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Featured Application: This paper proposes a method that can increase the connectivity of the
knowledge graph when it is constructed and improve usability, e.g., retrieving more knowledge at
the time of query.

Abstract: Extracting relation quintuple and feature words from unstructured text is a prelude to the
construction of the scientific knowledge base. At present, the prior works use explicit clues between
entities to study this task but ignore the use and the association of the feature words. In this work,
we propose a new method to generate self-adaptive feature words from the original text for every
single sample. These words can add additional correlation information to the knowledge graph.
We allow the model to generate a new word representation and apply it to the original sentence to
judge the relation type and locate the head and tail of the relation quintuple. Compared with the
previous works, the feature words increase the flexibility of relying on information and improve the
explanatory ability. Extensive experiments on scientific field datasets illustrate that the self-adaptive
feature words method (SAFW) is good at ferreting out the unique feature words and obtaining the
core part for the quintuple. It achieves good performance on four public datasets and obtains a
markable performance improvement compared with other baselines.

Keywords: relation quintuple; scientific knowledge; feature words

1. Introduction

Automatically extracting relational quintuples is a typical task in information extrac-
tion, which is widely used in vertical domains. Especially in various specialized fields, it
can help nonspecialists to understand how cleaning evolved and remains relevant. Quintu-
ples are considered meta-information for knowledge-base construction, including the type
of head entity, the name of the head entity, the type of relation, the type of tail entity, and
the name of the tail entity. This kind of information can form a knowledge graph by the
merging of the same entity and relation, such as the vertex and the edge. This task has been
labeled “Rel+” in some papers, in contrast to the entity–relationship joint extraction task,
which does not consider unrelated entities when extracting quintuples. This can be seen
in the recent datasets, such as scientific papers [1], the financial domain [2], biomedical
information [3], and energy data [4].

Feature words play an important role in the relation quintuple extraction task. These
words act as triggers to guide relational ternary extraction [5]. We define a feature word
as a key word that assists in the extraction of relational quintuples and establishes the
relevance of the original sentence after the construction of a knowledge graph. Thus, the
feature words decide which contribute to the specific type and act as a kind of relation
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prompt. These feature words are added to the knowledge graph interface to increase the
degree of connectivity, allowing users to obtain more relevant information when querying
the knowledge graph. Thus, the task is defined as the extraction of relational quintuples
and feature words from each sentence in the dataset. Similar to this idea, Yan et al. [6] used
feature words as boundaries to restrict the position of entities during extraction. However,
these labeling processes consume resources due to boundary labeling. Zhu et al. [7] used
feature words for relational ternary extraction in the urban rail domain, but they still
used the hidden semantics of the feature words without feature word labeling, instead of
outputting the feature words themselves with the supervision method. As a result, there
was no improvement in graph connectivity at the time of graph construction. From the
above, it is known that the feature words can provide self-enhancing information for the
extraction process. However, since these feature words are unlabeled, we consider using
“associative supervision” [8] to extract these words during quintuple extraction, unlike
existing semi-supervised schemes. Using such a supervised method, we are the first to
propose the direct output of feature words.

The word-based approach provides a model design perspective that influences the
relationship classification results. Because of the pre-trained model and the large language
model, the semantic features are no longer the bottleneck; therefore, it is very important
to retrieve the text expression or separate the targets from the sentence. In Li’s work, the
relation results of the expression and the predefined templates were encoded to generate a
fine-grained semantic representation [9], which injects more link features into the training
model. Learning the features from existing results [10] can generate global features and
enrich the pattern information in the current sample. In addition, when the training data
change and the head and tail entities are arranged in order and disorder, the ordering
of the two entities in the quintuple can be learned [11]. Remarkable improvements in
the word-based solution show that both the modified model and the refined data are
required. This approach can be of use in the extraction of feature words in conjunction with
relational quintuples.

Despite its success in using words, this approach still has a number of shortcomings
in setting fixed words as feature words. The fixed words, regarded as templates, are not
flexible enough in their meaning, which may result in redundant or missing information.
This problem is simply compensated for by the feature words drawn from the original
sample, considered as self-adaptive feature words. Figure 1 shows the fixed feature words
improved by these words. In order to increase the relevance of the knowledge graph, we
link the feature words to the origin graph. Figure 2 shows the comparison of those with
and those without feature words. Here, we use examples of extracting relational quintuples
in common scenarios to help us to understand them. In fact, in the knowledge graph
constructed from the scientific texts, these feature words can play the same role as informa-
tional cues. They can establish connections with professional knowledge and help users
to understand the relevant work in the field. Therefore, using the associative supervision
method to improve the recognizability of the samples is an appropriate solution.
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Figure 2. The comparison with and without feature words. The upper part shows a knowledge
graph without feature word links. If there is no feature word, the graph is divided into 3 subgraphs.
The bottom part shows a knowledge graph with several feature words. The number of sub-graphs
becomes 1 after the feature words are added. This indicates that, when the graph is constructed, the
extracted feature words can increase the correlation.

In this paper, we begin our work with the goal of enabling the self-adaptive feature
words method (SAFW) to find descriptions of problem solutions. SAFW aims to explore
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how to extract both relational quintuple and sample feature words. To the best of our
knowledge, this is the first hybrid supervised method for the extraction task of multiple
targets. Our approach is to allow SAFW to generate specific feature words for each sample
by extracting words from the source sentences and guiding the extraction of these feature
words with the help of the quintuple results. To extract useful information as keywords from
the distorted sentences, we propose a multi-turn vector resampling module to redistribute
the weights of the words and combine them with the initial weights to obtain a unique set
of candidates. As a result, SAFW can extract adaptive feature words for each input and
compute them for target discrimination. Specifically, after sentence encoding, we use a
pointer network [12] to iteratively down-sample the words and generate combinatorial
vectors to represent them. Then, we use a fixed template filling strategy to find the head and
tail entities, as in the work of Li et al. [9]. Since these feature words obtained after sampling
are again used as inputs for relational quintuple extraction, we can assume that they are
supervised by the quintuples. Such re-arrangement, re-screening, and the application of
external data [13] inspire our method. This improves the generalization performance and
removes noise from our training data. Lexical applications such as guiding words [14,15],
robustness [16,17], and low data resources [18,19] have inspired similar approaches of
this type.

In short, SAFW can be summarized as the generation of feature words by each training
sample first, and then combining them with fixed template matching to find the relation
and entity parts. The experiments show that SAFW significantly outperforms the existing
methods. The contributions of this paper are as follows:

We introduce a novel viewpoint that generates feature words from all of the dataset
and its derived data to guide the model to extract the relation quintuple. For training data,
this is a simple and data-saving supplementary mechanism.

We propose the idea of associative supervision, which combines unsupervised learning
with supervised learning. The supervision of unlabeled results can be achieved by a
supervised process. This is a source reduction idea that can effectively reduce labeling
labor and resources.

We propose a new method to select some down-sampled keywords and redistribute
their weight to increase the differences for the same words or phrases in different sam-
ples. This hybrid supervising strategy, which incorporates two objectives, can eliminate
the problem of conflicting optimizing directions that arise from multiple supervising in
traditional models.

Extensive experiments on four public datasets of three scientific ones and two general
ones show that the proposed method achieves state-of-the-art results. The ablation studies
prove that our proposal is feasible.

In this paper, we introduce the concept and the innovative approach of relation
quintuple extraction for the scientific literature in Section 1; explain the algorithmic flow
in Section 2; show the results of the basic experiments, the ablation experiments, the case
study, and the quantitative analysis in Section 3; and summarize the full text in Section 4.

2. Materials and Methods
2.1. Problem Overview

We regard this problem as a union task of feature words and a relation quintuple
extraction task, with a sentence of S = {w1, w2, . . . , wn} as an input, feature word indexes
of I(S) = {i1, i2, . . . , it}, and relation quintuples of T (S) = {(s, t, o)} as outputs, where
s, o ∈ E are the tokens of the head entities and tail entities in the sentence, connected by the
union types t ∈ T. The length of the sequence is n. The total t feature words are extracted.
The E is the set of the entities. The T contains the type of head and tail entities and the type
of relationship between them. An overview of our method is shown in Figure 3.
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Figure 3. The structure of SAFW. The sequence S = {w1, w2, . . . , wn} is converted into relation-
encoded sequence Vr and entity encoded sequence Ve by the multi-turn vector resampling module
and linear mapping function. Then, the two sequences are merged with the union-type candidates to
select the entities used to form the relation quintuples. The resampling selects t feature words within
t times. The mask only contains 1 and 0, indicating whether the corresponding words are available
or not (green means available, while red means not available). The available indexes are all tokens,
except [CLS] and [SEP], and are masked one by one until the time t or all-covered.

2.2. Encoder

The encoder gives the token representation of the samples in the dataset. We chose
the BERT model [20] for the sake of the prior knowledge. It is designed to obtain deep
representation and outputs a sequence of token vector, V =

{
vcls, v1, . . . , vn, vsep

}
, which

can be used in the re-sampling process. For BERT, the vcls and the vsep are the vectors of
the special tokens [CLS] and [SEP] located at the beginning and end of the sentence.

2.3. Multi-Turn Vector Resampling Module

The multi-turn vector resampling module is designed to extract feature words and
optimize the capturing effect of the input by changing the output scale of all of the vectors
in V. This module selects a number of k indexes for the feature words with loops of
t(0 ≤ t < k). These positions can represent the corresponding feature words, so as to
regard them as self-information enhancement. Using a brand-new multi-loop method, the
encoder can collect different semantic states in all t steps as the next inputs. When t = 0,
we choose vcls as vcur and a zero vector as vpre. These vectors are combined into a new
sequence, which is the input of a two-layer transformer network. It outputs a re-encoded
fusion result hT from the source representing the semantic information that can be viewed
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as a transition from the previous state to the current state. Note that the equations with (t)
are calculated in the loop and with the process of the t turn, as follows:

hT(t) = Trans f ormer
(

Vpre(t), Vcur(t)

)
(1)

Vpre(t+1) = hT(t) (2)

where hT is copied n times as nhT, so that they can be merged and keep the same length as
the input data. In the t + 1 stage, the value will be fed into vpre. In time t = 0, we also set a
0 vector within V length as the initial sequence mask M(t). If a word is selected, the mask
at the corresponding position changes to 1 in the next round, which means that the word is
masked in the calculation.

The pointer attention decoder reallocates weights for all of the vectors in the sequence,
which is the key solution for feature word extraction rendered by the samples. With the
progress of training, the weights of SAFW become more and more reasonable, and the
vector selection is adjusted appropriately at each time step. This novel strategy ensures
that the newly generated probability distribution depends on the previous step value,
thus improving the fault tolerance of capturing an uncertain number of keywords. We
employ a linear mapping function to transform all of the inputs into the same shape. In
this way, the result will be bound with V (without vcls and vsep) and sent into a nonlinear
activation function to obtain the possibility. The maximum value of the possibility points
to the selected position in the current round, leaving the next stage result, and adding
it to the probability group α as α(t). The max-pointer position represents the extracted
words, while the source represents all of the basic vectors, implemented by scatter and max
functions and changing the α to one-hot form, as follows:

hp(t) = Wpconcat(chT(t), V) + bp (3)

α(t) = So f tmax
(

M(t) + Wx
(
tanh

(
hp(t)

))
+ bx

)
(4)

onehotα(t) = scatter(max(α(t))) (5)

M(t + 1) = M(t) + onehotα(t) (6)

where Wp is the mapping trainable parameters of the linear function and Wx is the trainable
weights for integrating the sum of the two source vectors. Here, M(t) is updated by
onehotα(t). This mask growth mechanism is an unsupervised way to prevent the model
from selecting the words that it has selected before. The maximum value in time t will
no longer be the maximum value in time t + 1, because we add −1 × 109 for every value
of 1, illustrating that the mask can cover the chosen ones in all time steps. We designed the
mask in the following way, referring to the work of Liao et al. [21] and improving it. They
proposed a variable mask in a generative model. The mask on a certain position is drawn
from a probabilistic distribution and exchanged by specific words in the generation phase.
In addition, they prepared a set to mark the pointed positions and ignore them afterwards.
We consult these two features of the variable mask.

The output of the final distribution is the sum of the max-pointer position probability
and the source probability. We enhance the contribution of the selected words and keep
the source part smoother, reconciling the local importance with the global sequence. In
addition, the result is also used to calculate the next current state vcur(t + 1), as follows:

p(t) = α(t) + onehotα(α(t)) (7)

vcur(t + 1) = Maxpool(p(t) ∗ V) (8)

where the p(t) is the output probability in step t. We adopt max-pooling to obtain the
vcur(t + 1) value for the multi-round process.
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At the end of the iteration, t = k, the entity representation V(e) =
{

v(e)
cls , v(e)

1 , . . . , v(e)
p ,

v(e)
sep

}
, and the relation representation V(r) =

{
v(r)

cls , v(r)
1 , . . . , v(r)

p , v(r)
sep

}
are multiplied by

the probability with different linear mapping. Because we use a batched index selection
function to find all possible entity spans to combine into this form, the end index of the
sequence is p, not n. Thus, the vectors in V(e) and V(r) are converted into span-based ones,
such as v(e)

i =
[
v(e)

start(i); v(e)
end(i); θ

(e)(vi)
]
, where the v(e)

start(i) and v(e)
end(i) are the boundary

vector of entity i and θ(e)(vi) is the length of it. The feature word indexes I are collected by
a container and output after concatenating, as follows:

V(e) = ent(We(p(k) ∗ V) + be) (9)

V(r) = ent(Wr(p(k) ∗ V) + br) (10)

I = max(concat(onehotα(α(1)), onehotα(α(2)), . . . , onehotα(α(k − 1)))) (11)

where ent is the entity selection function and the We and Wr are the trainable weights
for generating the entity and relation. With this method, we extract the feature words by
indexing the mapping to the original text. In addition, we modify the vector distribution
for subsequent calculations. This result is supervised with the help of relational quintuples.

2.4. Relation Matching Module

The priority of union-type extraction can reduce the result space of relation quintuples,
which inspired us to design a candidate set to find all possible results. We allow all of
the union types U to be inputs and obtain the representation of self-attention. Another
self-attention layer is used to integrate and enhance the semantic information in V(r). After
encoding, we introduce V(r) as a key and a value into the cross attention module. The
module’s query is a union-type representation, which keeps the same shape as the output.
After the calculation of the attentions, we expand both of the results and form an interactive
matrix X(r), which represents full mapping of the union-type candidates and the vectors in
the representations. Here, we denote the result of the expanded as X(r) ∈ R(m×d), where m
is the number of the total union types, as follows:

U(r) = crossatt
(

sel f att(U), sel f att
(

V(r)
))

(12)

X(r) = expand
(

U(r)
)
+ expand

([
V(r)

])
(13)

T = Sigmoid
(

WTX(r) + bT

)
(14)

where U(r) is the result of the cross attention and T is the sigmoid mapping value, which in-
dicates whether the type is true by a threshold. This will guide the feature word generation
based on union types in the next module.

2.5. Entity Matching Module

Since the results T are known, we use them as inputs and obtain entity pairs in this
module. The results are prepared in the training phase, but they must be converted from
T during the test. Similar to the union type, we choose the same method to obtain the
pairs. Assuming that we find a number of j union types in m, we will supervise the two
matrices that represent the head entity record X(eh) ∈ R(j×d) and the tail entity record
X(et) ∈ R(j×d). If the corresponding positions of both are activated, it means that they can
form a relationship, as follows:

T(e) = crossatt
(

sel f att(T), sel f att
(

V(e)
))

(15)
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X(eh) = Weh

(
expand

(
U(r)

)
+ expand

([
V(r)

]))
+ beh (16)

X(et) = Wet

(
expand

(
U(r)

)
+ expand

([
V(r)

]))
+ bet (17)

Eh, Et = Sigmoid
(

tanh
(

X(eh)
))

, Sigmoid
(

tanh
(

X(et)
))

(18)

where Weh and Wet are trainable weights and beh and bet are the union training bias. We
obtain Eh and Et from the sigmoid function to describe the probability after employing the
tanh function to limit the uncertain boundary value.

2.6. Loss Function

Because the extraction is a joint task, we combine two available losses of union type
and entity in the training stage, as follows:

Lentity = − 1
2j∑

j
z=1

(
y(eh)

z log(Ehz) + y(et)
z log(Etz)

)
(19)

Lrelation = −1
j ∑j

z=1 y(r)z log(Tz) (20)

Ltotal = Lentity + Lrelation (21)

where j is the maximum number of entity pairs in a sample. Since we extract the type and
entity sequentially and keep symmetry in the number of entity pairs and union types, we
keep the ratio of the two losses of 1:1.

3. Results
3.1. Dataset

For the goal of a fair and meaningful comparison, we follow the previous works [22]
to evaluate SAFW on two widely used scientific datasets, namely SciERC [23] and Semeval
2017 task 10 [24]. SciERC contains text from 500 scientific abstracts. Semeval 2017 task 10 is
a corpus for the information retrieval task, which was built from Science Direct open access
publications. In order to validate the effectiveness of our proposed method on different
types of relation extraction datasets, these two datasets are used. Both of them contain
entity and relation type. The experiments for each dataset are divided into two types,
namely “Rel” and “Rel+”. Our focus is on the Rel+ section of the results, the relational
quintuple result. It is a strict constraint on the entity types. The Rel section is the traditional
triple extraction of the relation, the results of which are for reference only. We did not select
certain typical datasets (such as ADE) because their entities or relations are not labeled
with categories, making it meaningless to count the results of Rel+.

In addition, we make use of two other datasets, NYT [25] and WebNLG [26], which
are both divided into two different versions. NYT* and WebNLG* annotate the last word
of the entity span. On the contrary, NYT and WebNLG annotate the whole span. These two
datasets have shown good performance in previous work and have not been separately
labeled with entity categories. Therefore, our purpose in using them is to test whether
SAFW can still make breakthroughs under such conditions. We compare the total testing
data with other baselines in the supplementary experimental section.

3.2. Evaluation

We compare SAFW with other joint extraction methods. The experimental results
of the baseline models come from the original paper records. According to the basic
evaluation system, we use micro precision, recall, and F1 value to evaluate the result in
order to be consistent with the previous works. As the feature words are not annotated,
we do not compare them with the other baselines to produce the statistical characteristics.
The visualization of the feature words will be discussed in Section 3.8. We provide math
statistics for them, as they are indirectly supervised by the results.
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3.3. Implementation Details

We use BERT-base-cased or SciBERT-base as the encoder, which is the pre-trained
model from a hugging-face format file. The batch size of all of the datasets is 16 for BERT.
We set the epoch to 150 for all of the training processes with the AdamW optimizer for
tuning the parameters. The learning rate is 1 × 10−5. We use Nvidia RTX 3090 (NVIDIA,
Santa Clara, CA, USA) to train the model and choose the model parameters with the best
performance on the validation set to output the test results.

3.4. The Results of the Experiment

Table 1 shows the results of SAFW on the scientific datasets. There are two types
of experiments. Compared with the other baseline methods in the Rel+ mode, SAFW
outperforms them. The result of Rel+ improves by 8.2% in SciERC and by 7.2% in Semeval
2017 task 10. Table 2 reports the results of SAFW on two basic datasets compared with
the other baseline methods. SAFW improves by 0.8% F1 on NYT, 0.8% F1 on NYT*, and
1.4% F1 on WebNLG*. Note that the F1 values of NYT and WebNLG are over 90%, so our
improvements show an effective promotion. All of these have proved the effectiveness of
SAFW in performance improvement.

Table 1. The results of the two scientific datasets.

Dataset Extraction
Mode Model Name P R F

DyGIE [27] - - 41.6

SciERC

Rel

SpERT.PL [28] 51.94 50.62 51.25
SpERT.PL + OVO [29] 52.6

cross-sentence ALB [30] 50.1
PL-Marker [31] 52

PL-Marker (Entity Neighbor) 53.2
PL-Marker + OVO 56.1

SpERT (SciBERT) [32] 53.4 48.54 50.84
Trimf (SciBERT) [33] 52.63 52.32 52.44
PURE (SciBERT) [28] - - 50.1

PURE (SciBERT) + OVO 51.6
PERA (SciBERT) [22] - - 55.3

MCER [34] - - 53.3
HGERE [35] - - 55.7

ATG [36] - - 51.1
SAFW (SciBERT) 53.1 46.3 49.5

Rel+

SpERT.PL 39.94 38.98 39.41
SpERT.PL + OVO 41.5

cross-sentence ALB 36.7
PL-Marker 40.6

PL-Marker (Entity Neighbor) 41.6
PL-Marker + OVO 44.5
SpERT (SciBERT) 36.25 40.04 38.05
Trimf (SciBERT) 42.27 39.01 40.58
PURE (SciBERT) - - 36.8

PURE (SciBERT) + OVO 40.1
PERA (SciBERT) - - 35.7

MCER - - 42.8
MTL [37] 44.33 35.46 39.66
HGERE - - 43.6

ATG - - 38.6
SAFW (SciBERT) 52.6 50.5 51.5

Semeval 2017
task 10

Rel

DyGIE (BERT) 46.8 30.5 36.9
SpERT (BERT) 56.52 31.1 40.12
Trimf (BERT) 52.86 35.41 42.41
SAFW (BERT) 42.6 39.7 41.1

Rel+

SCIIE (BERT) [23] 40.4 21.2 27.8
DyGIE (BERT) 35.11 24.23 28.7
SpERT (BERT) 45.22 24.88 32.1
Trimf (BERT) 45.22 24.88 32.1
SAFW (BERT) 40.4 38.3 39.3
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Table 2. Comparison of SAFW with other baselines (all Rel-type results).

Model
NYT* WebNLG* NYT WebNLG

P R F P R F P R F P R F

EmRel (BERT) [38] 91.7 92.5 92.1 92.7 93 92.9 92.6 92.7 92.6 90.2 87.4 88.7
GRTE (BERT) [10] 92.9 93.1 93 93.7 94.2 93.9 93.4 93.5 93.4 92.3 87.9 90

ConCasRTE (BERT) [39] 92.9 92.3 92.6 93.8 92.5 93.1 92.9 92.1 92.5 90.6 88.1 89.3
BiRTE (BERT) [11] 92.2 93.8 93 93.2 94 93.6 91.9 93.7 92.8 89 89.5 89.3
CasRel (BERT) [40] 89.7 89.5 89.6 93.4 90.1 91.8 - - - - - -

TP-Linker (BERT) [41] 91.3 92.5 91.9 91.8 92 91.9 91.4 92.6 92 88.9 84.5 86.7
PRGC (BERT) [42] 93.3 91.9 92.6 94 92.1 93 93.5 91.9 92.7 89.9 87.2 88.5
RFBFN (BERT) [9] 93.4 93.2 93.3 93.9 94.1 94 93.7 93.6 93.6 91.5 89.4 90.4
RPSS (BERT) [43] 93.5 93.2 93.3 94.7 95.1 94.9 - - - - - -

PRE-Span (BERT) [44] 90 85.3 88 95.5 92.9 94.2 88.6 84.7 86.6 83.4 82.7 83
BTDM (BERT) [45] 93 92.5 92.7 94.1 93.5 93.8 93.1 92.5 92.7 90.9 90.1 90.5
SPN (BERT) [46] 93.3 91.7 92.5 93.1 93.6 93.4 - - - - - -

NEDORT (BERT) [47] 91.8 89.7 90.7 92.2 91.5 91.9 - - - - - -
DERP (BERT) [48] 92.1 90 91 92.8 92.9 92.9 - - - - - -
ODRTEBERT [49] 93.5 93.9 93.7 94.6 95.1 94.9 94.2 93.6 93.9 92.8 92.1 92.5

SAFW (BERT) (Ours) 94.4 94.6 94.5 96.4 96.3 96.3 94.4 95 94.7 91.9 92.1 92.0

We analyze the reasons for the improvement of “Rel+” and summarize two key points.
First, the multiple rounds of resampling mines more accurate semantic information in
the sequence encoded by the pre-trained encoding model and weakens the influence of
irrelevant words on relation prediction. As relation prediction has priority over entity
extraction, it is susceptible to the space of the result. The contribution ratio of several
feature words is boosted by the re-sampling module, leading the model to find the correct
relation types. Second, since the head and tail entity categories are encoded in common
categories, the resulting template is set up to provide guidelines for both entity and relation
categories. In the subsequent fusion process, the semantic information in the template
is greatly enriched, due to the enhancing effect of the feature words, thus providing
sufficient information to the relation quintuple. This kind of information is more explicit
for type selection and entity extraction. Our SAFW combines the two improvements, in
line with the end-to-end principle, so that we can achieve a better performance. In contrast,
the other baselines do not consider reducing the result space by vector sampling in the
encoding stage and reuse cross attention in mixed coding of hidden states. Therefore, their
performances suffer.

By the analysis of “Rel”, their performance may not increase uniformly. In the first
three datasets, there was a slight decrease in the results of this section; however, in the
next two datasets, only NYT, NYT*, and WebNLG* showed a slight improvement. This
suggests that the performance of the current scheme is unpredictable when using only
relation information as a template. The uniqueness of the NYT data lies in the fact that
the relation category results include some information that may indicate entity categories
(such as “/location/location/contents” for location entities). WebNLG* only considers
the last word of the entity, and missing entity categories have a relatively small impact
on such entity determination. As a comparison, missing entity categories will affect the
performance of entity region determination in the other datasets. However, predicting the
entity categories at the same time is more in line with the practicalities of knowledge graph
construction. Thus, we can still demonstrate the feasibility of SAFW.

3.5. Ablation Study on the Components of the Framework

We remove the multi-turn vector resampling module to detect the contribution of this
part. As shown in Table 3, all of the evaluation indexes, including precision, recall, and the
F1 value, significantly decrease without this component, taking some irrelevant words into
consideration. Since the change in the probability distribution occurs before the extraction
stage, it acts on the union type and entity. In addition, the component transforms the
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output of the pre-trained model to a value more suitable for prediction, especially at a low
learning rate. The results of the experiment prove that the multi-turn vector resampling
module is effective and outperforms the direct use of the encoder output.

Table 3. Ablation study on the SciERC dataset by removing the components of SAFW.

Model Name P R F

SAFW 52.6 50.5 51.5
without multi-turn vector resampling module 50.2 48.3 49.3

delete position max of α only 52.5 47.3 49.8
without self-attention of encoded relation sequence V(r) 52.3 50.3 51.3
without self-attention of encoded entity sequence V(e) 52.2 50.4 51.3

Another improvement comes from the double cross attention layers, so we use single
cross attention instead as a comparison. The F1 values drop with the recalls, because
the design can mine more information from the encoded sequence. The input query
may not be able to retrieve enough information from an interaction with it, because the
information density of the former is lower than that of the latter. The candidates are
from the description of the union types in the training datasets, and the vector sequences
represent all of the sentences in the samples. Therefore, one time calculation may lose some
important information for union-type finding or entity extraction in the fixed templates.

3.6. Ablation Study on Union-Type Prediction Only

In this section, we only examine the results of the extraction of the union types, so
the results presented do not include the locations of the entities, but only the union types
of the relation and the entity. We performed these experiments on each dataset, and the
results are shown in Table 4. The results in the table show a significant improvement in the
F value over the quintuple results when only the union types are output, indicating that the
performance improvement of SAFW is mainly due to the use of self-adaptive feature words
to strengthen the focus on certain parts of the sentence. This method forces the feature
vector with the maximum weight at each moment to have another 1× weight. Instead,
after the self-attention calculation, the other non-maximum weight vectors are multiplied
by a coefficient of between 0 and 1, close to 0, thus maximizing the distance between the
self-adaptive feature words and the irrelevant words. Such a calculation increases the F
value for multi-category classification. This is reflected in the union types.

Table 4. Ablation study on the prediction of only the union types.

SciERC Semeval 2017 Task 10 NYT NYT* WebNLG WebNLG*

Only Union Type 81.0 60.6 97.2 96.7 94.4 97.5
Full Result 51.5 39.3 94.7 94.5 91.8 96.3

3.7. Additional Experiments by LLMs

We also employ LLMs such as ChatGLM2-6B, Llama-7B, and Baichuan2-7B and modify
the task into a generative one. We employ the results of the LLMs with Lora fine-tuning [50]
as a comparison. As shown in Table 5, they obtain a similar or a slightly worse performance,
indicating that the performance may not be improved by these models. Although the LLMs
have emergent and reasoning abilities, they are unable to accept the restrictions of the
specific knowledge system in the datasets well. Furthermore, they tend to produce results
that should not occur in the current situation, because they have an excessive amount of
prior knowledge. Therefore, large language models do not necessarily work better for
certain tasks.
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Table 5. The results from LLMs.

Extraction Mode Dataset ChatGLM2-6B Llama-7B Baichuan2-7B SAFW

Rel

SciERC 48.8 48.7 49.2 49.5
2017t10 40.4 40.5 41.1 41.1

NYT 94.6 94.5 94.7 94.7
NYT* 94.4 93.7 94.6 94.5

WebNLG 91.7 91.7 91.6 92.0
WebNLG* 95.4 95.5 96.1 96.3

Rel+
SciERC 42.4 43.1 43.3 51.5
2017t10 36.2 35.4 35.9 39.3

3.8. Case Study

We show two correct cases and one incorrect case in Figure 4. These cases are from
the WebNLG* dataset. We show three cases, including three parts in vertical order, as
follows: source sentence, BERT tokens with probabilities, and relation quintuples. The
words presented in bold, red font can be viewed as the feature words for the sentences in
these samples. We set five keywords for each case and make it clear in the figure.

For the correct cases, we find that the feature words are given greater weights by
the multi-turn vector resampling module. The selected words “created” and “publisher”
are mapped to the union types “Character/Creator/Person” and “Publication/Publisher/
Organization”. The types of “state” and “city” are predicted by the influence of the phrase
“New York”, which is the interaction of “publisher” and “New York”. The feature words in
the second case are not capable of inferring the union type “affiliation”, as this is decided
by the two entities “university” and “universities”.

For the incorrect case, although the correct prediction of the first two quintuples
relies on the words “Museum” and “ethnic”, they do not cover the hints of all of the
quintuples. The entity “Prefecture” is not considered in the prediction, due to no prompting
for “Location/isPartOf/Area” and the inherent meaning between “Prefecture” and “Japan”.
In addition, “Prefecture” is next to “Akita”, which leads to ignoring the existence of “Akita”
in the text. On the contrary, the missed quintuple contains the correct type, but no target
entity is found, which illustrates that feature words cannot redirect entities when they do
not clearly reflect the relationship. The above failures illustrate that SAFW can lead to
insufficient or incorrect information about the selected feature words if sufficient feature
words are not obtained or if the feature words are implicit semantic representations, which,
in turn, misleads the final extraction results of the relational quintuple.

3.9. POS Distribution

Figure 5 shows the POS distribution of the words in the feature words. By the analysis
of the part-of-speech, we find that the highest proportion of the selected words are nouns.
This fact proves that SAFW can provide key indicators for relation quintuple extraction
and give a meaningful explanation result. Compared with the others, this is one of the
differences of SAFW. We can collect them and generate a report for each different dataset.
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4. Conclusions

In this paper, we present a framework for assisting the extraction of relational quintu-
ples through the use of unlabeled adaptive feature words. By summarizing our framework,
we find that the use of relational quintuples to simultaneously supervise feature words,
relations, and entities can extract interpretable words for each quintuple while improving
the performance. Extensive experiments show that our framework is effective and can
be used when BERTs act as encoders. This strategy provides additional information for
knowledge graph construction by retrieving words that are considered useless and are
discarded after information extraction. Thus, it enhances the relationship-to-relationship
links in the construction of a knowledge graph of a single corpus. It also shows that the
current work can be applied to hidden knowledge discovery scenarios, as knowledge
graphs constructed in this way are not bound to entities and relationships. In the future,
we have plans for the application of this approach to more vertical domains for novel
knowledge discovery.
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