficiency in practical applications. Future research will focus
on optimizing the Finsformer model, including enhancing computational efficiency, expanding
application scenarios, and exploring its application on larger and more diversified datasets.

Keywords: financial attack detection; Transformer architecture; cluster-attention mechanism;
deep learning in finance

1. Introduction

With the rapid development of financial technology, financial systems have become
one of the primary targets of cyberattacks [1–3]. The vast amount of sensitive transac-
tions and customer information involved in financial institutions makes them particularly
vulnerable to various cyberattacks, especially targeted financial fraud. These attacks can
cause significant economic losses and undermine user trust and the stability of financial
markets. Therefore, developing efficient and accurate attack detection systems is crucial
for safeguarding financial security. Diaz-Verdejo Jesus et al. conducted experimental
studies on the detection rates of three standard pre-configurations of SIDS in the context
of URI web attacks and proposed an effective method to reduce false positives by dis-
abling complete rule sets of signatures. However, WAF is only a subset of the detection
capabilities of SIDS, and it is unclear whether their model results hold true in different
types of attacks [4]. Saez-de-Camara Xabier et al. found that traditional IT security mech-
anisms, such as signature-based intrusion detection and defense systems, are difficult
to integrate [5]. Abdulganiyu Oluwadamilare Harazeem et al. discovered that current
intrusion detection systems (IDSs) identify unknown attacks, but their false positive rate is
still high [6]. Yang et al. indicated that traditional IDSs are divided into analysis-based or
signature-based; however, analysis-based IDSs face the significant challenge of manually
labeling security-related data. To address this, they proposed a weakly supervised learning
algorithm-based IDS model training scheme [7].
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Traditional attack detection methods, such as rule-based and signature-based systems,
although effective in specific scenarios, usually cannot adapt to rapidly changing attack
patterns and complex financial data environments [8]. With the advancement of artificial
intelligence technology, machine learning, especially deep learning, has shown great po-
tential in the field of attack detection. Deep learning methods, due to their advantages in
feature learning and pattern recognition, have been proven to be particularly effective in
handling complex and high-dimensional data.

Elsaeidy, Asmaa A. et al. developed a four-layer deep neural network to detect replay
attacks in smart cities and applied it in real-world scenarios, showing that deep learn-
ing models can detect normal and attack behaviors with high accuracy [9]. Rashi Md.
Mamunur et al. used adversarially retrained samples to reinforce IDS models, ultimately
increasing accuracy to over 99%, but the model is prone to overfitting and needs con-
sideration on how to reduce sensitivity to attack behaviors [9]. Waqar Muhammad et al.
proposed a deep-learning-based malware detection model for Android-based IoT (AIoT)
devices to prevent various malware attacks, achieving an accuracy of 99.87% [10]. San-
douka Soha B. et al. combined EfficientNet with generative adversarial networks (GANs)
for fingerprint presentation attack detection (PAD) and validated the proposed method
on the public LivDet2015 dataset, showing that the proposed method outperforms other
CNN models [11]. Alshingiti Zainab et al. used LSTM, CNN, and LSTM-CNN deep
learning methods to detect phishing websites, with the final results showing that CNN
performed the best, reaching an accuracy of 99.2% [12]. Ozcan Alper et al. proposed a
novel hybrid deep learning model, a hybrid DNN-LSTM model for detecting phishing
(URL), and a further developed DNN-BiLSTM model, with research results indicating
that the DNN-BiLSTM model’s accuracy is higher than the DNN-LSTM model, achiev-
ing 98.79% and 99.21% accuracy on the provided datasets, although some noisy instances
may affect model performance in actual use [13]. Afzal Sara et al. proposed a hybrid
deep learning method named URLdeepDetect for detecting malicious URLs, ultimately
achieving 98.3% accuracy [14]. Pastor Antonio et al. deployed a cryptomining scenario
to train machine learning models for detecting malicious attacks on digital currency min-
ing, achieving the capability to detect cryptomining attacks even in encrypted states [15].
Wang et al. proposed a deep-learning-based system for the development of decentralized
financial (DeFi) attack detection, DeFiScanner, with experimental results showing a true
positive rate of 91% [16]. Alkhatib I Khalid et al. proposed a deep-learning-based model
for credit card fraud detection—a seven-layer neural network architecture—achieving an
area under the ROC curve score of 99.1% [17]. Fursov Ivan et al. proposed a black-box
attack scenario for financial institutions’ transaction records, using adversarial training
samples to test the robustness of models, aiding financial institutions in better utilizing
deep learning models for transaction records [18]. Qasaimeh Malik et al. proposed a
deep learning algorithm, DNN, to predict network attack patterns, reaching a prediction
accuracy of 90.36%, beneficial for banks and other financial institutions to take preemptive
security measures [19].

The research encompasses applications of deep learning techniques in detecting and
defending against various cyberattacks, particularly in the context of smart cities [20], the
internet of things [21], financial institutions [22], and other digital systems. These studies
reflect the significant role and challenges faced by deep learning in the field of cybersecurity.
In smart cities, challenges such as handling vast amounts of data and ensuring real-time
responsiveness of models remain a significant issue [23], along with the need to address
overfitting problems. This includes balancing the models’ generalization capabilities with
their sensitivity to attack behaviors [24]. In the internet of things, the challenge lies in
adapting to new types of malware and reducing false positives, as well as enhancing the
accuracy and adaptability of detection algorithms to cope with evolving attack methods [25].
The detection of phishing attacks is also a hot research topic [26], yet dealing with large-
scale and dynamically changing network environments remains a significant challenge [27].
Additionally, security issues in the financial domain are receiving considerable attention,
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with the difficulty residing in rapidly adapting to and predicting new attack patterns within
financial environments [28]. These studies indicate that, despite the vast potential of deep
learning in the realm of cybersecurity, it also faces numerous challenges, including data
processing, model generalization, and adapting to new types of attacks [29].

Finsformer proposed in this paper is a novel financial-system-attack detection model
based on the Transformer and cluster-attention mechanism. The Transformer model, having
achieved significant success in fields such as natural language processing (NLP), is highly
suited for processing financial data sequences due to its powerful sequence-modeling
capabilities. Meanwhile, the introduction of the cluster-attention mechanism, a novel
aspect of this paper, aims to enhance the model’s ability to identify attack patterns by
effectively clustering data.

The Transformer model was chosen for this paper because of its several advantages
suitable for processing financial data. Firstly, the self-attention mechanism of the Trans-
former can capture long-distance dependencies in data, which is particularly important
when dealing with financial time-series data. Secondly, compared to traditional deep
learning models like convolutional neural networks (CNNs) and recurrent neural networks
(RNNs), the Transformer offers higher efficiency and flexibility in processing sequence
data. Additionally, the parallel processing capability of the Transformer makes it more
efficient in handling large-scale data. The introduction of the cluster-attention mechanism
is based on the particularity of financial data, which often contains diverse transaction
patterns and user behaviors that traditional attention mechanisms may not fully capture.
Cluster-attention, by clustering similar data points, can more effectively model and identify
different attack patterns, thereby increasing the accuracy and robustness of detection.

In this paper, we first introduce methods based on clustering, traditional machine
learning, and deep learning for detecting attack behaviors. These not only provide a theo-
retical foundation for our model but also set the context for comparative analysis. We then
detail the composition of the Finsformer model, including the collection and annotation of
datasets, the design of the model architecture, and the detailed planning of experimental
design. In the results and discussion section, we showcase the performance of Finsformer
on real financial datasets and analyze the role of the cluster-attention mechanism and Trans-
former feature extractor through ablation studies. In summary, the objective of this paper
is to propose and validate a novel financial-system-attack detection model, Finsformer,
combining the latest deep learning technology and innovative attention mechanisms, in
the hope of contributing to increased accuracy and efficiency in attack detection. Through
this work, we aim to provide robust technical support for the financial security field and
more effective tools for financial institutions to counteract cyberattacks.

2. Related Work
2.1. Cluster-Based Attack Detection Methods

In the field of network security, clustering algorithms are widely utilized for the
identification of anomalous behaviors, especially in attack detection. The core idea of these
methods involves grouping data points based on similarity, where anomalous data typically
do not conform to any pattern of normal behavior, thus enabling effective identification
through cluster analysis.

2.1.1. K-Means Clustering

K-means clustering, a widely used clustering algorithm [30], aims to group similar
data points together. In the context of financial attack detection, k-means clustering is
applied to identify anomalous transaction patterns, such as distinguishing between normal
and fraudulent transactions. The fundamental concept of k-means clustering involves
minimizing the sum of distances between each point and the centroid of its cluster [31],
as shown in Figure 1. First, k initial “means” (in this case k = 3) are randomly generated
within the data domain (shown in color). Second, k clusters are created by associating every
observation with the nearest mean. The partitions here represent the Voronoi diagram
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generated by the means. Third, the centroid of each of the k clusters becomes the new
mean. Finally, steps 2 and 3 are repeated until convergence has been reached.

*
*

1 2 3 4

Figure 1. Visualization of k-means clustering algorithm.

Mathematically, this is represented by the following optimization problem [30]:

min
S

k

∑
i=1

∑
x∈Si

|x − µi|
2 (1)

Here, k is the number of clusters, S = S1, S2, . . . , Sk is the set of clusters, x represents
data points, and µi is the center of cluster Si. The k-means clustering algorithm involves
randomly selecting k cluster centers, assigning each data point to the nearest center, and
then updating the cluster centers to the mean of the points in each cluster. This process is
repeated until convergence criteria are satisfied [32].

2.1.2. Density-Based Clustering

Density-based clustering, such as DBSCAN (density-based spatial clustering of appli-
cations with noise), are algorithms capable of identifying clusters of arbitrary shapes [33],
as shown in Figure 2.

𝜀

Outlier

Border Point
Core Point

𝜀	= 1 unit 
minPts = 4

Figure 2. Visualization of DBSCAN clustering algorithm.

In financial attack detection, DBSCAN effectively identifies anomalous transaction
behaviors in dense areas, unaffected by noise data. The core idea of DBSCAN is to define
clusters as sufficiently dense regions [34]. Key parameters of the algorithm include the
neighborhood radius ϵ and the minimum number of points MinPts. For each point, if
its ϵ-neighborhood contains at least MinPts points, then the point is considered a core
point. Clusters are formed based on the concepts of core points and reachability. The
mathematical description of DBSCAN is summarized as follows [33]:

If |Nϵ(p)| ≥ MinPts, then p is a core point (2)

Here, Nϵ(p) represents the set of points within the ϵ-neighborhood of point p.
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2.1.3. Hierarchical Clustering

Hierarchical clustering is a method for creating nested clusters without the need to pre-
specify the number of clusters [35]. In financial attack detection, hierarchical clustering is
used to explore the inherent structure of data and identify potential anomalous transaction
patterns. Hierarchical clustering is divided into two approaches: agglomerative and
divisive. Agglomerative hierarchical clustering starts with each data point as a separate
cluster and gradually merges the closest clusters; divisive hierarchical clustering, on the
other hand, starts with all data as one cluster and progressively splits them into smaller
clusters. The cluster distance during hierarchical clustering can be calculated using various
metrics, such as single linkage (nearest neighbor), complete linkage (furthest neighbor),
or average linkage. For example, the merging condition for agglomerative hierarchical
clustering using single linkage can be expressed as

d(Si, Sj) = min(|x − y|) ∀x ∈ Si, y ∈ Sj (3)

where d(Si, Sj) is the distance between clusters Si and Sj.

2.2. Attack Detection Methods Based on Deep Learning Models

In the field of financial attack detection, deep learning technologies have gained
widespread attention for their excellent feature extraction capabilities and strong pattern
recognition performance [1]. Convolutional neural networks (CNNs) [36,37], recurrent
neural networks (RNNs) [38], and autoencoders [39] are three core deep learning models
that have shown remarkable abilities in handling complex financial data. The following
sections detail the structural features of these models and their applications in financial
attack detection scenarios.

2.2.1. Recurrent Neural Networks

A recurrent neural network (RNN) is another deep learning model, particularly suited
for processing sequential data [38,40]. In financial attack detection, RNNs are capable of
handling the temporal dependencies of transaction data, identifying potential anomalous
transaction patterns. A characteristic of RNNs is the introduction of loops in the model,
allowing the network to retain information from previous moments. However, traditional
RNNs are prone to gradient vanishing or exploding problems; thus, in practical applications,
variants such as long short-term memory (LSTM) networks [41] or gated recurrent units
(GRUs) [42] are commonly used. The basic formula of an RNN is expressed as [41]

ht = σ(Whxxt + Whhht−1 + bh) (4)

Here, ht represents the hidden state at time t, xt is the input, Whx and Whh are weight
matrices, bh is the bias term, and σ is the activation function.

2.2.2. Autoencoder

Autoencoders are a type of neural network used for unsupervised learning [43], which
extract features by learning a compressed representation of input data. In financial attack
detection, autoencoders can be utilized to learn the characteristics of normal transaction
data, thereby identifying transactions that deviate from normal patterns. An autoencoder
consists of two parts: an encoder and a decoder. The encoder maps input data to a hidden
layer representation, while the decoder maps this representation back to the original data
space. By minimizing the difference between the input data and the reconstructed data,
the autoencoder can learn effective features of the data [39]. The basic formula of an
autoencoder is given as [43]

x̂ = g( f (x)) (5)

where x is the input data, f represents the encoding function, g denotes the decoding
function, and x̂ is the reconstructed data.
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3. Materials and Methods
3.1. Dataset Collection

In this study, multiple data sources were selected to construct a comprehensive
and representative dataset for financial attack detection. The dataset comprises pub-
licly available financial transaction records, synthetic data, and anonymized data from
financial institutions.

1. Public financial transaction records: Data from publicly available sources, such as
stock and credit card transactions, typically include information on transaction time,
amount, and parties involved. The advantages of public data lie in their transparency
and accessibility, contributing to the study’s general applicability and reproducibility.

2. Synthetic data: Considering the sensitivity and difficulty in obtaining real financial
data, synthetic data serve as an essential supplement. Algorithms are utilized to
generate synthetic data with realistic characteristics, such as using Monte Carlo
simulations for transaction patterns. This approach aids in simulating complex attack
scenarios while preserving privacy.

3. Anonymized data from financial institutions: In collaboration with financial insti-
tutions, a portion of real financial transaction data were obtained. These data were
anonymized before sharing to protect customer privacy. The authenticity and complex-
ity of these data are crucial in enhancing the practicality and accuracy of the model.

The rationale for selecting these datasets for experimentation is based on several
considerations: diversity and representativeness, combining public, synthetic, and real
anonymized data to ensure the dataset covers a wide range of scenarios and patterns,
thus enhancing the model’s generalization ability. Authenticity and reliability, as real
data provide a credible benchmark for assessing the model’s performance in practical
applications. Privacy protection, as the use of anonymized and synthetic data allows for
research without disclosing sensitive information.

3.2. Dataset Annotation

Dataset annotation is a crucial step in ensuring the effectiveness of model training. For
financial attack detection datasets, the annotation process involves categorizing transaction
records as “normal” or “attack”.

1. Annotation criteria: A series of criteria based on transaction characteristics, such
as transaction frequency, amount, and historical behavior of the parties involved,
were established. For instance, frequent large transactions might be flagged as
suspicious attacks.

2. Expert review: The annotation process involved the participation of experts in the
financial field. They conducted preliminary annotations based on their experience
and industry knowledge, especially for complex or ambiguous cases.

3. Algorithmic assistance: To enhance efficiency, simple machine learning algorithms
were used for pre-annotation, followed by manual expert review. This method com-
bines the efficiency of algorithms with the accuracy of human expert judgment.

4. Iterative optimization: The annotation process is iterative. After initial training on pre-
annotated data, the model’s predictions are used to guide further manual annotations,
forming a feedback loop.

A key mathematical principle in the annotation process is Bayes’ theorem, which can
be used to calculate the probability of a transaction being an attack given certain specific
transaction features. Bayes’ theorem [44] is expressed as

P(A|B) = P(B|A)× P(A)

P(B)
(6)

where P(A|B) is the probability of event A occurring under condition B, P(B|A) is the
probability of condition B given that event A has occurred, and P(A) and P(B) are the
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marginal probabilities of event A and condition B, respectively. Applying this principle
allows for a more accurate assessment of the correlation between various transaction
features and potential attack behaviors, thereby improving the accuracy of annotations and
the performance of the model. Overall, the data collection and annotation process in this
study aims to ensure the representativeness, authenticity, and privacy protection of the
dataset while enhancing annotation efficiency and accuracy through the combination of
expert knowledge and algorithmic analysis. This process is vital for developing an efficient
and accurate financial attack detection model.

3.3. Proposed Method
3.3.1. Finsformer Overview

The Finsformer model is a deep learning model specifically designed for financial at-
tack detection, combining the Transformer architecture with an innovative cluster-attention
mechanism to enhance the accuracy and efficiency of detecting anomalous transaction
behaviors in financial systems. The following sections provide a detailed overview of the
Finsformer model’s overall construction, its characteristics, and operational mechanism.
Based on the Transformer architecture, widely applied for its outstanding performance in
processing sequential data, the original Transformer model comprises multiple encoder
and decoder layers, each containing a self-attention mechanism and a feed-forward neural
network. In the Finsformer model, this structure has been partially modified and optimized
to suit the characteristics of financial data. The operational mechanism of the Finsformer
model involves several steps:

1. Input processing: The raw financial transaction data undergo preprocessing, includ-
ing feature extraction, data cleansing, and normalization. The data, in the form of
time series, include transaction amounts, timestamps, and account information. To
effectively process these data, feature extraction and normalization are first carried
out, transforming the raw data into a format that the model can handle.

2. Clustering and attention mechanism application: The cluster-attention mechanism
is applied to the preprocessed data. Through cluster analysis, the model identifies
key patterns in the data and focuses attention on these patterns. Differing from the
traditional self-attention mechanism, the cluster-attention mechanism first clusters
input data based on similarity, then applies the attention mechanism to these clusters.
This approach enables the model to focus more on key patterns in the data, thereby
enhancing the accuracy of detecting attack behaviors.

3. Feature extraction: After processing with the cluster-attention mechanism, the data
are passed to the encoder and decoder layers. These layers further extract and process
features, preparing for the final classification task.

4. Classification and detection: Finally, the model classifies the transactions based
on the extracted features, determining whether each transaction is normal or an
attack behavior.

By introducing the cluster-attention mechanism, the Finsformer model operates more
efficiently in processing large volumes of financial transaction data, especially in identifying
complex attack patterns. Compared to traditional models, Finsformer can more accurately
detect abnormal patterns in financial data, which is crucial for detecting complex financial
attack behaviors. The Finsformer model can be adjusted to suit different financial scenarios,
exhibiting good flexibility and scalability.

3.3.2. Transformer-Based Attack Behavior Detection Framework

In the Finsformer model, an improved Transformer architecture is adopted, as depicted
in Figure 3. Here, the traditional multi-head attention mechanism has been innovatively
replaced with a cluster-attention mechanism to more effectively handle the task of detecting



Appl. Sci. 2024, 14, 460 8 of 18

attack behaviors in financial systems. The following sections detail the design features of
the network, its input–output characteristics, and the intricacies of the intermediate blocks,
along with a mathematical explanation of the advantages of this design.

Figure 3. Illustration of the Finsformer.

Model design. The Finsformer model incorporates a cluster-attention mechanism
in place of the conventional multi-head attention mechanism. This mechanism initially
clusters the input data based on feature similarity, then calculates attention weights based
on these clusters. This approach more accurately captures complex patterns and relation-
ships in financial transaction data. The mathematical expression for the cluster-attention
mechanism is

ClusterAttention(Q, K, V) = Softmax
(

QKT
√

dk
+ M

)
V (7)

where M is a mask matrix derived from data clustering, and dk is the dimensions of the
key vectors.

Additionally, the Finsformer model employs a structure of multiple encoders and
decoders, each comprising a cluster-attention module and a feed-forward neural network.
These layers are stacked sequentially to extract and process features layer by layer. Follow-
ing each cluster-attention module is a feed-forward neural network, which includes two
linear transformations and an activation function.

FFN(x) = max(0, xW1 + b1)W2 + b2 (8)

The input–output dimensions of the model depend on the number of features in the
financial data and the requirements of the classification task. Generally, after processing
through the embedding layer, the dimensionality of the input data matches the size of the
model’s internal hidden layers.

Performance analysis. The cluster-attention mechanism enhances the model’s under-
standing of financial transaction patterns through cluster analysis. This method allows
the attention mechanism to focus more on groups of transactions with similar features,
thereby improving the accuracy in identifying anomalous behaviors. By incorporating the
cluster-attention mechanism, the Finsformer model retains the advantages of the Trans-
former architecture while being more suited to handle the characteristics of financial data,
especially in identifying complex and covert attack patterns.

3.3.3. Cluster-Attention Mechanism

A key innovation in the Finsformer model, as presented in this paper, is the intro-
duction of the cluster-attention mechanism, as shown in Figure 4. The following sections
provide an in-depth explanation of the design details of the cluster-attention mechanism,
its mathematical formulation, and the advantages it offers in detecting financial attacks.
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Figure 4. Illustration of the cluster-attention mechanism.

Differences from multi-head attention mechanism. The primary distinction between
the cluster-attention mechanism and the traditional multi-head attention mechanism lies in
the method of processing input data. While the multi-head attention mechanism focuses on
capturing relationships between different positions within a sequence, cluster-attention em-
phasizes identifying inherent groups or patterns in the data. This involves two main steps:

1. Data clustering: The cluster-attention mechanism initially clusters the input data,
aiming to identify potential groups or patterns within it. This approach allows the
model to concentrate on transactions with similar features, thereby more effectively
identifying anomalous behavior.

2. Attention weight calculation: Following the clustering, attention weights are calcu-
lated within each cluster. This method results in a more concentrated distribution of
attention, helping to highlight significant transaction patterns.

Design of clustering algorithms. The choice of clustering algorithm is crucial to the
effectiveness of the cluster-attention mechanism. In this model, clustering methods based
on feature similarity, specifically k-means and DBSCAN, are employed to ensure the
effective identification of inherent patterns in financial transaction data.

K-means clustering, one of the most common clustering algorithms, aims to minimize
the sum of squared distances of each point to the center of its cluster. The objective of
k-means clustering can be expressed as minimizing the sum of squared distances between
data points and their respective cluster centers:

min
S

k

∑
i=1

∑
x∈Si

|x − µi|
2 (9)

where k is the number of clusters, Si is the i-th cluster, µi is the center of cluster Si, and x is
a data point. The algorithmic process is described in Algorithm 1. The specific logic of the
algorithm is as follows: (1) Input and initialization: The inputs to the algorithm include a
set of data points X and the number of clusters k to be formed. Initially, k data points are
randomly selected from the dataset X to serve as the initial cluster centers µ1, µ2, . . . , µk.
(2) Cluster assignment: The algorithm then enters a repetitive looping process. In each
loop, for each data point x in the dataset X, the nearest cluster center is identified based on
a distance measure (here, the square of the Euclidean distance), and the point is assigned
to the corresponding cluster. Specifically, for each point x, the distance between it and
each cluster center µi is calculated, and the cluster center with the minimum distance is
selected as the category c(x) to which x belongs. (3) Updating cluster centers: After all
data points have been assigned to their respective clusters, the centers of each cluster are
updated. Specifically, for each cluster i, the new cluster center µi is the mean of all points x
in that cluster. (4) Termination condition: The above steps of assignment and updating of
cluster centers are repeated until the cluster centers no longer change, indicating that the
algorithm has converged. (5) Output: Finally, the algorithm outputs the updated cluster
centers µ and the cluster labels c(x) for each point x in the dataset X.
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Algorithm 1 K-means clustering algorithm

Input: Data points X, Number of clusters k
Output: Cluster centers µ, Cluster labels for data points
Initialize cluster centers µ1, µ2, . . . , µk randomly from X
repeat

Assign each point x ∈ X to the nearest cluster center:
for each point x ∈ X do

c(x) = arg mini ∥x − µi∥2

end for
Update each cluster center to the mean of assigned points:
for i = 1 to k do

µi =
1

|Ci | ∑x∈Ci
x

end for
until cluster centers do not change
return µ, Cluster labels c(x) for each x ∈ X

K-means clustering is effective in identifying spherical or convex clusters. By mini-
mizing the distances between data points and cluster centers, the algorithm can identify
inherent patterns in the data.

DBSCAN, an algorithm that forms clusters based on the density of data points within a
region, is particularly effective for discovering clusters of arbitrary shapes. The algorithmic
process is also outlined in Algorithm 2. The algorithm mainly involves two parameters:
ϵ (neighborhood radius) and MinPts (minimum number of points in the neighborhood).
The logic of the algorithm is as follows: (1) Input and initialization: The algorithm’s input
includes a dataset of points X, a neighborhood radius ϵ, and a minimum number of points
MinPts. Initially, all data points are marked as unvisited. (2) Traversing data points:
For each point p in the dataset X, if p has already been visited, the process continues to
the next point; otherwise, the following steps are executed. (3) Region query: For each
point p, all points within its ϵ neighborhood are identified, forming a neighborhood set
NeighborPts. (4) Core point determination and cluster expansion: If the number of points
in NeighborPts is less than MinPts, p is marked as a noise point; otherwise, p is considered
a core point, and a new cluster C is created for p. Then, the expandCluster function is called
to expand this cluster. (5) Cluster expansion: In the expandCluster function, for each point
q in NeighborPts, if q has not been visited, it is marked as visited, and the number of points
in the ϵ neighborhood of q is checked. If the number of points in the neighborhood of q is
greater than or equal to MinPts, these new points are added to NeighborPts. If q does not
belong to any known cluster, q is added to the current cluster C. (6) Output: Finally, the
algorithm outputs the cluster labels for each data point.

The mathematical description of the above algorithm is as follows: for a given point p,
its ϵ-neighborhood is defined by

Nϵ(p) = q ∈ D|dist(p, q) ≤ ϵ (10)

where D is the dataset, and dist(p, q) represents the distance between points p and q. A
point p is a core point if and only if its ϵ-neighborhood contains at least MinPts points,
as in

|Nϵ(p)| ≥ MinPts (11)

where |Nϵ(p)| denotes the number of points in the ϵ-neighborhood of p. For each core
point, all points in its ϵ-neighborhood (including other core points and boundary points)
belong to the same cluster. If the ϵ-neighborhood of a core point overlaps with that of
another core point, then all points in these neighborhoods are part of the same cluster.
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Algorithm 2 DBSCAN clustering algorithm

Input: Data points X, Radius ϵ, Minimum points MinPts
Output: Cluster labels for data points
Initialize all points as unvisited
for each point p ∈ X do

if p is visited then
continue to next point

end if
Mark p as visited
NeighborPts = regionQuery(p, ϵ)
if number of points in NeighborPts < MinPts then

Mark p as noise
else

C = nextCluster()
expandCluster(p, NeighborPts, C, ϵ, MinPts)

end if
end for

function expandCluster(p, NeighborPts, C, ϵ, MinPts)
for each point q ∈ NeighborPts do

if q is not visited then
Mark q as visited
NeighborPts′ = regionQuery(q, ϵ)
if number of points in NeighborPts′ ≥ MinPts then

NeighborPts = NeighborPts ∪ NeighborPts′

end if
end if
if q is not yet member of any cluster then

Add q to cluster C
end if

end for

function regionQuery(p, ϵ)
return all points within p’s ϵ-neighborhood (including p)

3.4. Experiment Design

The experimental design of the Finsformer model was aimed at comprehensively
evaluating its performance in the domain of financial attack detection. This included the
partitioning of the dataset, selection of appropriate baseline models, choice of optimizer,
hyperparameter settings, and the design of ablation studies. The following sections detail
these aspects of the experimental design.

3.4.1. Experiment Configuration

The financial transaction dataset used in the experiments was divided into training,
validation, and test sets to ensure effective testing of the model on independent data.
Typically, the dataset was split into 70% for training, 15% for validation, and 15% for
testing. The training set was used for model training, the validation set for adjusting
model parameters during the training process, and the test set for final performance
evaluation. This division method helped to reduce the risk of overfitting and ensured good
generalization of the model to new data.

The Adam [45] optimizer was chosen for the training of the deep learning models.
Combining the advantages of Momentum and RMSprop, the Adam optimizer adapts
the learning rate across different parameter spaces, thereby enhancing the stability and
efficiency of training. Hyperparameter settings significantly impacted model performance.
In the experiments, key hyperparameters such as the learning rate, batch size, dimension



Appl. Sci. 2024, 14, 460 12 of 18

of hidden layers, and the number of attention heads were adjusted. These parameters were
fine-tuned through multiple rounds of experimentation and performance evaluation on the
validation set to achieve optimal training results.

3.4.2. Testbed

In the experimental section of this article, the Finsformer model was compared with
traditional deep learning models such as RNN [38], LSTM [41], Transformer [39], and
BERT [46]. The selection of these models aimed to comprehensively assess the performance
and innovative aspects of Finsformer in the domain of financial attack detection. Each
model possesses unique architectural characteristics and application contexts, resulting
in diverse performances in processing financial data. Therefore, their use as comparative
objects deeply reveals the advantages and application scope of Finsformer.

Firstly, RNN (recurrent neural network) and its variant LSTM (long short-term mem-
ory) are classical deep learning models for processing sequential data. They are capable
of capturing dependencies within time series, which is crucial for financial transaction
data analysis. RNN and LSTM have been extensively applied in areas such as financial
time-series prediction and fraud detection. However, RNN suffers from the problem of
vanishing gradients, while LSTM, although mitigating this issue to some extent, has a
high computational complexity. Comparing Finsformer with these two models enables the
examination of whether Finsformer can more effectively capture long-term dependencies
in financial time-series data and whether it has advantages in computational efficiency.
Secondly, the Transformer model is renowned for its powerful self-attention mechanism,
achieving revolutionary results in the field of natural language processing (NLP). It pro-
cesses the entire data sequence in parallel, effectively capturing long-distance dependencies
within the sequence. Given the complexity and diversity of financial data, the Transformer
model also shows significant potential in the financial domain. Comparing it with Fins-
former not only demonstrates the baseline performance of Transformer in financial attack
detection tasks but also highlights the innovations and optimizations of Finsformer in this
area. Furthermore, BERT, as a pre-trained model based on Transformer, excels in under-
standing complex contextual relationships. With its pre-training on large-scale corpora,
BERT captures rich semantic information. In the realm of financial attack detection, BERT
can provide a deep understanding of complex financial transaction patterns. Compar-
ing it with Finsformer verifies whether Finsformer can surpass classic NLP models in
understanding the complexity and subtle differences in financial data.

In summary, the selection of these specific models as comparison objects is not only
due to their representativeness and advancement in processing time-series data and under-
standing complex patterns but also because of their potential in financial attack detection
applications. By comparing with these models, this article not only demonstrates the
superior performance of Finsformer in financial attack detection tasks but also reveals its
unique advantages in processing financial data, especially in capturing complex transaction
patterns and reducing false positives. Additionally, this comparison helps in understand-
ing the application limitations of each model in the field of financial security, providing
valuable insights and directions for improvement in future research.

3.4.3. Evaluation Index

In the experimental section of this study, several key performance indicators were
utilized to evaluate the effectiveness of the Finsformer model in the field of financial attack
detection, including precision, recall, accuracy, and F1-score. The use of these evaluation
metrics is crucial for comprehensively understanding the model’s performance, as they
reflect the model’s characteristics and strengths from different perspectives. Precision,
an important indicator of the model’s predictive accuracy, represents the proportion of
samples correctly identified as attack behaviors out of all samples labeled as such. A high
precision implies greater reliability of the model in marking transactions as attacks, reducing
the possibility of falsely identifying normal behaviors as attacks, which is particularly
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important in the financial domain due to the potential for unnecessary economic losses
and inconvenience to users. Recall measures the model’s ability to identify positive (attack)
samples, namely, the proportion of actual attack behaviors correctly identified by the
model. A high recall indicates the model’s effectiveness in detecting most attack behaviors,
crucial for preventing financial fraud and reducing missed detections. Accuracy is a more
comprehensive measure of performance, denoting the proportion of samples correctly
predicted by the model out of the total samples. In financial attack detection tasks, high
accuracy signifies the model’s capability to effectively differentiate between attacks and
normal behaviors. However, it should be noted that in unbalanced datasets, accuracy might
not be a very reliable indicator. In financial attack detection tasks, F1-score is particularly
important because it balances the need to identify attacks with the need to reduce false
positives. Overall, these evaluation metrics collectively assess the model’s performance in
financial attack detection tasks, encompassing not only the model’s ability to identify attack
behaviors but also its reliability and efficiency in practical applications. Through these
multi-dimensional assessments, a more comprehensive understanding and validation of
the Finsformer model’s application value and effectiveness in the field of financial security
can be achieved.

4. Results and Discussion
4.1. Attack Behavior Detection Results

The primary objective of the experiments described in this article was to evaluate
the performance of various deep learning models in the task of detecting financial attack
behaviors. The experiments conducted a thorough analysis of the strengths and limitations
of each model by comparing their performance across three key metrics: precision, recall,
and accuracy. The results of the experiments are presented in Table 1 and Figure 5.

Table 1. Detection results of different models.

Model Precision Recall Accuracy F1-Score

RNN [38] 0.83 0.81 0.82 0.82
LSTM [41] 0.88 0.86 0.87 0.87
Transformer [39] 0.90 0.88 0.89 0.89
BERT [46] 0.93 0.91 0.92 0.92
Finsformer 0.97 0.94 0.95 0.95

It was observed that recurrent neural networks (RNNs) exhibited relatively weaker
performance in this task. This is primarily attributed to the challenges RNNs face in
handling long-term dependencies, limiting their ability to recognize complex patterns in
financial transaction data. Long short-term memory (LSTM) networks, as an improvement
of RNNs, effectively address the long-term dependency issue through the introduction of
gating mechanisms, thereby showing better performance in recognizing and memorizing
complex patterns in financial transaction data. The Transformer model outperformed
both RNN and LSTM, benefiting from its self-attention mechanism that processes all
elements of a sequence simultaneously, effectively capturing global dependencies. This
ability enables the Transformer to more accurately capture complex relationships between
various transactions in financial data, thus enhancing the accuracy of attack detection.
The BERT model, a pre-trained language model based on the Transformer, excelled across
all metrics due to its strong contextual understanding capabilities and the advantage of
large-scale pre-training. This indicates BERT’s effectiveness in handling complex contextual
information, which is particularly important for identifying financial attack behaviors.
Ultimately, the Finsformer model achieved the best performance on all evaluation metrics.
This can be attributed mainly to its innovative cluster-attention mechanism, which, by
performing cluster analysis on financial transaction data, captures key patterns in the
data more accurately. Compared to traditional attention mechanisms, the cluster-attention
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mechanism focuses more on significant areas in the data, significantly enhancing the
accuracy in identifying anomalous behaviors.

Finsformer RNN BERT LSTM

A
cc
ur
ac
y

Epoch

Epoch Epoch

Epoch Epoch

Epoch Epoch

Epoch
0 20 40 60 80 100 120140 0 20 40 60 80 100

0 20 40 60 80 100 120140 0 20 40 60 80 100

0 25 50 75 100125 150175

0 25 50 75 100125 150175

0 20 40 60 80 100

0 20 40 60 80 100

0.990

0.992

0.994

0.996

0.998

1.000

10!"

0.0

0.2

0.4

0.6

0.8

1.0

0.990

0.992

0.994

0.996

0.998

1.000

0.0

0.2

0.4

0.6

0.8

1.0

10!#

10!$

10!%

10!&

10!'

10!(

10'

10%

10#
10)

10!)

10!#

10!%

10!'

10!"

10!#

10!$

10!%

10!&

10!'

10'

10%

10#

10)

10!)

10!#

Figure 5. Curves of detection results. Orange line is the training, blue one is the validation.

In summary, the experimental results not only demonstrate the characteristics and
performance of different models in the task of detecting financial attack behaviors but
also confirm the exceptional capability of Finsformer in handling such tasks from both
mathematical and machine learning perspectives. These findings provide valuable insights
and references for future research in the field of financial security.

4.2. Ablation Study on Cluster-Attention Mechanism

In the ablation study of cluster-attention mechanism within this article, the focus was
on exploring the impact of different attention mechanisms on the performance of models
for detecting financial attack behaviors. The experiments, by comparing the performance
of models without attention mechanism, with multi-head attention mechanism, and with
cluster-attention mechanism across key metrics such as precision, recall, and accuracy,
provided an in-depth analysis of the strengths and limitations of each mechanism, thereby
demonstrating the effectiveness of cluster-attention in specific applications, as shown in
Table 2.

Table 2. Detection results of different attention mechanisms.

Attention Mechanism Precision Recall Accuracy F1-Score

No Attention [36] 0.83 0.79 0.82 0.81
Multi-head Attention [39] 0.90 0.91 0.90 0.90
Cluster-attention 0.97 0.94 0.95 0.95

The results indicated that models lacking an attention mechanism performed relatively
poorly across all metrics. This was mainly attributed to their inability to dynamically focus
on specific parts of the data, particularly in processing complex sequential data such as
financial transactions. This static approach to information processing limited their capacity
to capture key patterns and relationships in financial transaction data, resulting in less
accurate identification of attack behaviors. The introduction of the multi-head attention
mechanism significantly improved model performance. By simultaneously processing
multiple parts of a sequence and calculating the interrelationships between different parts,
the multi-head attention mechanism effectively enhanced the model’s understanding of
complex relationships. This indicated that the mechanism was capable of effectively
handling complex patterns in financial transaction data, especially excelling in capturing
associations between transactions, thereby improving the precision in detecting attack
behaviors. Finally, the cluster-attention mechanism exhibited the best performance in the
experiments. This outcome reflected that cluster-attention, by clustering data based on
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feature similarity and then calculating attention weights on these clusters, focused attention
more on key areas within the data. Through precise cluster analysis, the cluster-attention
mechanism was able to more accurately focus on important patterns and relationships in the
data, particularly enhancing the ability to identify anomalous behaviors in financial data.

In summary, the experimental results clearly showed the roles and effects of different
attention mechanisms in the task of detecting financial attack behaviors. Models without
an attention mechanism showed poorer performance due to a lack of focus on important
parts of the data. The multi-head attention mechanism significantly enhanced model
performance by providing dynamic attention to the data. The cluster-attention mechanism,
on the other hand, further optimized the allocation of attention through precise cluster
analysis, significantly improving the accuracy and efficiency of the model in processing
complex financial data. These findings not only prove the potential application of the
cluster-attention mechanism in the domain of financial attack detection but also provide
valuable references for future research in similar fields.

4.3. Ablation Study on Transformer Feature Extractor

This section is dedicated to evaluating the performance of different feature extractors
in the task of detecting financial attack behaviors. By comparing the performance of manual
feature extraction (represented by support vector machine, SVM), recurrent neural network
(RNN), convolutional neural network (CNN), and Transformer feature extractors across
key metrics such as precision, recall, and accuracy, the experiment conducted an in-depth
analysis of the advantages and limitations of each feature extractor and explored their
effectiveness in handling financial data.

As shown in Table 3, the performance of manual feature extractors was relatively
lower. This was mainly attributed to the inability of manually selected features to fully
capture complex and non-linear patterns in financial data, limiting the model’s accuracy
in identifying attack behaviors. While SVM performs well in linear problems, its efficacy
diminishes in the face of complex financial data. The RNN feature extractor, suitable for
processing sequential data, showed better performance than manual feature extraction. Its
ability to capture temporal dependencies is particularly important for financial transaction
data analysis. However, RNNs may face challenges in handling long-term dependencies
due to the issue of vanishing gradients. The performance of the CNN feature extractor
was slightly inferior to that of RNN, possibly because temporal dependencies in financial
transaction data are more critical than spatial patterns. Nonetheless, CNN showed certain
effectiveness in capturing local patterns, especially in data with strong spatial correla-
tions. The Finsformer feature extractor exhibited the best performance across all metrics,
demonstrating its strong capability in global feature extraction. The Finsformer, through
its attention mechanism, processes all elements of a sequence simultaneously, effectively
capturing the global dependencies in financial transaction data. This mechanism allows the
Finsformer to consider all elements in a sequence and capture the complex relationships
between them, especially in complex and non-linear financial data.

Table 3. Detection results of different feature extractors.

Feature Extractor Precision Recall Accuracy F1-Score

Manual Feature Extractor
(SVM) [47] 0.87 0.89 0.89 0.88

RNN [38] 0.93 0.91 0.91 0.92
CNN [36] 0.92 0.91 0.92 0.91
Finsformer 0.97 0.94 0.95 0.95

4.4. Limitations and Future Work

This study has achieved certain innovations and progress in the field of financial attack
detection, yet it also faces some limitations and proposes directions for future research.
Firstly, regarding the innovations of this work, the Finsformer model, by integrating the
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Transformer architecture and cluster-attention mechanism, has effectively enhanced the
accuracy and efficiency of financial attack detection. The Transformer’s powerful capability
in processing sequential data allows Finsformer to capture long-term dependencies and
complex patterns in financial data. Concurrently, the introduction of the cluster-attention
mechanism strengthens the model’s ability to identify key patterns in financial transaction
data, particularly demonstrating superior performance in dealing with large-scale and
diverse datasets. The experimental results show that Finsformer surpasses traditional deep
learning models such as RNN, LSTM, Transformer, and BERT in several key performance
metrics. However, this study also has limitations. Primarily, the computational efficiency
of the Finsformer model, especially in processing large datasets, remains a challenge.
Although the Transformer architecture offers good parallel processing capabilities, the
training and inference speed of the model might be impacted when handling very large-
scale data. Additionally, the performance of the model largely depends on the quality and
diversity of the data. In practical applications, financial transaction data might be plagued
with issues of noise, inconsistency, and incompleteness, potentially affecting the model’s
accuracy and robustness.

Future research directions could unfold in several areas: firstly, optimizing the com-
putational efficiency of the Finsformer model, particularly in handling large datasets, and
exploring more efficient training and inference methods. Secondly, further enhancing
the model’s robustness to noise and inconsistent data, for instance, by introducing more
advanced data preprocessing and augmentation techniques. Additionally, considering
integrating the Finsformer model with other types of security defense mechanisms, such as
traditional network security technologies, to improve the overall level of financial security.
Furthermore, exploring the application of the Finsformer model in a broader range of fi-
nancial security scenarios, such as fraud detection and abnormal transaction monitoring, to
validate the model’s generalization ability and practical application value. Simultaneously,
testing and optimizing Finsformer on more diverse and larger datasets is considered, to
assess its adaptability and effectiveness in different financial environments.

In conclusion, although this paper has made some progress in the realm of financial
attack detection, continued in-depth research and constant optimization are required in the
face of ever-changing and increasingly complex financial security threats. Through future
efforts, significant achievements in the field of financial security are anticipated, providing
robust technical support for the stability and development of the finance industry.

5. Conclusions

With the rapid development of financial technology, the financial system is increasingly
facing security threats. The Finsformer model proposed in this paper enhances the detection
capability of financial attack behaviors by introducing advanced deep learning technologies.
Its core innovation lies in combining the Transformer architecture with the cluster-attention
mechanism for detecting financial attack behaviors. Experimental results demonstrate
that Finsformer surpasses traditional models such as RNN, LSTM, Transformer, and BERT
in key metrics such as precision, recall, and accuracy, achieving scores of 0.97, 0.94, and
0.95, respectively. Additionally, ablation experiments on different feature extractors have
confirmed the effectiveness of the Transformer feature extractor in processing complex
financial data. Future research will focus on further optimizing the Finsformer model,
including improving the computational efficiency of the model, expanding its application
scenarios, and exploring its application on larger and more diverse datasets.
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