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Abstract: The demand for digitizing manufacturing and controlling processes has been steadily
increasing in recent years. Digitization relies on different techniques and equipment, which produces
various data types and further influences the process of space understanding and area recognition.
This paper provides an updated view of these data structures and high-level categories of techniques
and methods leading to indoor environment segmentation and the discovery of its semantic meaning.
To achieve this, we followed the Systematic Literature Review (SLR) methodology and covered
a wide range of solutions, from floor plan understanding through 3D model reconstruction and
scene recognition to indoor navigation. Based on the obtained SLR results, we identified three
different taxonomies (the taxonomy of underlying data type, of performed analysis process, and
of accomplished task), which constitute different perspectives we can adopt to study the existing
works in the field of space understanding. Our investigations clearly show that the progress of works
in this field is accelerating, leading to more sophisticated techniques that rely on multidimensional
structures and complex representations, while the processing itself has become focused on artificial
intelligence-based methods.

Keywords: decade survey; indoor environment analysis; BIM; machine learning; room segmentation;
room classification

1. Introduction

Nowadays, the digitalization of building structures is a common practice. In many
countries, newly started public projects are required to define a Building Information
Modeling (BIM) workflow. This requirement results in electronic documentation describing
even the most detailed aspects of the facility. It allows for project coordination from the
construction stage to the operation and maintenance of already functioning property. For
companies operating during the Fourth Industrial Revolution (Industry 4.0), it is clear
that such models are crucial for optimizing manufacturing processes, automating space
management, tracking the most valuable resources, and improving the safety of employees.
The demand for digital descriptions and electronic representations of buildings has led
to the extensive development of diverse software systems. These systems help manage
all the information and make it easily accessible—not only during property construction
but at any time when needed. In general, BIMs may comprise various data: 3D models,
asset descriptions, parameters of used materials, available equipment, etc. However, a
straightforward question is yet to be answered: What about already existing properties? Private
facilities built before the digital era have only physical building plans, usually stored in
paper form. Proper documentation is more likely to be found for public properties and
factories, but there may be no reliable documentation other than the building itself. As
BIM plays the role of an information repository, there is always a possibility to conduct
an inspection and gather all required data, even manually. An existing facility can be
upgraded with the Internet of Things (IoT) sensors, smart assistants, and intelligent robots.
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We can construct a digital twin of the building and create a 3D model of it. The floor
plan can be reconstructed using drones flying through the factory. This is all possible but
requires excessive time and (most likely human) resources. The problem becomes urgent
when we consider the number of measurements and other data demanded by modern
machine-learning-based solutions to work efficiently. To achieve the best performance
possible, all the mentioned smart systems require a complete semantic understanding
of their application field and its high-quality models. For example, a wearable tracking
bracelet needs to know what room the calculated employee’s coordinates represent. This
creates a niche for systems capable of moving building data from any available source (like
paper, pictures, or the existing property itself) to e-resources in an automated way. The
best possible scenario would be to find a system that creates the documentation without
user interaction other than data input. It should recreate not only the model but also
understand its components and retrieve their meaning, most likely with extensive use of
artificial intelligence and machine-learning-based decision models. One of the aspects of
data processing in such systems is how to accomplish the operation of space segmentation
(e.g., into rooms) and its categorization (e.g., into types of rooms). Although multiple
potential solutions are available, they all noticeably differ in terms of used data structures
and methodologies. In the literature, even a fast search for solutions based on a specific
input data type (like a floor plan or point cloud) returns many possibilities and different
approaches. They stretch from typical ones, such as the spatial data of 3D point clouds or
colorful 2D images, to extraordinary ones, like sound chirps or energy measurements.

The primary motivation for our work is this unprecedented diversity of possibilities.
The industry needs to choose proper input data and select it based on the expected imple-
mentation reality, such as the limited computing power of sensors or the short battery life
of robots. However, there is a visible lack of proper systematic reviews and surveys that
would organize already proposed, implemented, and tested solutions with a particular
focus on the processed data, utilized methods, and their actual applications. To the best of
our knowledge, in the last decade, there has been only one survey discussing the topic of
room segmentation on sample input data type of floor plan images—the one conducted
by Bormann et al. [1]. Similarly, during the research, we found only two other surveys
focused on spatial data and discussing 3D building modeling [2,3]. Searching for a survey
focused on the diversity of available data structures yielded no results. There is expected
to be a significant improvement in digitalization technology and both the quantity and
quality of available data sources each year, not to mention each decade. We can clearly
observe the need for a catalog of the newest possibilities. This would have to be massive
and comprehensive so that the companies (at all stages of their digital transformation) can
use it as a guide through the extensiveness of data they can analyze and applications they
can benefit from. It should present what types of data are worth gathering and how they
can be used. It is also worth discussing the commonly found challenges and mistakes so
that others do not repeat them.

To answer this need, in this paper we present a set of taxonomies dedicated to space
understanding in the indoor environment. These taxonomies organize the current state of
knowledge on three different levels: processed input data types, high-level category of the
processing method, and actual low-level application. We summarize each of the taxonomies
with extensive discussion and conclude the observations in a section dedicated to visible
research challenges. We propose a custom review protocol and present literature research
on space segmentation and classification systems across diverse input data structures,
with a primary focus on the processing of 2D images. In this analysis, we followed the
instructions of a Systematic Literature Review (SLR) [4–6]. A guide to this methodology
was presented by Xiao and Watson [7]. Their process is grounded in eight consecutive
steps executed one after another. It allows for minimizing the researcher bias that can
occur in the case of an entirely subjective choice of papers. Based on their proposals, we
adapted the idea, created a set of twelve execution steps, and used them analogically—to
prepare a new research protocol, adjusted and dedicated to our needs. Previous works
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were overly task-focused and mainly discussed only the newly presented algorithms and
under specific conditions. To widen the research base, we wanted to avoid focusing on
any particular solution and expected the whole research to be data-focused instead. We
expected the analyzed systems to fulfill just one essential requirement: solutions needed to
work correctly in the indoor environment.

In summary, in this paper we extend the current state of literature by:

• a customized SLR on the topic of room segmentation and classification,
• three interdisciplinary taxonomies for the research done so far and summarizing

research findings,
• extended discussion of the application scenarios of found solutions,
• description of observed challenges and research directions that need further analysis.

The remainder of this paper is structured as follows: Section 2 describes the methodology
we used, the proposed survey execution protocol, and its conduction results. Sections 3–5
present the taxonomies of input data type, high-level abstraction category of the performed pro-
cess, and its low-level application (taxonomy of the accomplished task), respectively. Section 6
provides a bibliometric analysis of the articles found. Section 7 focuses on the encountered
challenges the researchers are trying to overcome, Section 8 discusses the newest trends in
the area, and Section 9 summarizes this document with a short review of the findings and a
general survey conclusion.

2. Review Methodology and Conduction

To make the selection of the literature as objective as possible, the proposed review
methodology followed the SLR steps for the planning and organization of the research.
Initial assumptions and requirements were defined and described before the actual study
was conducted. We asked three research questions that formulated the discussed problem
in an organized manner (Section 2.1). Presented sets of filtering criteria narrowed the search
results to only scientifically important papers (Section 2.2). We used multiple publication
libraries and searched each one with the same, previously prepared query (Section 2.3).
Finally, we combined all the elements to develop a step-by-step review protocol, which can
be easily followed and reviewed at any time (Section 2.4).

2.1. Research Questions (RQ)

The main goal of this study was to create an overview of the room segmentation and
classification methods that could be easily visualized. Questions we raised in this section
were formulated to organize the results into a set of taxonomy diagrams. Each diagram
represents knowledge gathered from answering one of the questions asked. To make the
taxonomies cover a possibly wide range of solutions, they had to be generic enough to
cover many possible relevant answers. At the same time, the questions had to be precisely
formulated so as not to include too many papers unrelated to the topic.

RQ1: What input data structures are in use? The approach chosen for the entire
survey was to be primarily data-driven. It created the need for a list of input data structures,
which are typically available and used in room segmentation and classification tasks. We
expected to find data structures of multiple dimensions, such as 2D-floor plan images or
3D point cloud models. Additional subtype divisions were specified as needed.

RQ2: What is the high-level abstraction category of the performed process? After
identifying the input data structure, we separated different classes of solutions. Found
methodologies proved to be highly diverse and incomparable between one another without
additional grouping. We included instance segmentation or multi-class classification to the
expected categories.

RQ3: What is the accomplished task? The third taxonomy was dedicated to the
actual practical application of the analyzed methodology. We expected the same category
of performed process to be used in multiple, often very different types of tasks, like 3D
model reconstruction, floor plan prediction, or robot localization.
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We answered all three of the stated research questions for each of the papers found
during the conducted survey. This way, the preparation of the taxonomies and proper
paper classification was faster and more likely to be truly objective. Gathered research
papers were automatically organized by the answers given, going top to bottom by (1)
input data type, (2) solution category, and (3) implemented task.

2.2. Filtering Criteria

To specify the rules of paper acceptance, we formulated filtering criteria. We split
them into two categories. Exclusion Criteria (EC) described attributes that a publication
could not have. In contrast, the Inclusion Criteria (IC) specified the requirements that had
to be fulfilled. The order of the filtering directly influenced the amount of work required
for the subsequent analysis steps. At the very beginning of the review protocol, we applied
filters to the static attributes of the papers. As ‘static’, we understood attributes that were
not a subject for discussion and could be easily found, such as the publication date or its
language. The more time-consuming the evaluation of the exclusion criteria was, the later
it was executed since its analysis potentially would not have been required any longer if
the easier evaluated criteria had filtered the result beforehand. All the specified filtering
criteria, including their numbers, titles, and descriptions, are presented in Table 1.

Table 1. Filtering criteria used during the research, split into Exclusion Criteria (EC) and Inclusion
Criteria (IC).

No. Title Description

EC1 Published before 2012 To keep the research up to date, the survey conducted was focused on the newest
methodologies—from the last decade only.

EC2 Duplicated article As we searched multiple publication databases, the same article could be found in many
different sources but was supposed to be analyzed only once.

EC3 Not written in English
English was chosen as the only accepted language. It was important to check the whole

paper, as it happened to find results with English titles and abstracts but foreign language
content.

EC4
Not concerning a topic, at least
potentially related to the room
segmentation or classification

Although we used a precise search query, the found papers’ relevance was not guaranteed.
We checked them manually and verified if the general topic of the article discussed floor
plan analysis, spatial data processing methods, or at least an issue that could lead to room

segmentation in any different type of data.

EC5 Full text not found Reliable paper analysis requires the publications to be read and understood. Titles or
abstracts alone were not enough.

EC6 Does not describe the process in
detail

Papers without a precise description of the methodology used were rejected. The
presentation of only the research results was not enough to fully answer the research

questions.

EC7 Describes only ideas, discussions, or
interviews

The objective of this study was to include publications of substantial value and precise
descriptions of the papers. They were required to be implemented reliably, tested, and

their results had to be available.

IC1
The topic must indicate the, at least

potential, use in the indoor
environment

This paper focuses on closed spaces, which can segment rooms inside of a building, not
areas outside of it. This criterion filtered out solutions dedicated to large-scale outdoor

applications, like the analysis of aerial photos.

IC2 Method must include some form of
automated processing

The idea is to compare systems of somehow unsupervised data processing. Descriptions of
fully manual processes, design guidelines, or manually carried out reports were omitted.

IC3 Article must reference at least 10
other papers

As the survey should be based only on reliable and scientifically important articles,
analyzed papers were expected to be based on at least ten reviewed references.

IC4 Solution must process room—or
higher structure—level data

We want to filter out solutions focused on internal single-room analysis. An example of
such a scenario was the furniture segmentation task or wall décor recognition. To fulfill

this criterion, the algorithm had to be able to segment at least one instance of a room or one
class for the whole room needed to be recognized.

IC5 Article must describe the achieved
performance and datasets used

Only papers with reliable results presentations were accepted. To fulfill this criterion, a
description of the performance evaluation method had to be presented. The public

availability of the datasets was not required, but their description was.
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2.3. Search Query and Data Sources

The construction of a proper search query, used during the survey, was one of its most
essential tasks. Overly vague phrases would overflow us with irrelevant publications, while
too precise ones would result in an excessive restriction of the search results. For this survey,
we proposed to use two groups of examples to build the search query: ‘room [activity]’
and ‘floor plan [activity]’. For the room group, there was a set of seven activities chosen:
‘segmentation’, ‘classification’, ‘clustering’, ‘structure’, ‘detection’, ‘recognition’ and ‘labeling’. For
the floor plan group, the set contained only three activities: ‘segmentation’, ‘clustering’, and
‘analysis’. This way, we expected the returned results to provide a wide range of possible
differentiated input data types (because of the room examples group) but with an additional
focus on processing 2D images (because of the floor plan examples group). Adjusted search
phrases were used within the advanced search engines of the selected databases as a
single merged query. We searched six different databases of publications. They all collect
numerous publications, are fully digital, and are available via web browsers. In many cases,
they are also accessible to academic researchers free of charge via their institutions.

The selected databases were as follows:

• Association for Computing Machinery Digital Library (ACM DL),
• Institute of Electrical and Electronics Engineers Xplore (IEEE Explore),
• Digital Bibliography & Library Project (dblp),
• Scopus,
• Elsevier Science Direct (SD),
• Springer Link (SL).

2.4. Review Protocol

All requirements and data sources were combined into a unified review protocol.
We specified two flows of processing: main flow and survey extension. The first one
determined and processed articles returned from the initial search. The second one focused
on 2D image processing and extended the survey with potentially relevant articles found
as referenced in the initial set and described as highly important. The entire procedure we
proposed consisted of twelve steps: ten of the main flow and two of the survey extension.
Each protocol step was done sequentially and extended with notes about its execution. A
summary of the articles gathering is presented in the diagram in Figure 1. We represented
every single step of the protocol with one dedicated block of the diagram. Each block
comprises the step number, its name, and the filtering criteria used (if any were applied).
Red numbers are dedicated to the main survey flow. Blue numbers indicate the survey
extension process and the number of additionally reviewed papers. Details of each step’s
execution are described in the following part of this section.

STEP 1: Initial search. The combined search phrase was used to query all six proposed
databases. The number of returned results was noted separately for each database. Without
a filter for publication year, we found over three thousand records. Most were found in the
Springer Link database, and the least in IEEE Explore.

STEP 2: Attributes filtering. Depending on the actual features of the database search
engine, the article’s publication date (EC1) was manually checked or introduced additional
parameters to the search query. Applying the first exclusion criteria reduced the number of
overall records returned by over 35%. The reduction ranged from 22% for IEEE Explore to
45% for Springer Link.

STEP 3: Results concatenation. All papers found were aggregated to form one
larger initial set of articles for further filtering. The entire set was checked, and duplicated
findings were removed (EC2). The concatenated results constructed a collection of over two
thousand records. Duplicate removal excluded 236 papers from further analysis, leaving
1854 records in the set.

STEP 4: Titles screening. The first level of actual paper reading was to examine
its title. Initially, it was checked for the language used (EC3). Later, the title’s topic was
assessed for conformity to the room segmentation and classification problem (EC4) and
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indoor environment usage (IC1). Over two-thirds of the papers were removed, leaving
634 records in the set.

STEP 5: Abstracts screening. Abstracts were assessed and checked for language (EC3)
and topic (EC4, IC1). Additionally, we confirmed that the proposed methodology worked
without extended user involvement (IC2). Abstract screening reduced the set of papers by
36%, leaving 402 records in the collection.

STEP 6: Full-text obtainment. If all previous criteria were satisfied, the publication
was checked for access availability (EC5). The whole paper had to be downloaded as a file
or easily readable in an online reader.

STEP 7: Full-text screening. We checked the publication the same way as titles and
abstracts (EC3, EC4, IC1, IC2), but this time with the use of the whole article’s text. The
number of filtered records was noted for steps 6 and 7 combined, reducing the total set by
an additional 57%, leaving 172 papers in the collection.

STEP 8: Bucketing by input data type. In this step, we answered the first research
question (RQ1). For each article, we specified the processed input data type and used it
to categorize the papers. The analysis led to the creation of five buckets of publications.
Selected for further analysis, the bucket of 2D images turned out to be the largest one.
Including the survey extension, we assigned 87 articles to it. We found a similar number of
papers discussing 3D spatial data. The rest of the discovered data types were significantly
less numerous. Only two additional review papers were found on room segmentation and
classification. A deeper analysis of the taxonomy created based on the input data type is
presented in Section 3.

STEP 9: Bucketing by solution category. In this step, we answered the second
research question (RQ2). We split the initial buckets of articles into subgroups based on the
presented high-level abstraction category (performed process) of the analyzed solutions.
We were able to specify four such categories and describe them in Section 4.

STEP 10: Bucketing by accomplished task. The last step of the main protocol flow
was focused on the low-level task of the analyzed methodology and its actual application
in real life. It answered the third research question (RQ3). We found several different
applications and organized them into the third proposed taxonomy. It is described in detail
in Section 5.

STEP 11: Full text analysis. The first step of the survey extension was to read
the entire article and validate that its full content presented a detailed solution (EC6)
and was not a discussion, idea description, or interview (EC7). It had to process entire
rooms (IC4) and describe the achieved performance (IC5). This step was based on a deep,
precise understanding of the article and methodology analysis. From the initially selected
72 articles processing 2D images, 51 papers were determined as passing all stated filtering
criteria and were to be checked with further referenced articles analysis.

STEP 12: Survey extension. The goal of the last step of the review protocol was to
extend the set of publications with articles that were important and related to the analyzed
topic. They could be the basis for found solutions or be referenced in them and described
as highly important. This step was executed only once—not to include too many papers
recursively. The extension suggested the following (in decreasing order): 36 new articles
for the 2D Images bucket, 9 for the Feature Set, 3 for 3D Spatial Data, and two for Graph
Structure and Review Papers.
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Figure 1. Review protocol diagram with details representing the number of papers after each step’s execution. Red numbers provide information about the main
execution flow and blue ones about the survey extension. Introduced color-coding for input data types as follows: 2D Images in green, 3D Spatial Data in blue,
Graph Structures in red, Review Papers in gray, and a Feature Set in yellow.
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3. Taxonomy of Input Data Types

The first taxonomy organizes the analyzed works by the input data type, which is
related to the equipment used to obtain the data and further influences the processing
algorithms used. It allows readers to familiarize themselves with the most common
representations of data structures and the wide range of their kinds.

3.1. Taxonomy Presentation

The found input data types, as from the first bucketing step of the survey execution
protocol, can be seen in Figure 2. Review papers were omitted from the analysis because
they do not represent any actual type of input data themselves.

The four main types of structures we specified are:

• 2D Images,
• 3D Spatial Data,
• Graph Structures,
• Mixed Feature Sets.

2D Images were further divided into three and the feature sets into six sub-types of
input data structures. In total, twelve types of data were distinguished. In Table 2, we
present referenced publications organized by the processed input data type. As 2D images
were the most commonly used and are generally the easiest to obtain, we decided to study
them more closely. They serve as the primary input data type for most object detectors,
are relatively easy to analyze, and are utilized in various scenarios, both academic and
non-academic alike. Due to their popularity, flat images are handled in many different ways
and by algorithms of various computing complexity. We extend our survey in the direction
of 2D images to be able to fully cover their applications and present their popularity in
found solutions.

Table 2. Referenced articles organized by the input data type. Numbers in brackets indicate the
number of articles found in the main survey’s flow (first number) and its extension (second number).

Input Data Type Subtype Found Papers

3D Spatial Data (68 + 3) - [8–78]
Graph Structure (5 + 2) - [79–85]
2D Images (51 + 36) Floor Plan / Sketch (26 + 15) [86–126]

Occupancy Map (17 + 6) [1,127–148]
Environment Picture (8 + 15) [149–171]

Feature set (25 + 9) CAD-Like Data (1 + 0) [172]
Energy Consumption (2 + 0) [173,174]
Laser Range Measurements (5 + 0) [175–179]
Mixed (10 + 9) [180–198]
Radio Signal Fingerprint (2 + 0) [199,200]
Sound echo, chirp, RF (5 + 0) [201–205]
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Figure 2. Diagram presenting first constructed taxonomy—based in article grouping by input data structures.
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The 2D Images group represents all the data that could be delivered as images, pic-
tures, document scans, or sketches. It covers the rather raw environment representation,
such as its planar depictions, as well as clearly more sophisticated inputs, like real pictures
taken by an agent. They visibly differed in the applied processing methodology—with a
vision-based approach dedicated to real photos and algorithmic processing for the more
symbolic representations. Their essential aspect was that each 2D image could be de-
scribed as a matrix consisting of columns and rows of numerical data and processed in
a pixel-based manner. This way, the group covered a wide range of possible image rep-
resentations regardless of the number of information channels they provided. It could
be a typical black-and-white picture (one channel, 0–255), an occupancy grid map (one
channel, empty/occupied/unknown), a colorful image (three channels, RGB, 0–255), or
even a depth-aware image (four channels, RGBD, 0–255). As long as the processing re-
mained at the pixel level (was aware of the pixel’s x and y coordinates), the input data were
classified as a 2D image. To somehow organize the group, we specified three subtypes:
floor plan/sketch, occupancy map, and environment picture. The first one covered pictures
and scans of the floor plans. They could be images of professional architectural plans from
dedicated software or even pictures of freehand sketches. The second subtype grouped
occupancy maps generated, e.g., from the laser sensors of home cleaning robots. The third
one combined all the pictures of the real indoor environment, photographs taken with
a mobile phone, professional indoor panoramas, or frames of videos from surveillance
cameras.

The 3D Spatial Data group gathers input data types that somehow describe the spatial
positioning of the measurements. This group is dominated by point-cloud-based solutions,
so we specified no additional subtypes. Other data structures we found were significantly
less numerous, with a 3D mesh model of a building as an example. Not to overcomplicate
the taxonomy, we decided to classify the three-dimensional trajectory as spatial data as
well. This way, we extended this group with solutions processing readings from tracked
Inertial Measurement Units (IMUs), mobile devices, or mobile scanners. A specific case
that we assigned to this group was a way of depth-aware RGBD image processing. In
the solution found, images were not analyzed as matrices of data (pixel-examination was
abandoned) but were used to construct a point cloud instead.

The Graph Structures group combines methodologies processing input data repre-
sented as graphs of dependencies. In this case, the most popular solution was to use
the spatial instances of building structures (rooms, corridors, areas) as graph nodes and
their adjacency or connections as graph edges. The aspect determining if a found solution
should be a member of this group was the usage of graph theory. If the data provided were
formatted in such a way that graph theory could be used, the method was classified as
processing graph structures.

The Feature Set group is the most diverse. Because of this diversity, we separated it
into six different subtypes: CAD-like data, energy consumption measurements, laser range
measurements, mixed input data, radio signal fingerprints, and the combined group of
sound, echo, chirping, and radio frequencies-based input. Subtypes differ significantly
from one another. The Computer Aided Design (CAD) data were much like the models
typically used by architects, e.g., exported from an already existing BIM project. Energy
consumption measurements were based on home energy meters and the individual energy
profile of the device. Laser range measurements represented all the input data that were not
an occupancy grid and came from laser object-to-obstacle distance measurements. Mixed
input data combined situations where multiple, not directly related parameters, such as
a picture of the building façade and expected room sizes, were provided. Radio signal
fingerprints were used as distance determinants between a signal source and reference
stations. The last subtype combined relatively uncommon data—measurements obtained
via sound analysis. An example was a smartphone’s microphone readings after a chirp
generation from the smartphone’s loudspeaker.
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3.2. Taxonomy Discussion

Summarizing, the created taxonomy showed that there is virtually no limitation or
minimal requirement for the input data complexity to perform room segmentation and
recognition successfully. The range of inputs stretched from trivial series of numbers
(one dimension) and matrixes of values (two dimensions), through the spatial location
of measurements (three dimensions), to complicated mixes of different information with
an unlimited number of features. This variety allowed researchers to choose the data
structure that best suited the hardware capabilities of their equipment. The least powerful
devices generated simplified measurements, such as power usage readings or radio signal
strength. We can observe that the more computational power the sensor has, the more
complex data it returns. Worth mentioning is a visible change in the approach, from
offline data gathering and later processing (if the device was not powerful enough) to
edge-computing and transfer to the cloud of only already deducted conclusions. Mobile
platforms with better processors were capable of online analysis of even complicated visual
input or continuous readings, such as video streams from cameras or LiDAR-based distance
calculations. Nevertheless, we can summarize that there is not yet enough computational
power on mobile platforms to process complex spatial data, such as point clouds, in a
fully online manner. The best industrial laser scanners generate so much data, and their
processing is so complicated, that neither data analysis on the device nor instantaneous
transfer to the cloud is possible. In such a scenario, the data were only collected during the
acquisition phase and processed later, offline and using dedicated machines.

4. Taxonomy of High-Level Abstraction Category of Performed Process

The second taxonomy arranges the existing works according to high-level categories
of performed processes. Such an arrangement allows readers to become acquainted with
the general fields a particular research work was focused on.

4.1. Taxonomy Presentation

The second taxonomy groups input data types from Section 3 into buckets of the high-
level abstraction category of performed processes. As articles using the same input data
type completed different categories of tasks, each data structure could be assigned to more
than one bucket simultaneously. Visualization of this taxonomy is presented in Figure 3.
We distinguish four buckets of categories here: segmentation (without class recognition),
segmentation with a simplified classification (room/corridor/unknown), segmentation
with precise classification (kitchen/bathroom/etc.), and precise classification (without
space segmentation). There was no additional splitting into smaller buckets as this would
over-complicate the taxonomy. The separation criterion was the achieved level of semantic
meaning assigned to the analyzed data.

The Segmentation category groups solutions that detect building structures (rooms)
in the source data but do not provide any deeper semantic meaning to it. These algorithms
mainly separate areas and rooms from a more extensive context but without any details
of what kind of room it is. All the segmented objects represented the same class, just a
“room”. As a result, there were, e.g., room1, room2, and room3 found. In multiple cases, the
segmentation process took the form of data clustering.

The Segmentation + Simplified Classification category expands on plain segmenta-
tion with no room-type analysis. It represents a bucket with solutions that recognize more
than one class of object from the whole set of input data but without a complete semantic
understanding of them. These solutions can determine simplified class separation, e.g.,
into two or three classes of rooms. As a result, there were, e.g., ‘room1’, ‘corridor1’, ‘room2’,
and ‘outside’ found.
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Figure 3. Diagram presenting the second constructed taxonomy—based on the high-level abstraction category of found solutions.
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The Segmentation + Precise Classification category groups solutions that further
expand the functionalities of methods from previous buckets. This time the methods can
not only segment rooms but also recognize their precise function. They add semantic
meaning to each segmented object from a broad set of class labels. These solutions can
specify that the found room was a kitchen, living room, bedroom, bathroom, etc. The
number of known classes varied between solutions.

The Precise Classification bucket groups methods that implement multi-class classifi-
cation with a wide range of available class labels but without their segmentation from the
whole set of input data. Previously described segmentation methods could detect multiple
instances of room structures in the input data and assign meaning to them. Methods from
this bucket are entirely focused only on the second part, i.e., just on the class assignment.
An example could be the room-type classification as presented in the input picture taken
with a smartphone. The class was assigned to the entire input and not to separate fragments
of it. A sample result was a classification: “this is a kitchen”. Table 3 presents a matrix
of referenced articles, but this time organized by the processed input data type and the
high-level solution category.

Table 3. Referenced papers grouped by the input data type and high-level solution category.

High-Level Solution Category

Data Type Segmentation Segmentation +
Simplified Classification

Segmentation + Precise
Classification Precise Classification

Floor Plan/Sketch [86–88,90–97,103,108,113,
116,118,120–122,124,125] [102,106,110,126]

[89,98–
101,104,105,107,109,111,
112,114,115,117,119,123]

-

Occupancy Map [1,129–132,134,135,137–
139,142,145,146,148]

[127,128,133,136,140,141,
143,144,147] - -

Environment Picture [151,153,154,170] - [156] [149,150,152,155,157–
169,171]

3D Spatial
[8–14,16–21,23,25–32,34–

49,51–55,57–68,70,71,74–
77]

- [22,24,33,50,56,69,78] [15,72,73]

Laser Range Measurement [176,177] - - [175,178,179]

Mixed [181–185] [189] [180,187,190–195,197,198] [186,188,196]

Radio Signal Fingerprint [200] - [199] -

Sound Echo, Chirp, RF [204] - - [201–203,205]

CAD-Like Data - [172] - -

Graph - - [79,80,82,83] [81,84,85]

Energy - - - [173,174]

4.2. Taxonomy Discussion

While preparing the second taxonomy, we focused more on the processing methods.
We can draw a series of conclusions and observations thanks to the analyzed algorithms
and the variety of results they generate.

Main methodology. There is a tendency to change the most popular and effective
algorithm according to the processed category. Generally, analyzed solutions focused on
two approaches—algorithmic processing or machine-learning methods. Pure segmentation,
in which no weight was given to room-type recognition and without deeper semantic
recognition of spaces, was performed mainly with repeatable algorithms. They process
the readings just like any other multidimensional data, e.g., using clustering methods,
variations of watershed algorithms, Generalized Voronoi Graphs, and many others. Repeti-
tive processing of relatively simple input data yielded satisfactory results. On the other
hand, solutions focused solely on classification are most effectively implemented by using
complex input structures, large neural network models, and different machine-learning
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approaches. Intermediate solutions combine both features and perform individual subtasks
algorithmically or based on artificial intelligence and then combine the results. Other
approaches, although present, were noticeably less popular or effective.

Semantic meaning. The more semantically rich the result needed to be, the more
difficult it was to achieve it. Simple segmentation algorithms are successfully used in
solutions where the collected information presents some abstract form of the world. An
example can be the occupancy map that stores only three types of value in its pixels—empty,
occupied, or unknown. Algorithmic methods perform well in such data, but it is a very
limited representation of the real world, with no deeper semantic meaning that can be
retrieved. When the actual space is represented with ‘real input’, that is, photos taken by
agents, video streams, or point clouds, and the task was to “understand”, the simplest
algorithms cease to work. The input of even the same type is too diverse, and there is no
easy way to specify definite criteria for the classification. Even humans cannot always say
what determines a space membership to a specific category. We subconsciously ‘know’
it, but it is not enough to prepare an algorithm. In such a situation, machine-learning
solutions begin to dominate. Due to their nature and simultaneous processing of millions
of parameters, they can detect rules and dependencies that are invisible even to humans.
In general, the more semantic meaning we want to retrieve, the more real-life input needs
to be processed. For such input, the machine-learning-based solutions are expected to
perform much better than other methods. Solutions that recognize objects from their point
cloud representations and infer the type of the room based on its equipment are also very
promising. However, such processing is an example of a very complex data structure that
requires advanced and resource-intensive processing.

Machine-learning popularity. We can observe that the newer the solution, the more
likely it is to use some form of artificial intelligence and machine-learning processing. This
applies to both one-dimensional and multi-dimensional data inputs. Algorithmic solutions
are much more vulnerable to even the smallest changes in the structure of processed data.
Machine-learning-based solutions are better adjusted to nuances in the input and less
likely to return completely false results. Their performance would worsen in a relatively
progressive way and not with a single visible error threshold.

Hardware capabilities. We can observe an adjustment of the chosen processing
method to the available hardware. This final conclusion is a continuation of the observa-
tion about the increasing complexity of input data with the upgrade of used hardware.
We observe the same with the processing methods used in each distinguished category.
For example, we can point to the precise classification bucket of solutions. Algorithmic
processing requires fewer resources and is successful even in online solutions but requires
more straightforward input data (e.g., graphic structures or radio readings). A powerful
hardware platform was needed to carry out the same task category but for more complex
structures (e.g., point clouds of whole buildings). However, in general, the more advanced
the approach and the larger the amount of data to be processed, the more promising the
results will be.

5. Taxonomy of Accomplished Tasks

The third taxonomy arranges the existing works according to the specific task for
which the particular data types and the performed high-level analysis processes are used.
This taxonomy shows how broad the application areas are and allows the reader to be-
come familiar with the solutions developed for various problems of indoor environment
segmentation and the discovery of its semantic meaning.

5.1. Taxonomy Presentation

The third taxonomy is focused on specifying the accomplished task of the found
solutions. It is presented in Figure 4. For this analysis, we used the extended set of
papers (including the survey extension). Eleven main tasks were found, with three of them
requiring further separation into subtasks. We analyzed papers that led to 17 different
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end results of data processing. Fourteen of them were successfully applied to 2D image
processing and are marked on the diagram with a green background of the box. We
describe all the papers analyzed in the rest of this section, presenting them grouped by the
completed task.

To facilitate the understanding of the content, we decided to develop a single, universal
example that the reader may follow and that we could reuse in each of the subsections. It
was meant to serve two purposes: graphical and practical. We wanted something visually
simple, schematically showing the idea, yet actually used in real applications. We decided
to use a sample floor plan representing an apartment consisting of a living room, two
bedrooms, a toilet, a kitchen, and a corridor. Such an example was selected for three
primary reasons: (1) the leading input data type of this study is a 2D image, (2) it is a data
structure that could be applied to all the main described tasks, and (3) it is subjectively easy
in both preparation and later reading.

To further simplify the navigation across this document, in Table 4 we present a
matrix of referenced articles, this time organized by the low-level actual application and
the processed input data type. It allows for direct navigation into the subsection describing
the task of interest or applications available to held data structures.

Table 4. Referenced papers grouped by their application and processed data type.

Processed Data Type

Task Section 3D Spacial Data 2D Images Graph Structure Feature Set

3D Model
Reconstruction 5.1.1

[9–12,17,18,20,21,23,26–
30,35,36,42,45–49,51,52,
54,55,57,60,61,63,64,74–

76]

[94,110,111,116,154] - [195]

CBIR 5.1.2 - [97,98,114] - -

Environment Desc.
Creation 5.1.3 - [90,95,96,99,103,107,115,119] - -

Floor Plan
Vectorization 5.1.4 - [104,117,120,122] - -

Floor Plan
Predict./Gen. 5.1.5 [8,25,31,33,37,44,53,58,

62,68,71,78] [89,151,153,170] [79,83] [77,172,176,177,183–
185,189,204]

Graph Generation 5.1.6 [13,14,19,67] [138,139] [80,82] [180,190,191,194]

Room Classification 5.1.7 [15,73] [143,149,150,152,155,157–169] [81,84,85] [173–175,178,179,186,188,201–
203,205]

Change Detection 5.1.8 [43] - - -

Map Segmentation

5.1.9

[50] [1,82,127,128,135,136,140–
142,144–147] - [192,193,197,198,206]

Plan Segmentation -
[86–88,91,100–102,105,106,

108,109,112,113,118,121,123–
126]

- -

Point Cloud
Segmentation

[16,32,34,38,39,41,59,65,
66,69,207,208] - - -

VR/AR

5.1.10

[40] - - -

Robot
Expl./Localization - [129,131,132,134,156,171] - [182]

Path Planning [70] [133] - -

Localization [22,56] [93] - [24,181,196,199,200,209]

Map Alignment/-
Matching

5.1.11
- [187] - [130,148]

Plan Alignment/-
Matching - [92] - -
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Figure 4. Diagram presenting third constructed taxonomy: accomplished task.
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5.1.1. 3D Model Reconstruction

This group of solutions is focused on generating three-dimensional spatial representa-
tions of properties. Depending on the type of processed data, they could take the form of a
labeled point cloud, mesh model, or be an upgraded visualization like a floor plan taken
from a 2D image into a 3D model by adding the walls with an assumed height as the third
dimension (case presented in Figure 5). It is one of the largest groups of articles.

Figure 5. Visualization of the 3D Model Reconstruction task. From the input 2D image (left), there is
a simplified 3D model generated (right).

Three-Dimensional Spatial Data was the most represented input data type. Thirty-
four different articles implemented model reconstruction based on it. They all seem
very similar, but the difference is the main focus of the processing and implementation
details. The largest group of papers represented the task of generating models without
additional emphasis on the specification of its concrete type. Such articles produced the least
complicated representations, similar to those from CAD-like software wireframe models.
Nevertheless, we can further differentiate papers by the exact type of resulting model or
the way of acquiring input data. Model generation from point cloud was presented by
Ochmann et al. [23], Shi et al. [48], and He et al. [63]. All the solutions generate 3D models
aware of rooms and their connections described as doors or openings. Yang et al. [51]
paid special attention to the structural constraints of the generated model. They used
three levels of constraints, semantic, geometric, and topological, which were introduced
to the process of room segmentation for their easier recognition from the point cloud.
Similarly, the topological consistency of the generated model was the topic presented
by Ai et al. [60]. The first specific model subtype, the mesh model, was developed in the
works of Turner et al. [17] and Turner and Zakhor [18]. In this representation, a 3D model
consists of vertices, edges, and faces that build a mesh of polygons to reconstruct the
scanned object. Another subtype of the model was a watertight model. A sample solution
generating such was presented by Cai and Fan [61]. A model is classified as watertight
when each triangle building the mesh of the model has exactly two neighbors and leads
to a structure with no holes. The same resulting model was found in the solutions of
Wang et al. [29] and Nikoohemat et al. [45], with the distinctive aspect being the type of
laser scanner—in both articles, a Mobile Laser Scanner (MLS) was used to capture the
initial point cloud in a real-time manner. On the market, there are multiple types of
scanners available. They all generate the same output, a point cloud, but with different
operating concepts. The Standard Static Laser Scanner (SLS) is a ground-based device,
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typically mounted on a tripod placed on a flat surface and in a reference point. It scans
the environment with high precision, generating a point cloud including ceilings and
floors. It can be moved, but only discretely, from place to place. The MLS changes the
approach—it is mounted on a moving vehicle instead. It can be a cleaning robot, a trolley,
or a flying drone. This way, the scanning is a relatively continuous operation. SLSs were
also used in the papers of Nikoohemat et al. [28] and Xie and Wang [30]. They utilized
a specific feature of the scanning process, the trajectory of the scanner. In this way, the
point cloud was supported by information regarding consecutive scanner positions in
the test environment. A specific subtype of the MLS is a Backpack Laser Scanner (BLS),
a version in which a human operator carries the device as a backpack. Such a solution
was found in the publication of Ryu et al. [57]. They successfully used indoor point cloud
data gathered by a BLS to generate a geometric representation of found rooms, utilizing a
two-step procedure based on the data refinement and later processing. Murali et al. [27]
and Jung et al. [35] targeted the creation of ‘as-built’ BIM from 3D point clouds. This means
that they processed data for buildings that did not have a proper ‘as-designed’ BIM created
during the construction. A similar application to the generated model was described by
Ochmann et al. [46], but as just one of many possible applications of volumetric models. The
BIM generation was also further investigated by Otero et al. [55]. Their solution focused on
the generated output files. They processed LiDAR data, prepared a BIM model, and saved
it to a gbXML file representing an energy-efficiency-focused structure, which could be used
in further energy studies. Mura et al. [9,12] and Tang et al. [49] discussed model generation
in highly cluttered input data scenarios with severe occlusion. They presented scenarios of,
e.g., wall parts placed behind obstacles, large-scale scan artifacts, or outlier points in the
acquired point cloud. Many publications implicitly or explicitly work with the Manhattan-
world assumption [210] (highly regular environment). It can be used in building structure
simplification. One example is the article of Previtali et al. [47]. They discussed indoor
layout regularization and proposed a method for room hierarchy estimation, assuming
their high similarity and regular shapes. On the other hand, the work of Yang et al. [52]
explicitly focuses on processing multi-room building structures with curved walls, which
is not a typical layout. They proposed a solution using horizontal slicing of the acquired
point cloud, which allowed them to easily ignore the furniture present in the building and
simplified the detection of straight and curved walls. Object detection and classification
can also be separate topics. Armeni et al. [20] proposed segmenting the point cloud into
“disjoint spaces”, representing objects found in the building, such as chairs, sofas, or tables.
They detected gaps in the density of recorded points and deduced the potential edges
of separated objects. Maurović et al. [11] and Manfredi et al. [21] presented solutions to
a highly different task. Both proposed methods for autonomous robot exploration of an
unknown environment. The main problem was to somehow plan an efficient path and set
of scanning points so that a robot could acquire the most precise model of the building.
Similarly, a mobile robot was used by Bormann et al. [10] to create a thermal model of
the explored building. The achieved solution augmented the captured point cloud with
colors that indicated the temperature of each of the points. By grouping them, it was
possible to reveal potential heat sources. In their implementation, they used the idea of
space voxelization. A voxel can be described as being like a pixel of an image but in a three-
dimensional world. It is the smallest part of a regular, grid-adjusted volume. The topic of
voxelization was also found in the work of Hübner et al. [64]. For an indoor environment,
their suggested solution for model reconstruction is voxelization with a 5 cm resolution.
This way, the generated grid was dense enough to successfully reconstruct even complex
room layouts, like those with curved walls, complicated openings, or a height of more than
one floor. The generation of multistory building models was found as the topic of papers by
Macher et al. [26], Li et al. [36], and Cui et al. [42]. They all process massive amounts of data,
as each consecutive level of scanned buildings multiplied the number of acquired points.
Implemented approaches are quite similar. A typical process segments the whole building
into separated floors first and into distinctive rooms second. In all found implementations,



Appl. Sci. 2024, 14, 3974 19 of 55

the floor clustering was based on the density of points across the height axis of the models. It
was effective but introduced a specific limitation—buildings with more complex structures
of ceilings were expected to be processed incorrectly, e.g., lofts or rooms with entresol. This
problem was partially solved in the work of Nikoohemat et al. [54], in which 3D models
were used for disaster management and emergency exit path planning. Trajectory, captured
by an MLS during scanning, was used in the later processing. The proposed method
segmented the trajectory into separated levels and combined the result with scanner
position timestamps, allowing the associated parts of the point cloud to be separated
as well. All data gathered from mobile devices were processed in three further articles.
Franz et al. [76] implemented a solution for collaborative scene modeling using multiple
mobile devices compatible with Google Tango technology. One of the proposed applications
was to quickly and easily scan a crime scene for further offline investigation of possible clues.
A smartphone was also used in the article by Liu et al. [74]. The recorded magnetometer
and gyroscope measurements provided values for the azimuth and pitch angles of the
device, which allowed researchers to reconstruct the environment with the use of geometry
algebra. Weinmann et al. [75] used an even more sophisticated device. They conducted a
survey focused on the possible applications of the Microsoft HoloLens. The device itself is
a head-worn mixed reality device consisting of glasses with an integrated IMU, multiple
color cameras, depth cameras, and many other sensors. The survey discusses diverse
applications of the generated models and acquired measurements: indoor localization,
spatial mapping, scene model reconstruction, and semantic segmentation.

Two-Dimensional Images and solutions generating 3D models from them were the
second most numerous. We found five such articles. Four of them involved generating
the model from scans of floor plans. As expected, they struggled with specifying the
third dimension, namely the height of the rooms. Gimenez et al. [116] let the user specify
this dimension and assumed all components to be equal in height (walls and openings).
The work of Dodge et al. [94] presented a neural network approach to floor plan parsing,
but with the necessary model height provided by the authors themselves. The same was
found in the work of Park and Kim [110], where the height was set to 240 cm. The first
paper that actually calculated the height dimension was the one by Lv et al. [111]. They
implemented a complex scale calculation procedure based on character recognition in the
scanned images. The proposed method first searched for available scale information and
(if found) calculated the rest of the model parameters. If the scale was not found, they
assumed the median door size to be equal to 90 cm and used this value to calculate the
global scale of the floor plan. Basing the model sizing on the proper scale calculations
was also found in the work of Pintore et al. [154]. They proposed a method to process
panorama images of the indoor environment. The lack of scaling information was solved
by calculating the scanner distance from the floor and the ceiling. This way, a global scale
was found and used for the proper 3D model scaling.

The Feature Set was the least represented. Based on a feature set of visual cues about
the environment, the work of Kostavelis and Gasteratos [195] proposed a complex spatial
model, extended with a scanner trajectory and room-type probabilities presentation in a
place-by-place manner, that resulted in a 3D metric map of the explored space.

5.1.2. Content-Based Image Retrieval (CBIR)

Generally speaking, CBIR is a search method in which the query is formulated using
a sample image instead of keywords. For this group, implemented solutions were based
only on 2D image processing. A sample picture was provided as input data. The solution
searched for other floor plans, classified as similar, and returned a set of possibly closely
matched results. An example that returns the TOP3 most similar results is presented
in Figure 6. There were two types of input images found. In the works of Sharma and
Chattopadhyay [97] and Yamasaki et al. [98], the query was formulated with the use of a
sample floor plan. Ahmed et al. [114] proposed a solution that works with a user-provided
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freehand sketch. All these systems analyzed the input image, processed it, and utilized a
generated graph representation for similarity search across the database of other floor plans.

Figure 6. Visualization of the Content-Based Image Retrieval (CBIR) task. A query picture (top) is
used to search a database for TOP3 most similar floor plans (bottom).

5.1.3. Environment Description Creation

This task grouped solutions that resulted in easily readable extended text descriptions
of the analyzed buildings. Their main targeted usage was dedicated to supporting visually
impaired people, in independent environment exploration and path planning or building
structure understanding before an actual visit. The sample result is presented in Figure 7.
Goncu et al. [90] created a system that converted the given floor plan into an interactive
graphic displayed on the touch screen of a tablet device. A visually impaired person could
tap the screen to hear a textual description or other sound indicators of touched building
components. The achieved approach was further extended by Madugalla et al. [95,103].
The authors upgraded the proposed solution to a complex system providing the user
with text descriptions of whole floors, separated rooms, and many other features, like
an editing tool for a sighted person to help manually correct possible recognition errors.
Paladugu et al. [115] presented a web browser-based system that generates extended tex-
tual descriptions of floor plans found as a result of the search phrase provided by the
user. Similar whole-floor descriptions were the results of consecutive solutions developed
by Goyal et al. [96,99,107,119]. The first one [96] proposed a framework called “Plan2Text”
that allowed the processing of the input floor plan and generated a textual description
from a first-person perspective. “SUGAMAN”, presented later in [99], expanded the re-
search and added, e.g., navigation features that described to the user how to plan a walk
from one room to another. The third paper [119] introduced and tested a building plan
repository called “BRIDGE”, which contained over 13,000 images of floor plans and the
descriptions generated for them. The last article [107] extended the plan repository project
even further and presented machine-learning models for simultaneously extracting visual
and textual features.
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Figure 7. Visualization of the Description Generation task. An input floor plan (left) is analyzed and
converted to a set of sentences describing its components and their location (right).

5.1.4. Floor Plan Vectorization

Vectorization was a task performed only on 2D images of architectural floor plans. As
the input data in such scenarios consists of a rasterized image, they are hardly scalable,
with processing possibilities limited to computer vision techniques. Vectorization of such
a plan changes its representation from a matrix of pixels into a structured file of vector
descriptions. The processed image should preserve quality (even if scaled up) and simplify
further data processing. A sample result is presented in Figure 8. Chronologically, the first
article found was that of Liu et al. [117]. The “Raster-to-Vector” approach they proposed
grounded the processing in a convolutional neural network and integer programming
techniques. The later articles were similar and differed mainly in the proposed algorithm
and the learning method. Jang et al. [120] used a combination of many different neural
networks, such as Global Convolutional Network (GCN), Pyramid Scene Parsing Network
(PSPNet), DarkNet53, and Deeplab v3. Surikov et al. [122] researched a processing method
integrating UNet, Faster-RCNN, statistical component analysis, and the Ramer–Douglas–
Peucker algorithm. The last article found, published by Dong et al. [104], relied on a newly
designed version of a Generative Adversarial Network (GAN) called EdgeGAN, which
was found to process data significantly faster than other compared solutions.
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Figure 8. Visualization of the Floor Plan Vectorization task. An input raster image (left) is converted
to a vector representation (right). Converted walls are marked with black lines, doors with blue lines,
windows with green lines and joints with red circles.

5.1.5. Floor Plan Prediction/Generation

The task of floor plan deduction from gathered input data was found in 27 articles
spread over all the analyzed buckets of data types. As a visualization, in Figure 9 we present
the generation of floor plans based on the processing of the recorded trajectory of a user.
The first articles found were those by Liu et al. [79], with their solution for the generation of
interior layouts for precast concrete-based buildings, and Santos et al. [8], who contributed
by proposing an approach for translating data from a grid map into a topological one. In
2014, Gao et al. published research on mobile device-based floor plan generation [77]. They
proposed to use a crowd-sensed combination of vision and inertial data from mobile phones.
Turner and Zakhor [176] published the first version of floor plan generation from laser
range data and continued their work a year later [177]. The presented solution was based
on “wall-samples” processing and worked with even multistory buildings. Camozzato
et al. [89] switched to working with freehand sketches. They procedurally generated a
floor plan from a user-provided paper drawing. An article from 2016 by Pintore et al. [170]
discussed indoor map creation from omnidirectional images. They captured one image
per room and processed them to generate a map of the whole floor. Their later work [153]
presented an extension that even allowed them to create a complete 3D floor plan. A
much different approach was introduced by Loch-Dehbi et al. and Dehbi et al. [183–185].
They proposed basing the floor plan processing on a set of sparse observations, assumed
constraints, estimated parameters, and stochastic reasoning. Fleer [151] constructed a
system for a mobile floor-cleaning robot, which generated a segmented floor plan based
on laser readings and a hemispherical camera directed at the ceiling. Jung et al. [25] made
a step towards classical techniques, but with modern data—they applied morphological
processing to the captured point cloud of the environment. Ambruş et al. [31] introduced a
method for room segmentation from a raw, unstructured 3D point cloud, later used in 2018
by Brucker et al. [33]. They applied it to a semantic room labeling task based on RBGD
images. Liu et al. used their previous work on floor plan vectorization and proposed a
framework for plan reconstruction from 3D scans [78]. Chen et al. [71] evolved the solution
to an automated approach for CAD-like plan generation. A similar evolution can be seen
in the project of Magri and Fusiello [37] that proposed reconstructing the walls of analyzed
buildings from their scanned point clouds, and a later variation of the method presented
by Maset et al. [44] focused on better results with lower user dependence. He et al. [53]
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proposed a solution for furniture-free room mapping using a mobile robot equipped with
multiple 3D LiDAR. They combined the source data acquired from vertical and horizontal
laser scans. Zhou et al. [189] presented a method of creating floor plans using smartphone
sensors and recorded user traces. In a 2020 article, Nauata et al. [83] proposed a solution for
house layout generation according to an input bubble diagram (graph) of expected rooms
and connections between them. Users could specify types of rooms as well as connections
between them and obtain a set of proposed house plans. Phalak et al. [58] presented a novel
technique for floor plan generation from point clouds using deep neural networks trained
on purely synthetic data. The publication of Resuli et al. [204] introduced a solution relying
on input data unseen before—radio frequency readings from sensors. They created a
system of transmitters and radars that allowed room structure reconstruction thanks to the
signal reflections and their processing. Floor plan prediction task analysis was concluded
with articles by Fang et al. [62], Simonsen et al. [172], and Cai et al. [68]. The first one [62]
presented a space partitioning approach to floor plan generation from the point cloud,
similar to and compared with the already mentioned work of Chen et al. [71]. The second
article [172] focused on processing CAD floor plans exported from architectural software
as DXF files. It was desired to skip the rasterization part of floor plan generation and work
with a graph structures recognized from the CAD primitives. The last article [68] proposed
to process an input point cloud and generate an accurate floor plan using geometric priors—
instead of relying solely on the density of points to recognize the building structure, they
proposed combining them with indoor area recognition, normal information, and other
geometric analysis.

Figure 9. Visualization of the Floor Plan Generation task. Input data (recorded user trajectory, left) is
used to estimate a possible floor plan—relying on the paths’ density and their clustering (right).

5.1.6. Graph Generation

These methods took advantage of the graph theory applied to input data structures.
They modeled the environment into graph structures and were able to predict the room
segmentation or classification with graph processing techniques, like node clustering or
adjacency statistics. An example is presented in Figure 10. Graph generation was found
in 12 articles. Pronobis and Jensfelt [190] and Kostavelis et al. [191,194] used them to
process the trajectory of a robot in the environment to add semantic meaning to visited
places. Similarly, Ikehata et al. [19] used a motorized tripod for RGBD panoramic picture
acquisition. They processed the data to generate a graph of the environment structure
for the room segmentation process. Wu et al. [180] equipped their robot with vision
sensors prepared for artificial label recognition and used it to create a multilevel graph,
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representing the global topology of the building, and to detect connections between small
items in the same local area. Ochmann et al. in [13,14] focused on graph generation for
topological building representation and its structure decomposition from a pure 3D point
cloud. Luperto et al. in [80] and later Luperto and Amigoni in [82] took the input structure
of the undirected graph representing the indoor environment and discussed how to analyze
the graph to segment rooms and predict the global structure of a building. Hou et al. [139]
used a Voronoi diagram method for automatic graph creation from a 2D grid map. The
proposed “Area Graph” was used as a segmentation technique. Schwertfeger and Yu [138]
presented a similar solution, but added Alpha Shape-based processing to the initial diagram
and used it for topology graph improvement. Another complex solution was presented by
Yang et al. [67]. They combined a neural network with a distance transform algorithm to
reconstruct the topological meaning of indoor space partitions from input RGBD pictures
and their colorful point cloud representations.

Figure 10. Visualization of the Graph Generation task. Input data (recorded user trajectory with
some understanding of the building, (left)) is used to construct a graph structure (right) representing
rooms and areas as graph nodes, and their adjacency as graph edges.

5.1.7. Room Classification

In the room classification bucket, the analyzed solutions predicted the kind of room
the given input represented. Again, this task covered all distinguished input data types
and delivered numerous articles. Recognition of the room type can be achieved using an
image of the indoor environment, calculated energy measurements, or even the recorded
sound echo. The presented example (Figure 11) analyzed a raster image, searched for
characteristic elements, and deducted the placement and types of rooms.

Indoor pictures, as a sub-bucket of data types, was the largest one and was domi-
nated by machine-learning approaches. Young et al. [152] presented a CNN-based solution
for a situated robot’s recognition of the environment around it. They combined picture
understanding with a web mining approach. Room type was deducted from a set of
object pictures and their co-occurrence in the web resources. Similarly, Ursic et al. [150]
extracted parts of the pictures and analyzed them as regions of interest. Instead of a holistic
categorization, they classified each part and deduced the end result, which appeared to be
robust to image distortions. Othman and Rad [155] compared multiple CNN architectures
in the room classification task for a humanoid robot exploring the environment. In their
work, a custom multi-binary classifier was proposed and combined with a CNN for better
performance. The article of Rubio et al. [149] was the only one avoiding a network of
convolutions—they proposed and compared systems of Support Vector Machines (SVMs)
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and Bayesian Network Classifiers (BNC). The reported results indicated that with the
proper processing, BNCs outperformed SVM classifiers. The survey extension returned
even more results than the main flow; we found 13 further articles. Ranganathan [159],
in one of the oldest articles analyzed, processed images coming from a stream of mea-
surements, like a moving robot capturing a video. Changepoint detection was performed
sequentially in consecutive frames and used to classify entire video segments. One article
analyzing the robot’s camera orientation was the one by Erkent and Bozma [158]. In their
article, they proposed a “Bubble Space” that represented the nodes of topological maps
of an environment as abstract representations of the robot base and its viewing directions.
Mozos et al. [162] used a readily available Kinect camera and presented its use on a mobile
service robot. Combining the depth and grayscale images made it possible to gather data
in which patterns could be detected. Histograms of patterns were then simplified into a
feature vector used in a supervised indoor space classification method. A visible direction
in the room classification techniques was to analyze not the whole image at once but part by
part. Parizi et al. [160] presented a solution based on picture regions. They assumed that a
picture of a specific class of objects has a set of regions expected to contain a particular data
type. An example of this might be the blue sky in the top part of the beach image. With
the use of a reconfigurable version of Bag of Words (BoW), their model learns interesting
regions of images and uses them to classify the observed scene. Similarly, Sadeghi and
Tappen [157] presented a solution based on the idea of spatial pyramid processing. Pro-
posed Latent Pyramidal Regions (LPRs) were used to describe the characteristics of parts
of the processed scene image. The later searching through of all possible subwindows of
the input image allowed using learned representations for scene classification. A year later,
Juneja et al. [163] proposed a solution combining the BoW technique with a novel approach
called Bag of Parts (BoP). In their work, attention is placed on the part-learning process.
Detection of important parts of the picture is achieved automatically and is used without
extensive user involvement. Hierarchical dependencies between parts of the pictures were
also analyzed by Sadovnik and Chen [161]. They assumed each scene was built using
some substructures, separated objects, and connections between them. In their work, a
Minimum Description Length (MDL) principle was used to deduce the scene type from a
set of its building blocks. In this way, a scene could be classified as a kitchen if its recognized
components were chairs next to tables and cabinets under the stove. Margolin et al. [164]
proposed a novel local descriptor for low-level image representation, significantly different
from the solutions mentioned above, i.e., Oriented Texture Curves (OTC). In OTC pro-
cessing, each patch of the image was analyzed for its texture and color variation along
different orientations. Constructed curves were processed into a single descriptor that was
used for scene classification. A lower level of processing was proposed by Zuo et al. [165].
Instead of processing subparts, they prepared a pixel-level-based solution named Discrim-
inative and Shareable Feature Learning (DSFL). Their main idea was to generate a bank
of filters that represent common features of images and encode information from all raw
pixel values. In a typical analyzed picture, only a specific subset of all the features was
present, which allowed for scene classification. The opposite approach, the holistic analysis
of pictures, was presented by Dixit et al. [169]. They presented a solution modeling the
scene as a bag of object semantics achieved by a CNN trained on the ImageNET dataset.
A constructed Fisher Vector (FV) summarizing object descriptors was reported to present
better performance than an FV of low-level features. Similarly, the use of CNNs was further
researched by Jie and Yan [166]. Aware of CNN’s sensitivity to image distortions, they
focused on proposing a multilevel processing pipeline that fine-tuned the networks in a
cascade approach, relying on differently scaled input images. Cross-level processing has
been reported to improve the robustness to scale transformation of pictures. The lack of
adequate datasets dedicated to scene recognition was addressed by Zhou et al. [168]. They
presented the Places dataset consisting of over 7 million labeled pictures of scenes. While
presenting the dataset, they also prepared a solution called Places-CNN and reported com-
petitive performance. On the other hand, Mesnil et al. [167] presented a solution focused
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on unsupervised learning. Based on the image detectors trained on popular image datasets,
they studied the possibility of higher-level feature processing on top of the returned object
representations.

Figure 11. Visualization of the Room Classification task. A sample input floor plan (left) is analyzed
and searched for room areas. Each area is classified and marked with a room-type label (right).

Graph data were processed by three of the found papers. The oldest one, by Lu-
perto et al. [81], was from 2017. They analyzed the graph structure of a building using
Statistical Relational Learning (SRL). The KLog [211] algorithm was reported to be success-
fully applied to room and building type classification. Paudel et al. [84] presented graph
processing techniques with an extended comparison of various Graph Neural Networks
(GNNs) analyzing floor plan graphs. GraphSAGE [212] and Topology Adaptive Graph
Convolutional Network (TAGCN) [213] were reported to outperform solutions using the
Graph Convolutional Network (GCN) [214], Graph Attention Network (GAT) [215], and
Multi-Layer Perceptron (MLP). The latest research by Wang et al. [85] continued the idea
and proposed an improved version of the GraphSAGE algorithm called SAGE-E. It used
graph node features and edge features, allowing it to outperform other solutions.

Three-dimensional spatial data were the least represented. Swadzba and Wachsmuth [15]
investigated the possibility of point cloud processing using a novel spatial feature vector
describing the properties of the environment. In their scenario, a room type was recognized
from a limited number of inputs—a view recorded only by a depth-aware camera situated
at the door frame while entering the room. Real-time scanning was the topic analyzed
by Matez-Bandera et al. [73]. They focused on a moving robot equipped with adjustable
cameras. The main objective was to optimize the sensor line of sight and maximize the
amount of collected data. They combined the processing of gathered knowledge, like robot
paths, detected objects, and taken pictures, for quick and accurate place categorization.

Sound echoes, chirping, and radio frequencies were the input data types for which
we found four articles. The oldest one, by Peters et al. [201] from 2012, presented a system
that identified the room type in an audio sample or video recording. Each sample included
acoustic features and came from a musical signal or a speech recording. The proposed
solution was based on a Gaussian Mixture Model (GMM). In 2018, Song et al. [202] pub-
lished an article exploring the usage of a smartphone’s loudspeaker in indoor localization
tasks. The presented solution classified the room by analyzing the echoes recorded in
response to a generated inaudible chirp. The best accuracy was reported while using
a two-layer CNN processing spectrogram of recorded echoes. A similar solution was
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presented by Au-Yeung et al. [203] in 2020. They proposed using a smartphone with a
dedicated application to capture room acoustic profiles. The app generated and transmitted
acoustic signals that reflected from objects in a room, creating a unique profile of a room.
Learned features were later used by a classifier for room recognition. The newest work by
Dziwis et al. [205] was focused on Augmented Reality (AR) applications. In their research,
the authors analyzed the task of virtual sound generation. They proposed combining a
machine-learning system based on a CNN with Binaural Room Impulse Responses (BRIRs)
to provide possibly realistic room reverberations in an augmented environment. Laser
range readings represented a specific type of feature set. Known for environment picture
processing, the hierarchical approach was presented in the research of Uršič et al. [175,178].
In their first publication, an algorithm called Spatial Hierarchy of Parts (sHoP) was used to
construct a representation of the environment from laser scans. Initial measurements were
transformed into images, which were hard to understand, even for a human. For room
classification, the authors used a Histogram of Compositions (HoC), and the whole solution
consisted of three processing layers. In the later article, the idea was further developed, and
on top of the hierarchical processing was the Multi-Category-Affinity-Based-Exemplars
algorithm added as a fourth layer, reporting better performance. In 2018, He et al. [179]
presented a machine-learning approach. In their work, a laser range scan of a mobile robot
was formatted into polar images, which were further processed by a technique named
Local Receptive Field-Based Extreme Learning Machine (ELM-LRF). It effectively merged
the ideas of splitting image processing into its sub-parts (receptive fields) and using an
extreme learning machine (a neural-network machine with just one hidden layer). The
Mixed input was represented by two articles. In 2018, Dehbi et al. [186] proposed using
sparse observations of the environment and openly accessible data in combination with
a Bayesian Classifier. They could infer floor room shapes and their functions through
the room area and its direction (orientation). Hu et al. [188] used a similar yet extended
information set. They used training data consisting of area, length, width, and room type
with a created set of grammar rules and a geometric map of the floor to estimate the
semantic meaning of the rooms. Their solution grounded the processing in the Bayesian
inference. It was utilized in the calculations of room-type probabilities as well as in the
creation of a parse forest structure. Energy consumption models were used in two articles.
In 2015, Wei et al. [173] published a paper researching the use of a neural network in room
classification for office buildings. Their solution analyzed electricity consumption mea-
surements from three main categories of devices: sockets, lights, and air-conditioners. The
presented Echo State Network (ESN) was a recurrent neural network reported to achieve
good effects in practical applications. The work was later continued and improved by Shi
et al. [174]. The extended version combined two layers of ESNs—a set of three networks
for each of the modeled consumption categories and a fourth one, on top of the others,
combining previous results into a single classification. Grid map was found to be processed
by only one additional article. The solution of Shi et al. [143] grounded the map analysis in
a semi-supervised learning algorithm. A combination of Support Vector Machine (SVM),
Conditional Random Fields (CRFs), and a Generalized Voronoi Graph (GVG) resulted in
three-class office room-type recognition.

5.1.8. Change Detection

This was a very specific task achieved for the environment monitoring in the case
of building structure updates. Its main added value was an increasing analysis of how a
building has evolved over time. This task was found in the work of Koeva et al. [43]. A
sample visualization is presented in Figure 12.
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Figure 12. Visualization of the Change Detection task. Initial and updated images (top) are analyzed
and searched for differences between them. Detected mismatched elements are marked in red
(bottom).

5.1.9. Segmentation

Segmentation represented the first group, which needed further separation. We
specified three subgroups depending on the processed data type. They were all focused
on plain room segmentation but within floor plans, occupancy grids/maps, and point
clouds, respectively. For floor plans and occupancy maps, as they are two-dimensional
inputs, the results were in the form of room instances segmented on the pixel level of the
picture or polygons stretched on sets of points of the analyzed map. This sample scenario
is visualized in Figure 13. The point cloud subgroup, as a three-dimensional representation
of the whole environment, represented the spatial data. Although more complicated, the
segmentation process was quite similar, with the main difference being the dimensionality
of the segmented spaces—room instances were described at the point level as clustered
sets of points in the point cloud or closed volumetric cuboids.

Floor plan analysis was the most represented task. In the found solutions, multiple
articles represented the same team of researchers improving presented works, comparing
the results, or trying to solve the problem in a different way. The first group of publications
were Ahmed et al. [86,112] and de las Heras et al. [87,91]. Their work initially segmented
rooms in a plan with the use of a text segmentation method, followed by wall and object
detection. The results were also supported by an Optical Character Recognition (OCR)
framework for room label recognition. The later solution introduced patch-based process-
ing, which categorized pixels into one of three classes and constructed a graph of found
structures. The analysis of the graph allowed for room segmentation via path planning.
The idea was further developed from another perspective in the last article, presenting an
Attributed Graph Grammar (AGG) analyzed with a greedy search algorithm for the best
possible room segmentation representation. The second solution that improved over the
years was the one by Liu et al. [113] and Liu and von Wichert [88,124]. The initial work
presented a probabilistic solution to extracting semantic models from a grid map generated
by a Simultaneous Localization And Mapping (SLAM) process. The proposed algorithm,
based on the Markov Chain Monte Carlo (MCMC) sampling procedure, searched all pos-
sible world models for the best fit (in the biggest likelihood sense). On such a basis, the
authors proposed an extended solution that combined the already tested MCMC procedure
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with the idea of a Markov Logic Network (MLN). These were used to prepare a set of
rules describing the task-specific context and were reported to improve the performance
achieved. Two different approaches to floor plan analysis and environment model gener-
ation were presented by Kim et al. [121,125]. The first article focused on the problem of
non-existing standardization in the floor plan format. They stated that research in this field
is closely bounded to the processed dataset, and the achieved results are hardly transferable.
To solve the issue, they proposed neural network architecture, implementing a style transfer
task on the input images based on the idea of Generative Adversarial Networks (GANs).
The vectorization process performed on unified floor plan formats was reported to work
correctly, even with new, previously unseen forms. The second article dealt with large-scale
complex buildings. A patch-based approach was introduced using a CNN architecture to
segment the plan and generate a vectorized image that was later used to create a 3D model.
The article of Mewada et al. [102] used a different approach. It was the first in this task to
use the Alfa Shape algorithm to extract rooms from a floor plan. In the detected rooms, their
actual areas were calculated and used in a linear regression model that deducts the type of
room. All other published works found used some sort of neural network. The architecture
of Convolutional Neural Networks (CNNs) was widely found. In 2019, Kalervo et al. [100]
focused on the problem of the low availability of annotated floor plans that could be used
by researchers. The presented dataset of images, called CubiCasa5k, made 5000 large-scale
floor plans available for further analysis. While introducing the dataset, they also showed
a CNN for a baseline results comparison. In the same year, Sandelin and Sjöberg [118]
presented research on the use of Mask R-CNN in the room feature segmentation. Al-
though they were aware of CubiCasa5k’s publication, it was too late to use it. The research
was concluded based on 700 other annotated images, documenting the applicability of
Mask R-CNN to the problem. Both articles were referenced by Murugan et al. in [109].
Their publication presented an improved approach based on a combination of Cascade
R-CNN and Keypoint R-CNN. The final floor plan parser was reported to achieve better
performance on the CubiCasa5k dataset than the initial author’s baseline results. A spe-
cific variation of implemented tasks was presented by Gan et al. [106]. In their solution,
only bedrooms were recognized and counted in the analyzed floor plans. The described
algorithm had extensive initial image processing (with Otsu thresholding, morphologi-
cal operations, Hough transformation, and the application of the FAST algorithm), with
the final bedroom detection achieved with a CNN. Five architectures were tested, and
GoogLeNet was reported as the best-performing one. Zeng et al. [101] used the spatial
context of elements found in the floor plan. The prepared multitask neural network used
convolutional layers to carry out subtasks of room-type and room-boundary predictions.
The later combination of results with spatial context awareness of structures hierarchy
improved the achieved performance. Zhang et al. [123] tried to detect not only rectangu-
lar but also circular rooms. The presented Adversarial Network was constructed using
direction-aware, additive convolutional kernels, which reported improving performance
in irregular-shaped room detection. Foroughi et al. [105] presented an architecture called
MapSegNet—a variation of the typical encoder–decoder solution. Using the technique
of skip-connections between different layers of the network, they reported comparable
results with higher accuracy or lower computation costs compared to other architectures.
Lu et al. [108] focused their research on rural areas and presented a network processing
the floor plans of 800 residences from the China region. As object recognition and text
detection are typically two different tasks, their architecture primarily tried to reduce the
time needed to train two different networks and combine them into one bigger system.
Song and Yu [126] made use of a Graph Neural Network. In their algorithm, an input
image was first pre-processed (text removal and binarization), then vectorized, and finally
represented as a Region Adjacency Graph (RAG). In such a graph, a GNN was used to find
the semantic meaning of floor plan elements.
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Figure 13. Visualization of the Segmentation task. An input image (left) is searched for separated
areas representing individual rooms. Each room is marked with a polygon in a different color (right).

Grid maps, as the second subtype of analyzed data types, were also the second-most
numerous and similar to floor plans in the data processing aspect. We found an example of
an evolving solution in the works of Luperto et al. First found in [128], from 2014, the work
presented how to build a semantic map of the environment based on the concept of building
typology. In the article, the authors assumed that each property type has a different typical
indoor structure of rooms. Using such an assumption, they proposed a classifier of rooms
specific to a known building type. In the later article [82] from 2019, they tried to predict
the layout of rooms only from a partially observed grid map. The main segmentation logic
was based on the clustering process of the grid map’s subparts (“faces”). Segments created
by a set of processing operations (Hough transformation, contouring, wall identification,
and representative line creation) were later joined together to build entire rooms. The final
layout was the result of the detected room features’ analysis. The newest publication [142],
from 2022, indicates how much the approach evolved over a decade of research. The
presented system, called Robust Structure identification and Room Segmentation (ROSE2),
was reported to be capable of segmenting and identifying rooms even from a partial,
heavily cluttered indoor environment’s occupancy grid map. In 2012, Sjoo [144] published
a semantic map segmentation prototype based on the idea of room function. Instead
of focusing on the shape of the room, the main focus was on what the area is used for.
The presented algorithm implemented the task using an energy maximization approach,
where the energy function defined how well a tuple of room, label, and relational index
described the space analyzed. In one of the first realizations, Hellbach et al. [127] presented
research on semantic labeling using two elements: Non-negative Matrix Factorization
(NMF) and Generalized Learning Vector Quantization (GLVQ). In their solution, a set of
basic primitives and activities was achieved with NMF and used to create histograms of
environment characteristics. The distance transformation applied to the combined results
encoded the representation into a vector space. Finally, the GLVQ was used to predict the
class labels for each primitive analyzed. Hemachandra et al. studied the text descriptions
used in semantic labeling. An article [192] from 2014 presented a continuation of their
previous work [206]. In the original version, a robot learned the environment representation
in a guided tour from grid maps and textual descriptions. The discovered environment
was decomposed into uniformly sized regions and represented using a semantic graph.
In the later work, the inter-region connections were additionally analyzed and the scene
classification factors were extended. The introduced use of the robot’s camera and laser
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rangefinders allowed for area-type reasoning, even without textual descriptions. In 2015,
Capobianco et al. [145] presented a solution nowadays described as relatively simple. They
proposed detecting walls in a grid map and using them as lines to create a matrix-like grid,
where each adjacent cell was later merged with the use of expert-provided knowledge or the
watershed algorithm. Also in 2015, Liu et al. [146] published an article documenting their
research of the Generalized Voronoi Graph (GVG) application to an incrementally generated
topological segmentation of an environment. In their solution, an environment-scanning
robot explored an unknown area and constructed a GVG. The post-processing step clustered
the initially generated, fine-grained set of areas into larger room-like structures. In the same
year, Sünderhauf et al. [193] used a set of cameras and sensors placed on a robot platform
exploring the environment to deduce the category of place and its meaning in a four-step
procedure. The algorithm first used a CNN to classify taken photos, then classifiers to
detect new scene classes, and finally a Bayesian filter and a mapping subsystem to create
the resulting place labels. We also considered the very initial research article by Bormann
et al. [1] for the segmentation subtask. They provided not only a review of used techniques
but also their basic implementations. They compared four different approaches based on
morphological operations, distance transformation, Voronoi Graph, and features processing.
Their work was commonly referenced in later publications, and the analyzed techniques
were widely used. It could be summarized that the algorithms described in the work are
now the “classic” ones and are often used in the preprocessing phases of machine-learning-
based approaches. Goeddel and Olson [147], in 2016, presented one of the first CNN-
focused pieces of research on grid map segmentation. Although their network was trained
to recognize only three distinctive classes (rooms, corridors, doorways), the presented
architecture combining just two sets of convolutional and pooling layers with three fully
connected layers was reported to implement the task successfully. Luo and Chiou [197], in
2018, presented an article focused on the construction of intelligent service robots. Their
hybrid approach to semantic mapping combined two sources of data. The first one was an
occupancy grid map from the robot’s laser rangefinders, spatially segmented with a distance
transformation. The second one was a topological map, created from pictures taken by the
robot and searched for objects with the use of a CNN. Te combined results created a set of
meaningful, spatially segmented topological nodes, classified by a probabilistic Bayesian
Classifier, resulting in a generated semantic map. In 2018, Mielle et al. [135] presented a
novel map segmentation method based on distance transformation. Their solution was
reported to achieve better results than the referenced methodology of Bormann et al. [1].
In the proposed process, an algorithmic convolution of a circular kernel on a distance
map was used to generate an extended set of region proposals. Such an over-segmented
map was later merged into larger, straightened areas, representing rooms. The same test
dataset was used by Hiller et al. [136] in 2019. They moved from a pure algorithmic to
a learning-based approach. The proposed approach utilized a combination of a CNN
and a segmentation network to generate the door-region hypotheses, later checked with
computer vision algorithms. Based on the knowledge of where the doors were located,
a segment classification into rooms and corridors was performed. A year later, in 2019,
Wang et al. [50] presented a complex semantic mapping framework. In their scenario, an
RGBD image was processed in three different ways and then connected to create a single
result. Simultaneously, RGB images of the environment were searched for objects using
a CNN, and depth data were combined with laser radar measurements to create a 2D
semantic map. The acquired 3D space map was cast to a 2D navigation map and merged
with the semantic map to create scene labels. In 2020, Tien et al. [140] presented a team
of robots performing semantic mapping in a supervised learning approach. Their main
focus was introducing P2P communication between robots and omitting the resource
limitation problem. After that, they investigated the map segmentation task. Their high-
level algorithm relied on initial preprocessing of the grid map to reduce noise and simplify
a Voronoi Graph Map generation. Specific features of such a map were extracted and
integrated into a classification algorithm. In the article, custom neural network- and
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SVM-based approaches were tested, with the SVM solution reported to return slightly
better results. One of the newest articles, by Jin et al. [198], presented a fused approach
that combined scene recognition with object detection. Similarly to other multi-network
architectures, they implemented subtasks separately and later fused the results. In this
case, the EfficientNet-B2 [216] network was used for the initial classification of the scene,
and the YOLOv5 model for the detection of objects. The proposed network added two
fully connected layers processing the merged output of subnetworks. Additional room
segmentation with MAORIS [135] and a combination of results led to obtaining a semantic
metric map. In 2021, Zheng et al. [141] presented a system usable on low computing
power devices like the Raspberry Pi. They proposed using a novel convolutional network
architecture, LCNet, on indoor maps preprocessed with a watershed-based algorithm.
Although deployable to a very specific device and under strict hardware limitations, the
reported results were better than the Voronoi- or morphology-based solutions.

Point cloud and its segmentation were found in articles published at least a couple
of years later than the lower border of the accepted time range. The first one, from 2015,
by Macher et al. [16], reported research on creating as-built BIM models. In the article,
the authors proposed a method for three-step, three-level segmentation. The first level
was the whole floor—the distribution of points along the Z axis distinguished ceilings and
floors. The second level segmented the rooms. First, it took part of the points building the
ceiling layer and parsed it into 2D images of separated regions, and second, it applied the
room information to all source points. The last processing step was to use the RANSAC
algorithm to generally segment planes in the model, which exposed the internal structure
of rooms. The reported results were promising, although requiring further research for
noise reduction. In 2017, Bobkov et al. [32] presented a segmentation technique based
on the anisotropic potential field. Their solution was reported to be applicable to 3D
data representations, like point clouds generated by laser scanners, depth-aware sensor
measurements, or even CAD models. The algorithm started with free space detection
inside the 3D model. Computed for free voxels, values of anisotropic potential fields were
stacked vertically, and maximum values were represented as a 2D map. Clustering of
the map performed the actual room segmentation and was finally moved back to the 3D
representation by labeling each point with a determined room assignment. Chang et al. [69],
in 2017, published the largest found dataset of fully annotated RGBD panoramic images
used for scene understanding tasks. The set, namely Matterport3D, containing over ten
thousand panoramic views and built from almost 200,000 RGBD images, represents 90
building-scale scenes, their panoramic skyboxes, textured meshes, scanner locations, and
other features, including point cloud representations. During the dataset presentation, not
only data but also its application was presented—solutions to sample tasks of keypoint
matching, view overlap prediction, estimation of the surface normal, region-type classifi-
cation, and semantic voxel labeling. Regarding room segmentation, it was a CNN-based
approach for scene classification. Sample baseline results were achieved with the use of
ResNet-50 [207]. In 2018, Elseicy et al. [34] proposed combining (in the process of space
subdivision) data from the point cloud and the scanner’s trajectory. They used an Indoor
Mobile Laser Scanner (IMLS) to capture the initial point cloud and record the scanning
trajectory. First, the trajectory was used to detect staircases and separate stories—in the
algorithm, timestamp-ordered trajectory points are assumed to represent the same segment
based on the detected height. A later combination of trajectory and points analysis allowed
for doorway detection, which finally separated the rooms. In the article by Nikoohemat
et al. [38], the methodology was also tested with additional attention placed on reflective
surfaces causing noise in the data and glass walls influencing the measurements. Also, in
2018, the work of Zheng et al. [39] researched a similar setup in the space subdivision task
based on the scanline analysis process. The paper presented a novel method for opening
extraction that searched for geometric regularities in scanlines and returned opening candi-
dates. Based on the opening detections, the trajectory became segmented, and results were
populated to the whole point cloud. In 2019, Cui et al. [41] presented a fully automatic
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solution, performing unstructured point cloud segmentation through graph cuts based
on semantic constraints. Although their scenario was to create a 3D model for 5G signal
simulations in indoor environments, the segmentation method successfully generated
meaningful floor plans. In a short summary, the point cloud was searched for openings and
combined with the scanner trajectory for visible point cloud simulation and initial space
subdivision. Additional processing, using an energy minimization function, clustered and
extracted similar point clouds. Their representation as lines built a floor plan. Further
processing clustered similar lines, grouped them, applied conditions, and finally generated
a segmented model. In 2020, Frías et al. [59] presented a segmentation method for moving
well-known and tested 2D image processing techniques into three-dimensional space. Their
approach processed a 3D point cloud using 3D morphological operations. Initially, the
point cloud was voxelized, and its contour was extracted using a concave hull. It left for
further processing only the empty voxels that were initially filling the scanned structure.
Applied morphological erosion broke connections between consecutive rooms, and a 3D-
connected component algorithm clustered the remaining voxels, removing noise. Finally,
a morphological dilation with the same structuring element was applied, which formed
a whole opening operation and restored the segmented model. A similar approach was
presented in the newest article by Yang et al. [66] from 2021. Aware of potential problems
with memory usage, in the first step they stored the voxelized model in a structure called
VDB (a variant of the B+ tree with dynamic topology). Next, Euclidean Distance Transfor-
mation (EDT) was applied, and based on its results the inner spheres were used to pack the
space, resulting in the model being like a bubble-based one. Finally, the initial segmentation
was achieved by analyzing the topological graph of created spheres, and the final result
was obtained using the wavefront growth algorithm. Wang et al. [65], in 2021, presented
a novel strategy for dense 3D model reconstruction with a high control of memory con-
sumption. Their method, which is an extension of previous research [208], minimized the
used resources by constructing the model on the fly, including the spatial understanding
of space segmentation, by merging sub-maps of the entire scanned environment instead
of storing all captured data. As the initial processing was already prepared, the paper
describes only the newer part related to the environment sub-map management. The first
novelty was the trigger for a new sub-map generation. The second was the method of
sub-map overlap estimation, and finally, a new confirmation method for rejecting uncertain
merges of sub-maps. The reported results indicated a reduction in memory usage by 50%
compared to their baseline results.

5.1.10. Indoor Navigation

During the analysis, we split the indoor navigation task into four subcategories. Typi-
cally, the indoor navigation task achieved some variation of user guidance in environment
discovery. Depending on the exact task, it could take the form of path planning from
point to point (scenario visualized in Figure 14), user localization, robot navigation in an
unknown environment, or extension of building visualization with Augmented/Virtual
Reality (AR/VR).

Localization was the first subtask analyzed. We found four main groups of data types
to be in use. Multiple solutions based their processing on more than one input type and
combined the results to improve performance. Received Signal Strength (RSS) in a Wi-Fi net-
work was one of the data types from the Feature Set group. In 2014, Schäfer [199] discussed
the problem of concerns while using machine-learning algorithms in W-LAN fingerprinting.
In the test scenario, three different smartphones were used to collect test samples, and
multiple machine-learning approaches (KNN, SVM, Naïve Bayesian) were tested in the
room labeling task. The reported results indicated no significant influence of the data
preprocessing on the end results. Similar research was carried out by Zhang et al. [93]. In
the article found, data types from the 2D Images bucket were used—floor plan analysis
was presented to support the Adaptive Indoor Wi-Fi Positioning System known from [217].
The radio-based solution collected RSS measurements and extracted mobility patterns
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and used them to create graphical and radio maps of the environment, later used to lo-
cate new samples. The proposed floor plan analysis extended the work with semantic
meaning (room numbers) and simplified indoor navigation. A combination of floor plan
analysis and radio fingerprinting was also found in the article of Laska et al. [200] from
2020. They focused on the crowd-sourced processing of location data accumulated over
time. In their method, a floor plan was dynamically segmented based on the detected
radio fingerprints and generated radio map. Detected locations were clustered together,
creating a prediction of rooms, updated as the amount of data increased and adjusted with
a parameter describing the sensitivity to individual areas. The point cloud was the subtype
representing the 3D Spatial Data bucket. Although the data type suggested fully spatial
input, we discovered that, in all three articles, the actual processing was based on RGBD
images converted to point clouds. In the article by Liu et al. [196] from 2016, a wearable
mobile device was used by a person with visual impairment to orientate in the environment.
The semantic localization was deduced from a 3D indoor environment map created with
the use of a Kinect sensor. Room classification performed by CNN gave the initial idea of
the location and was corrected by the detection of representative objects—characteristic
of specific rooms. The same year, an article by Martínez-Gómez et al. [22] presented a
more universal work, a point cloud library-based framework for semantic localization. The
implemented method relied on a Bag Of Words (BoW) technique. Input RGBD images
were searched for valuable features, which created a dictionary of 3D words, later used to
generate descriptors. Many configurations were tested, and an SVM with a combination of
Harri3D (as keypoint detector) and PFHRGB (as feature extractor) was reported to score
the overall highest location accuracy. The newest article found by Rusli et al. [56] proposed
a full Simultaneous Localization and Mapping (SLAM) method. Their implementation
processed two separated yet synchronized data samples for each analyzed timestamp—one
from the RGBD sensor and one from the robot’s odometry (position and orientation). An
RGB image was searched for objects with the use of the YOLOv3 detector. The depth image
was converted to a point cloud and used for wall detection and placing found objects
in the space. During navigation, the proposed algorithm assumed that each room was
built with walls and that if no walls were detected some virtual ones were accepted. If the
robot crossed a wall, a new room was spawned, eventually generating an entire floor map
with the robot’s localization awareness. Mixed sensor readings were found as a second
subtype from the Feature Set. In 2015, Hardegger et al. [181] presented a system based on
two devices working together—a smartphone in the person’s pocket and a foot-mounted
IMU. Smartphone sensors provided data for the recognition of specific user actions, such
as sitting, standing still, or walking up stairs. IMU readings were used for trajectory cal-
culation and walked-path recognition. The actual room segmentation was carried out as
in the floor plan’s processing—using a location heatmap, which segmented parts of the
user trajectory. The proposed solution achieved the subroom accuracy of localization in a
multi-story building. Another system was created by Liu et al. [24] in 2016. They proposed
to use multiple smartphone sensors to acquire data—camera, accelerometer, gyrometer,
compass, magnetometer, and even Wi-Fi. The entire methodology consisted of two parts:
offline training and online localization. First, a CNN model was trained for indoor scene
classification, and a database of trajectories was constructed. Later, pictures from the
camera were classified for the initial localization proposal. Both data sources were fused by
a filtering algorithm and predicted the final location. In the article by Carrera V et al. [209]
from 2018, a similar set of inputs was extended with a floor map. Instead of a CNN, they
based the solution on a Monte Carlo Localization (MCL) with Bayesian filtering. Aware
of reading instability, the localization problem was described as system state estimation
from a sequence of noisy measurements. Newly introduced floor map data were combined
with a filtering process to reduce the influence of noise on results. The whole system was
equipped with an additional method for recovering from localization failure.
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Figure 14. Visualization of the Indoor Navigation task. Input consists of the selected points of start
and end (left). As a result of processing, a proposed path is generated and presented as a set of
instructions (right).

The Robot Exploration task was mentioned in seven found articles and based on two
types of input data. The first paper, from 2015, by Rojas Castro et al. [182], presented a
solution for the real-time navigation of a humanoid robot. The method followed a human-
like behavior: the robot first looked at a floor map of the environment, processed it, and
then used it to navigate during the exploration. Map processing consisted of information
segmentation, structural analysis, and semantic analysis, and the combined results were
used as input to a neural system responsible for online navigation. Similarly, the processing
of 2D images was found in two consecutive articles by Fermin-Leon et al. [129,132]. The
first one presented a Contour-Based Topological Segmentation of a grid map. In the ap-
proach, a Dual Space Decomposition (DuDe) algorithm was used for segmentation and
later improved with its custom incremental version. The idea was that new scans were
aggregated to the already processed map—only the contours coming from new data were
modified, leaving the rest unchanged. This allowed achieving similar quality results faster
than before. The later article proposed to use it as a part of an online algorithm called
TIGRE. It combined Graph-SLAM features and described contour-based segmentation,
graph processing, and real-time decision-making to implement an autonomous robotic
exploration. The implemented solution formulated the problem as a traversal of all graph
edges generated online during environment exploration. The achieved results have shown
similar error estimations as the off-line algorithms requiring prior full-graph awareness.
Kleiner et al. [131], in their work from 2017, focused on a room-by-room coverage task.
Their scenario was to improve how an autonomous cleaning robot explores the environ-
ment and its time optimization. A median filter, morphological closing operation, and
a watershed algorithm applied to a distance-transformed map were used for region seg-
mentation and feature extraction. The extended clutter removal process, region merging,
and the environment presentation as a region graph were utilized for later planning of
the cleaning path. The reported results indicated a reduction in mission execution time in
both types of movement: cleaning and path following. A more general approach to the
topic was presented by Cruz et al. [171] in 2018. In their article, the main focus was not
directly on navigation but on the robot’s learning process. As stated, the environment in
which the robot functions is constantly changing, and a full retrain of a neural network is a
highly time-consuming task. The presented work described several approaches to includ-
ing new data in the trained model of a deep CNN. Two architectures of the system were
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proposed and tested in a set of twelve different experiments. The reported results indicated
that although a pure CNN achieved the best accuracy, its training time disqualified this
approach, and a combination of CNN and a naïve classifier performed better. Another
approach to segmentation based on graph analysis was presented by Liu et al. [134] in 2018.
The proposed method focused on solving the “kidnapped robot” problem, i.e., restoring
the robot’s true global localization after an incorrect one. The method first cleaned the map
with the use of a median filter and clustered free space using the Iterative Self-Organizing
Data Analysis Technique Algorithm (ISODATA) [218] and ray casting [219]. Each cluster’s
center was used as a graph node representation and merged accordingly to their calculated
connections. Searching for complete graphs led to the final segmentation of the region.
The newest article by Balaska et al. [156] from 2020 approached the topic from the unsu-
pervised learning point of view. In their proposal, a robot exploring the environment was
processing consecutive frames of the video and combining them into a graph structure;
they were then clustered into communities according to the Louvain Community Detection
Algorithm [220]. Communities re-clustered with the robot’s odometry readings provided
the final segmentation of frames and led to topological map creation, which could be used
in semantic localization.

The Path Planning subtask was found in two articles. Methods presented in both are
similar in the processing procedure to some of the already described solutions. The article of
Blöchliger et al. [70] was focused on processing point cloud data in a way similar to the plain
room segmentation task: a topological map of the environment was created by segmenting
the free space into a set of convex regions. This was achieved by point cloud voxelization,
Truncated Signed Distance Fields calculation, and convex clustering, with the final clusters
being merged into larger, enclosed areas (e.g., rooms). The Path Planning was accomplished
with an A* searching performed on a topological graph, where the clusters were nodes,
and their adjacency was represented as edges. Hang et al. [133], in 2018, proposed basing
a multi-strategy path planner on the idea of space accessibility. An occupancy grid map
was processed to identify rooms and hallways (with a GVG and Conditional Random Field
model), later represented as a region topological map. The proposed method combined the
grid and topological maps analysis and tried to create a planned path so that the hallways
were preferred to be used. This was achieved using Dijkstra’s algorithm, the mentioned
GVG, and a custom implementation of the A* algorithm. The results were reported to be
closely similar to the path selection of a human being.

The AR/VR Application was found in one article from 2018 only—by Sharma et al. [40].
Their system consisted of two main elements: a smartphone used inside the explored building
and a server conducting calculations. Based on a 3D model of the building (generated from 2D
architectural blueprints), they showed how to process it into a topology model and combined
it with a Wi-Fi indoor positioning system. This method first created a 3D geometry replica of
the building. Then, it processed it into two representations: a voxelized space for initial room
segmentation and a skeleton graph for 3D navigation. The prepared data were stored in a
database and, during the navigation, combined with readings from the smartphone’s Wi-Fi,
resulting in real-time localization information shown on the screen.

5.1.11. Alignment/Matching

In the alignment task, we divided the solutions into two subtasks based on the pro-
cessed data type. Their common goal was to align a new input image to a reference one
with the highest achievable precision. An example of the matching process, performed on
a set of misaligned input floor plans, is presented in Figure 15.

Grid Map Alignment was a subtask represented by three articles found. One of
the discovered use cases for such functionality was a service robot trying to match the
current sensor readings and a newly created apartment grid map to a known map of
the environment. Kakuma et al. [130], in 2017, presented such a solution based on the
graph-matching procedure. The whole system first segmented regions in the grid map
(using morphological operations), extracted a graph from them, and represented it as a
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tree structure. The estimated transformation matrix was later checked for similarity, and a
final alignment occurred. Similarly, in 2019, Hou et al. [148] presented an area graph-based
solution. In the method, they first segmented the grid map using the Area Graph. Then,
for each area a set of features like area size or convex hull were calculated, relying on a
novel feature called the “passage distance”. Later processing calculated a weighted sum
of the extracted features, found the best matches between areas, and used the overlap of
well-matched ones to find the final transformation needed to align the maps. The topic
of aligning two maps was also discussed in 2018 in the article by Shahbandi et al. [187].
They presented a solution for the layout map (blueprint, floor plan) alignment with the
sensor map (grid map) and focused on the grid map deformation corrections. The proposed
method started with decomposition-based segmentation and presented results as a Doubly-
Connected Edge List (DCEL).

Figure 15. Visualization of the Map Alignment task. A set of misaligned input plans (left) is combined
into a single aligned result (right).

The Plan Alignment task was found in the publication from 2016 by Sharma et al. [92].
Their main objective was to provide a solution for matching and retrieving similar floor
plans, with a sample image being the search query. Like previous methods, this one also
started with room segmentation (by boundary detection and morphological operations),
adjacency recognition, and presentation in a topology graph form. A novel graph spectral
embedding feature was proposed and used for floor plan representation, reducing the
graph-matching computation time. The proposed method included information about the
room décor in the retrieval process.

5.2. Taxonomy Summary and Discussion

In this section, we present a brief discussion of the discovered dependencies and
observed tendencies. The number of implementations found is too large to summarize
them all at once, so we do it task-by-task. A general discussion is held at the very end.

3D Model Generation. We can distinguish highly professional solutions (dedicated
to commercial use) and solutions based on simplifications (often intentional, aimed at
reaching non-professional users). The creation of a three-dimensional model was best
carried out using three-dimensional data. In our opinion, the best results were achieved
through point cloud processing. Such input is the best reflection of the actual world (the
most precise), and its influence on the quality of the results was visible. Working with two-
dimensional data lacks information about the third dimension, and its recovery is always
fraught with errors. In one-dimensional data, it was impossible to recreate the model at all.
Subjectively, the best solution currently achievable is a combination of algorithmic point
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cloud preprocessing and machine-learning-based postprocessing. The first approach would
achieve some kind of data preparation and cleanup, e.g., clustering and outlier removal.
The latter would retrieve the actual environment structure.

Content-Based Image Retrieval (CBIR) was a relatively rare task, even though search-
ing by image seems to be gaining popularity in the context of type recognition and floor plan
analysis. All the solutions we found were processing the data in the same way. First, they
analyzed the input image, then created a graph representation of it, and finally compared
the structure for similarities. The obtained results were satisfactory, but we see a research
niche here for some more sophisticated processing, especially for further development in
the direction of recommendation systems.

Environment Description Creation is still not popular yet is a very important topic,
especially for visually impaired people. The solutions we found in this area were imple-
mented in disability support systems and were based solely on processing room plans,
mainly using neural networks. There are unexpectedly few works in this research field and
with a narrow scope of processed inputs. We can see great potential for developing sys-
tems that generate descriptions based on three-dimensional data. They could significantly
improve the precision of generated explanations and reduce data loss, e.g., by providing
details about the height of tables, countertops, chairs, or the steps of stairs.

Floor Plan Vectorization and its emergence was purely caused by the imperfections
of the input data. By definition, raster images of floor plans do not scale well and lose
quality while enlarging. The easiest solution would be to change the acquisition method.
However, this is not always possible because vectorization is commonly used in digitizing
existing documents. The works found here were trying to retrieve the lost information and
switch the image format to a scalable one. This task was dominated by machine learning,
mainly covering neural networks. Subjectively, the best results are currently achieved by
Generative Adversarial Networks (GANs).

Floor Plan Prediction/Generation. We observed an immense expansiveness of the
quality of the results. This was caused by the processing of data with virtually any degree of
complexity. The most straightforward and least accurate predictions were achievable even
on one-dimensional data, although the most accurate mapping was performed using three-
dimensional input. With the use of spatial data, it was also the easiest one to implement.
Technically, obtaining a 2D plan from a point cloud or 3D model is a kind of simplification.
In such a case, we suggest moving from a more information-rich representation to a
simpler one.

Graph Generation was the task implemented to utilize the advantages of graph
structures, i.e., well-established analysis of relationships between the nodes. Here, we have
a similar observation to the one from floor plan prediction—the creation of the graph takes
place mainly based on input data with a higher degree of complication. The created graph
is easier to process and better highlights simple dependencies, hard to notice in the data
noise of more complex inputs. This task is not yet dominated by machine-learning solutions
but with the increasing importance of the fairly novel idea of Graph Neural Networks and
their variations.

Room Classification is a complex task carried out for every one of the found data
types. Subjectively, the best results are achieved while processing authentic images of the
environment, taken manually by a human or from a mobile platform/droid. The deep
neural networks and their convolutional subtype remain the most popular and unbeatable
in the achieved quality of results. The most promising solutions are those analyzing three-
dimensional point clouds. However, their degree of maturity is too low to consider them
as the default choice. They have great potential but are subject to an extensive calculation
overhead, which is not yet justified by the quality of the results.

Change Detection was found to be a highly underestimated application that could no-
ticeably improve the process of building lifecycle monitoring—only a single work focused
on indoor environments. Most of the articles on this topic were filtered out of this research
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because the analysis focused on processing aerial photos. The use of building models to
detect, analyze, and document changes remains a field for further investigation.

The Segmentation task best shows the evolution of the input types and processing
methods over time. Historically, the first was the segmentation of building plans. Their
acquisition was the simplest and most widespread one. With time and the development of
the available equipment (e.g., automatic cleaning robots), the segmentation issue expanded
to occupancy maps. Finally, the most modern structure is the point cloud. Segmentation
based on two-dimensional data is noticeably more explored than spatial data processing.
Equipment capable of acquiring 3D representations of space is still a novelty that makes
spatial data processing a leading topic of ongoing research in this field. It is worth not-
ing that selected techniques that work well in two-dimensional data can be successfully
adapted and applied to three-dimensional structures. This applies to transforming sym-
bolic representations (occupancy maps) and real images. Computer vision techniques, for
example, morphological operations, prepared originally to work with a matrix of pixels,
can be effectively transferred to three dimensions. This requires some additional work and
adjustments (such as the voxelization of models), but it is possible and has been successfully
utilized. The same can be said about clustering, distance transform, watershed algorithms,
etc. They worked well in the past and seem to work correctly nowadays. The only challenge
remaining is to preprocess the data to present analogous structures properly but with an
increased number of input dimensions.

Indoor Navigation was the task that combined the previously described methods to
achieve a new output and give it a more implementation-oriented application. Regardless
of the specific subtask, the elements of segmentation and classification processes were
carried out the same way as in the already discussed examples and then combined to
obtain a more complex result. An issue more broadly and more thoroughly studied than
Simultaneous Localization and Mapping (SLAM) was not described directly in this article.

The Alignment/Matching task is performed mainly as a step in solving more compli-
cated problems, such as navigation in the environment. It implements segmentation and
classification as a means to reach a different goal. It is hardly done independently without
further processing. For two-dimensional data, the task is dominated by a methodology
based on a two-step approach. First, the images are analyzed and used to create graphs of
the processed environment. Later, the graphs are compared and their similarity is evaluated.
For three-dimensional data in the form of point clouds, alignment is part of the structure
acquisition process itself, known as ‘point cloud registration’.

General discussion. One of the most important results of our work is the following:
researchers should be aware of the characteristics of their input data representation and
not be afraid to change it. Replacement of the acquisition device, and therefore the source
data structure, as well as conversion of the already obtained data to another format, can
significantly simplify the processing needed to achieve satisfactory results. Furthermore,
we should generally be open to flexible and dynamic data representation changes. The
dimensionality of acquired measurements is not fixed. We can reproject it and adjust
it to our needs. We observed that, in some cases, it is worth trying to obtain a more
complicated input structure and cast it onto a simpler one. We could see this in the
processing of floor plans generated from point clouds or graphs based on the occupancy
maps. What is interesting is also the visible interdisciplinarity of solutions. Many of
the algorithms successfully processing N-dimensional structures could process the N
+ 1-dimensional samples with just minor adjustments. Segmentation and classification
processes are evolving from a problem themselves to a step in more complex systems.

6. Bibliometrics Analysis

Two subjective feelings accompanied us during the research. The first one concerned
the number of articles—the closer to the current year, the more articles were found, and
with a visibly growing trend. The second concerned the content of the publications—most
of the articles seemed to have similarly referenced basic methodologies or processing.
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To prove these statements, we conducted an additional, purely bibliometric analysis of
found publications. The first claim was analyzed with the use of statistical evaluation. To
visualize it, we created a year-to-year publication quantities chart, presented in Figure 16.
The chart is based on 51 papers selected for full, more detailed analysis. A significant
increase in the number of publications regarding the room segmentation and classification
topic can be spotted in the last five years. The numbers almost tripled from 13 articles
published in the first half of the analyzed period (years 2012–2016) to 37 in the second (years
2017–2021). An extreme outlier of the trend was the year 2020, when the year-to-year ratio
reached the level of −50%. This date coincides with the peak of the COVID-19 pandemic
outbreak. The quantity of articles from 2022 is also significantly smaller, but as this survey
was conducted before the end of the year 2022 its value should be omitted in the statistics
discussion as a not reliable measurement. In this way, the first statement is confirmed.
In general, a growing interest in research on the topic of automated room segmentation
and classification can be seen, which manifests itself in an increasing number of academic
publications discussing it.
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Figure 16. The number of found publications discussing the topic of room segmentation and
classification in 2D images per year between 2012 and 2022.

To prove the second statement, we created a reference diagram of the links between
the analyzed articles themselves. This part of the bibliometric analysis was based mainly
on the widened set of publications, including papers pointed out as important during
the survey extension. It constructed a collection of 89 articles, which were analyzed for
their linking. By a “link,” we mean a citation of an article from the analyzed collection
by another article from the collection. To conduct the bibliometric analysis, we used two
dedicated applications. VOSviewer was used to obtain the metadata regarding the citations
and references [221], and Gephi was used for link visualization [222]. The prepared graph
of links between found papers is shown in Figure 17.

To simplify interpretation, only five articles (with the highest number of links) are
presented using their authors’ names and year of publication. Including all labels would
make the graph unreadable. The counts of links per document varied between 0 and
26. Most references (26) pointed to the article by de las Heras et al. from 2014 [87]. The
following four most referenced works were (in decreasing order) Ahmed et al. from
2012 [86] with 22 links, Bormann et al. from 2016 [1] with 19, Ahmed et al. from 2011 [112]
with 18, and finally, Dodge et al. from 2017 [94] with 14 links. For a more comprehensive
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analysis and trend comparison, the links were also recalculated for the smaller set of
articles. There would be only two updates. First, if narrowed to the main flow of the survey
(51 articles), just one of the five publications with the most links would be replaced. The
difference would be the article by Ahmed et al. from 2011 being not in the range of accepted
publication dates, and Madugalla et al. from 2020 waqs provided instead [103]. The second
change would relate to the order of results: the two first publications would switch places.
We consider the second statement as confirmed, likewise the first one. Even after almost
a decade, all the newfound articles were intensively referring to one another and with a
visible set of well-known base methodologies.

Figure 17. Diagram of link-references between articles of the extended bucket of papers processing
2D Images. In decreasing order, from top to bottom, papers with the most links: ([1,86,87,94,112]).

7. Challenges

The extensiveness of the conducted survey allowed us to detect some common prob-
lems and challenges that the researchers had to overcome in their studies. They differ
from one analyzed solution to another but, at the same time, are a good indicator of what
frequent difficulties may be encountered during the research, independently from the
low-level accomplished task. We specify a set of five such challenges and describe them in
this section. The most important one (in our opinion) seems to be aligned with the topic
of this publication. It is the diversity of input data and their representation. During the
research, we have pointed out many main types of data but it is still not enough. The
real challenge here can be easily described with the use of building floor plans. They are
not unified. We can find multiple different styles of plans. They can be monochromatic
or colorful, simplified for easier understanding or filled with technical details for con-
structors, empty or filled with furniture pictograms—even the same building can have
many different floor plan representations. The same can be said about other data types,
e.g., spatial models being mesh models or point clouds. The second and third challenges
are related and should be discussed together. The first problem is the amount of data
that needs to be collected, stored, and processed. Nowadays, researchers have to expect
millions of samples and terabytes of measurements. They need to have a plan regarding
how to receive it fluently, save it, and prepare it for later use. The second topic is how to
overcome these issues while working with very limited hardware resources. It works fine
when more computing power and better equipment come together with the increasing
volume of data. An example here can be the process of professional 3D modeling in digital
twin reconstruction. Although a scan of a building delivers massive amounts of data and
requires powerful computers, they are available and used to work with all the acquired
measurements. But this is not always the case. On the one hand, the growing interest in
smart solutions results in a rapidly increasing number of sensors used and providing data,
but on the other hand such sensors are not powerful in the aspect of processing capabilities.
The idea of edge computing seems to be an urgent topic for extensive research, as the
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data volume increases rapidly and the sensors are forced to be small, cheap, and with
long battery life, restricting their computational power. The fourth discovered challenge is
dedicated to human participation in data gathering. As mentioned in the introduction to
this research, the best scenario is achieved when the proposed solution requires little to
no user involvement. As we noticed in the found articles, not every solution followed this
assumption. In multiple cases, the data collection process required a researcher to spend
many hours walking with a scanner or taking photos of the environment. As the operator’s
time is of increasing value for the whole process, newly created solutions will have to
face the requirement for fully autonomous data acquisition and processing. This could
be achieved with robots, drones, or smart sensors. The last discussed visible challenge is
information loss. It may seem obvious, as the semantic meaning reconstruction is the main
topic of this research, but it needs to be stated clearly—in some representations, specific
data are irretrievably lost. An example here is a floor plan with no information on floor
height. We could find multiple different ways to recreate information, but none of them
can be accepted as an indisputable and always correct way of information retrieval. While
preparing an implementation, researchers should be aware of the limitations present in the
selected data type. In the case of floor plans, it would be enough to save the floor height as
a piece of additional information in the image. However, if skipped at the beginning of
processing, this information may never be reconstructed correctly. The described challenges
presented a wide range of fields for further academic research and possible improvements
of already existing solutions. They mostly followed the main changes visible in the current
world—the increasing amount of data and its diversity with a simultaneous expected
decrease in the operator’s involvement in system maintenance.

8. Newest Trends and Place for Future Work

The extensiveness of the conducted research forced a specific range of publication
dates to be accepted. As already presented, indoor environment analysis is a dynami-
cally evolving field. Nevertheless, later in this section we try to indicate the main future
directions of research.

One of the most important, inevitable trends is the popularization of IoT sensors and
their use in everyday life. They can be integrated into various home appliances. Inspired
by neuroscience, Zhu et al. [223] presented scene classification in the application of home
service robots. Yang et al. [224] benefited from the diversity of available data representations
and used a set of numerous formats of maps to create an autonomous navigation and
landing system for an Unmanned Aerial Vehicle (UAV). Finally, Shaharuddin et al. [225]
reviewed the role of IoT sensors in the aspect of fire hazard contingency in smart homes.
Internet-connected devices have become a standard in the industry, and we should place
special attention on the utilization of the possibilities it generates.

Another important trend is the increasing capability of large-volume data process-
ing with gradually more sophisticated methods. Mahmoud et al. [226] proposed a well-
performing framework for scan-to-BIM generation with semantic segmentation of input
point clouds. They report values for the precision, recall, and F-score of indoor element
reconstruction of 96–99%. A full-scale digital twin was proposed to be automatically gen-
erated and used in a later production system’s simulation by Soomer et al. [227]. They
processed huge amounts of data to plan and predict the manufacturing process, optimize
it, and provide cost savings to clients. Images with an additional channel of depth were
analyzed by Zheng et al. [228] with the use of transformer neural network architecture,
which is gaining popularity. All these methods were possible to implement thanks to the
increasing computing power of typical workstations.

Another aspect we would like to mention is the carbon emissions reduction and energy
optimization of multiple types. This can be done at a micro- as well as a macro-scale. Single
building modeling and its property analysis were analyzed regarding various aspects.
Han et al. [229] presented the context of the thermal storage performance of a building;
Pachano et al. [230] studied the self-consumption optimization of energy produced by pho-
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tovoltaic systems; Deng et al. [231], Roumi et al. [232], and Sulaiman and Mustaffa [233]
focused on the personal satisfaction (e.g., the thermal comfort) in connection with the build-
ing energy consumption. At the macro-scale, industrial analysis of energy quota trading
was presented by Wei et al. [234]. Society’s ecological awareness is growing, leading to
an increase in the number of analyses focusing on energy optimization.

We left the most important trend for last: the application of machine-learning in the
analysis of indoor environment has become a standard approach. It can be clearly seen
with a search for the set of keywords ’machine-learning indoor environment’ in the online
repositories of MDPI, Elsevier’s Science Direct, and IEEE Xplore. The summarized number
of records found in all these three repositories reached 2265 for the year 2021; in 2022, it
was already 2878 (+27% year-to-year), and in 2023 the number of entries increased by a
further 20% and reached 3454 records.

All these trends are well-suited to be the direction of future research, and their results
will definitely attract a significant amount of readers’ attention.

9. Summary

Our literature review shows that the topic of room segmentation and its semantic
meaning retrieval is a fresh area of research, dynamically developing new solutions rely-
ing on various data representations. In the fully automated approach to manufacturing
processes, it is crucial to have a complete understanding of owned assets, especially in the
form of digitalized documentation and virtual models that can be processed by an AI-based
system. We have to know what data is already available or can be easily acquired, and how
we can utilize it.

Performed analysis of the existing literature with the SLR methodology allowed us
to identify three perspectives of dwelling on the existing works, called taxonomies. The
first one (Section 3) answered the question dedicated to available input data structures.
Four different types of data were found to be utilized: 2D images, 3D spatial data, graph
structures, and feature sets. The second taxonomy (Section 4) presented the category
of processing methods. We specified four such categories: three types of segmentation
(with increasingly more precise semantic room understanding) and plain classification
itself. The third taxonomy (Section 5) discussed the task accomplished by the analyzed
implementations. We found eleven main types of assignments, which differed significantly
from one another. Implementations stretched from tasks of 3D model reconstruction and
floor plan segmentation through indoor navigation and path planning to change detection
and many others.

Our subjective perception of the ongoing trends in the research was validated in the
bibliometric analysis performed. Its results (Section 6) confirmed all the initial assumptions
of a visibly growing trend in the number of publications that (1) discuss the topic of room
segmentation and classification, (2) share similar basic processing, and (3) are strongly
related to each other. The categorized knowledge also allows the reader to observe fre-
quently discovered challenges, which seem to indicate the most common difficulties that
researchers should be aware of and try to overcome (Section 7).

In summary, this research indicates that all environments can be digitalized and
somehow facilitate the automation of manufacturing and controlling processes. The range
of available data types and their possible applications is so vast that practically every
enterprise is able to find a solution suitable for meeting its needs and capabilities. We have
researched, described, and summarized recent solutions that could help them gather these
data, understand them, and use them to better manage their resources. We did this with a
particular focus on one specific resource management aspect—facilities’ digitalization and
their space organization. We wanted to know what type of input data can be processed,
how, and for what reason. After reviewing such a broad collection of papers we can
conclude that the diversity in the input data structures and the processing methodologies
should be considered not as a problem but as an opportunity. We can choose the data
representation that is best for our use case. We can adjust it to the hardware limitations,
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business applications, or even our own convenience. Researchers should not restrain data
reprojection, as it may significantly simplify the solution.

The limitations of this work are, at the same time, the indicators of potential future
research. Because of a very wide range of covered applications and described solutions,
their presentation neither goes into algorithmic details nor discusses implementation
nuances. The expected continuation of this review would be to analyze its results once
again and answer additional research questions, focusing on the exact methodologies
presented in the found solutions. Instead of answering ’what’ and ’why’, it would also
be of high value to elaborate on ’how’ things could be achieved. As the areas of machine
learning and the Internet of Things are changing every day, a review as wide as ours is
expected to be continually extended with the newest innovations that appear. It would
be advisable to continue such research regarding a narrower, more specific aspect of the
presented taxonomies, placing special attention on only the newest ideas and trends.
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fully automated thermal 3D mapping. Adv. Eng. Inform. 2014, 28, 425–440. [CrossRef]
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215. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. arXiv 2018. [CrossRef]
216. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2018. Available online:

http://arxiv.org/abs/1905.11946 (accessed on 28 April 2024).
217. Lin, K.S. Adaptive WiFi positioning system with unsupervised map construction. Electron. Comput. Eng. 2015, b1514560.

[CrossRef]
218. Ball, G.H.; Hall, D.J. Isodata, a Novel Method of Data Analysis and Pattern Classification; Stanford Research Institute: Menlo Park, CA,

USA, 1965.
219. Roth, S.D. Ray casting for modeling solids. Comput. Graph. Image Process. 1982, 18, 109–144. [CrossRef]
220. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory

Exp. 2008, 2008, P10008. [CrossRef]
221. van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010,

84, 523–538. [CrossRef] [PubMed]
222. Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings

of the International AAAI Conference on Web and Social Media, San Jose, CA, USA, 17–20 May 2009; Volume 3, pp. 361–362.
223. Zhu, B.; Fan, X.; Gao, X.; Xu, G.; Xie, J. A heterogeneous attention fusion mechanism for the cross-environment scene classification

of the home service robot. Robot. Auton. Syst. 2024, 173, 104619. [CrossRef]
224. Yang, L.; Ye, J.; Zhang, Y.; Wang, L.; Qiu, C. A semantic SLAM-based method for navigation and landing of UAVs in indoor

environments. Knowl.-Based Syst. 2024, 293, 111693. [CrossRef]
225. Shaharuddin, S.; Abdul Maulud, K.N.; Syed Abdul Rahman, S.A.F.; Che Ani, A.I.; Pradhan, B. The role of IoT sensor in smart

building context for indoor fire hazard scenario: A systematic review of interdisciplinary articles. Internet Things 2023, 22, 100803.
[CrossRef]

226. Mahmoud, M.; Chen, W.; Yang, Y.; Li, Y. Automated BIM generation for large-scale indoor complex environments based on deep
learning. Autom. Constr. 2024, 162, 105376. [CrossRef]
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