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Abstract: Semantic segmentation stands as a prominent domain within remote sensing that is
currently garnering significant attention. This paper introduces a pioneering semantic segmentation
model based on TransUNet architecture with improved coordinate attention for remote-sensing
imagery. It is composed of an encoding stage and a decoding stage. Notably, an enhanced and
improved coordinate attention module is employed by integrating two pooling methods to generate
weights. Subsequently, the feature map undergoes reweighting to accentuate foreground information
and suppress background information. To address the issue of time complexity, this paper introduces
an improvement to the transformer model by sparsifying the attention matrix. This reduces the
computing expense of calculating attention, making the model more efficient. Additionally, the
paper uses a combined loss function that is designed to enhance the training performance of the
model. The experimental results conducted on three public datasets manifest the efficiency of the
proposed method. The results indicate that it excels in delivering outstanding performance for
semantic segmentation tasks pertaining to remote-sensing images.

Keywords: remote-sensing image; sparse matrix; vision transformer; coordinate attention;
semantic segmentation

1. Introduction

The processing and analysis of remote-sensing images have gained increasing im-
portance in light of the rapid advancements in imaging technologies. Consequently, the
automated extraction of essential information from remote-sensing images has emerged
as a critical research domain within the field of remote-sensing image processing. In par-
ticular, semantic segmentation has proven to be one of the most significant advances in
remote-sensing image technology [1–3], which is applied to a variety of fields, including
environmental monitoring, land resource utilization, and urban planning. Compared with
natural images, remote-sensing images exhibit the properties of high resolution, complex
content, and large differences in object scale. Additionally, because of the intricate nature
of the image content, segmentation accuracy is higher in real-world applications. Seman-
tic segmentation of remote-sensing images presents a significant challenge due to the
complexity of imaging, diverse object categories, and substantial scale variations among
objects [4,5].

A remote-sensing image contains rich information about ground objects; how to accu-
rately segment the real area is still a long-term challenge [6]. The traditional remote-sensing
image segmentation methods usually use threshold segmentation [7], edge detection [8],
pixel clustering [9], etc. The robustness of classic segmentation algorithms is poor, and deep
semantic information is hard to extract. Deep learning has been developing quickly lately,
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and, as a result, it is becoming a necessary tool for computer vision [5]. Convolutional
neural networks (CNNs) have strong learning abilities and can autonomously acquire
rich spectral and spatial characteristics from images. Therefore, several scholars have
successfully employed it in tasks related to remote-sensing image segmentation [10,11].
Different from traditional CNN, a full convolutional network (FCN) [12] can achieve pixel-
level image classification. It replaces the fully connected layer of traditional CNNs and
employs upsampling to restore the image to its original size for pixel-level segmentation.
Semantic segmentation methods based on FCN are constantly developed and improved for
remote-sensing images. For instance, Kampffmeyer et al. [13] introduced FCN to semantic
segmentation to improve the segmentation effect and achieve pixel-to-pixel segmenta-
tion. Building upon FCN, Ronneberger et al. [14] established the U-Net model, utilizing
a symmetric coding structure combined with feature fusion to enhance segmentation ac-
curacy. U-Net has earned widespread adoption in image segmentation applications [15].
Another notable approach, SegNet [16] was proposed with a coding–decoding structure
based on FCN and used atrous convolution and a conditional random field to improve
segmentation outcomes.

The utilization of classical semantic segmentation networks for remote-sensing images
often leads to non-ideal segmentation accuracy, primarily due to the substantial variations
in target scale and the intricate nature of edge details. Therefore, semantic segmentation
often utilizes two kinds of strategies. One strategy is multiscale feature fusion. For instance,
Ma et al. [17] presented a convolutional network with a multiscale and skip connection
structure to extract both shallow and deep features at varying scales, established upon the
U-Net architecture. Similarly, Zhou et al. [18] presented a multiscale fusion model to obtain
multimodal features using the nonlocal mechanism and dilated convolutional layers for
remote-sensing images. Zeng et al. [19] proposed a new cross-scale semantic feature network
by using the multiscale convolution module to obtain multiscale context from different receptive
fields. Liu et al. [20] developed a multi-resolution attention model based on multiscale channel
and spatial attention for exacting important features. Xu et al. [21] proposed a multiscale
fusion network with atrous spatial pyramid pooling and varisized convolutions to effectively
extract and fuse the features from multi-modal images. The other strategy is using attention
mechanisms. For example, Ding et al. [22] designed a patch attention component to enhance
the segmentation effect based on CNN. In another study, Liu et al. [23] constructed a novel
spatial pyramid pooling network by combining the channel and position attention modules
to address the issue of gradient disappearance for image segmentation. Furthermore,
Li et al. [24] presented a synergistic attention architecture by combining both spatial
and channel details to refine contextual representations for segmentation. Hu et al. [25]
proposed a segmentation network with a global–local self-attention mechanism containing
the global atrous self-attention and local window self-attention modules for considering
both global and local contexts. This attention model resulted in improved segmentation
accuracy. The transformer architecture has also been utilized in image segmentation.
For example, Wang et al. [26] developed an innovative UNet-based model to enable the
extraction of both global and local features, thereby improving urban scene segmentation.
Based on the strategies, Xu et al. [27] developed a segmentation network based on a
mixed-mask transformer mechanism and multiscale learning strategy to enhance the
model’s performance. Wu et al. [28] put forward a CNN-transformer fusion network
with a lightweight W/P transformer block to capture global information, which used
the channel and spatial attention fusion module for semantic segmentation. A novel
encoder–decoder fusion model [29] was also proposed by embedding multiscale and
channel information into the transformer module, resulting in an impressive performance
in semantic segmentation tasks.

Although there has been substantial advancement with deep networks for semantic
segmentation, the majority of current techniques still face the following issues: The remote-
sensing imagery does not contain significant discrepancies that make it challenging to
gather detailed and contextual information for the complex process of classifying object
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pixels. Moreover, the varying number of samples across different categories within remote-
sensing image datasets poses another significant challenge, with some categories containing
significantly more samples than others. These imbalances can lead to issues such as class
imbalance and inadequate representation of certain classes, which, in turn, can hinder the
performance of classification algorithms. In addition, extensive features of remote-sensing
images are extracted to improve the accuracy, resulting in an increase in the time complexity.

To address the aforementioned limitations, an enhanced semantic segmentation model
is presented by utilizing the power of attention mechanisms for remote-sensing images.
TransUNet [30] is used as a network backbone to extract the hierarchical semantic features.
The proposed method builds two attention modules to emphasize the detailed and context
information. The coordinate attention module is improved to effectively focus on the
regions of interest and their corresponding spatial locations for capturing small features.
The transformer module is improved with some attention mechanisms to reduce the
computation burden and refine local features. Lastly, to encourage the network to focus
more on the few categories, the joint loss function is employed, combining with the Dice
and Cross Entropy loss functions to address the challenge of imbalanced class distribution.
The main contributions are reflected in the aspects that follow.

(1) The proposed approach introduces an encoder–decoder framework based on Tran-
sUNet specifically designed for the semantic segmentation of remote-sensing images.
This framework leverages detailed information and global context to enhance the
quality of feature representation. Additionally, the Content-Aware ReAssembly of
Features (CARAFE++) method is employed to effectively upsample feature maps,
thereby preserving important details during the decoding process.

(2) To improve the model’s performance, an efficient improved coordinate attention
module is incorporated, which utilizes four pooling enhancements to suppress back-
ground information and accentuate small features. The h-swish activation function is
utilized to enhance the model’s nonlinear fitting capability. Furthermore, a weight
generation submodule is designed to assist the network in precisely localizing the
object of interest.

(3) The transformer module is improved to reduce the time complexity associated with
calculating attention. This is achieved by sparsifying the attention matrix and intro-
ducing a row–column attention (RCA) mechanism, which replaces the multi-head
attention in the transformer model. It can also supplement the contextual information
in the attention. Additionally, the layer normalization (LN) layer and multi-layer
perceptron (MLP) layer are substituted with an asymmetric convolutional block (ACB)
and a Leaky ReLU activation layer.

2. Methods
2.1. Datasets

Vaihingen dataset [31]: It contains 33 images, each measuring 2494 × 2064 pixels. With
a 9 cm spatial resolution, each image in the collection includes red, green, and near-infrared
channels. Additionally, each image includes a digital surface model that is registered with
the image data. The imagery is classified into six distinct categories, namely impervious
surfaces, buildings, low vegetation, trees, cars, and background.

Potsdam dataset [31]: It includes 38 images with a size of 6000 × 6000 pixels. The sample
distance from the ground is 5 cm. Three bands—red, green, and near-infrared—make up the
8-bit TIFF file format used for remote-sensing images. The additional data contain the digital
surface model data. The Potsdam dataset has six categories as well.

LoveDA dataset [32]: It contains 5987 images with RGB channels with 1024 × 1024 pixels,
and is from the images constructed from Nanjing, Changzhou, and Wuhan using Google
Earth data. There is a 0.3 m ground sampling distance. Because every research area has a
unique development approach, the ratio of rural to urban areas varies. The National Bureau of
Statistics’ urban and rural zoning codes were used to guide the collection of data for both
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urban and rural areas. We chose nine heavily populated urban regions from areas with
affluent economies. Undeveloped areas were the source of the remaining nine rural areas.

2.2. Methodology
2.2.1. Network Architecture

The architecture of the network is displayed in Figure 1, integrating attention mecha-
nisms to enhance the segmentation capability. The network is constructed based on the
TransUNet framework, serving as its backbone. It comprises the encoding phase and the
decoding phase. During the encoding phase, the image undergoes an improved coordinate
attention module, which effectively extracts comprehensive contextual semantic features
following a 3 × 3 convolutional layer. The original TransUNet feature extraction uses the
ResNet50 network, which is divided into three blocks, and features are extracted after
each block. In this work, an improved coordinate attention module (ICAM) is placed after
extracting features from each CNN block to enhance feature expression. Specifically, the
extracting features from the last block of the ResNet50 architecture are divided into N pixel
blocks and added with positional information before being sent to the improved vision
transformer (IViT) for global information extraction. The sequence output by an improved
vision transformer module is then convolved and integrated into 3D image features to
prepare for upsampling. In the decoder phase, the CARAFE++ technique is employed
for upsampling the feature map output by the encoder to obtain high-resolution features
instead of traditional bilinear interpolation. Then, it jumps and connects with the features
extracted from the corresponding blocks in the encoder to achieve a fusion of high- and
low-resolution feature information. To reduce parameter calculations, depthwise separable
convolutions are used instead of ordinary convolutions to gradually restore the fused
features to the original image size. With a cascade approach, features with multiscale fusion
are obtained with two jumps.
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2.2.2. Improved Coordinate Attention Module

Inspired by coordinate attention module [33], ICAM is designed to suppress back-
ground interference and enhance small features, as depicted in Figure 2. The ICAM
module attempts to strengthen the segmentation performance by selectively attending to
key regions and their corresponding spatial locations. Firstly, the original feature map is
represented as F ∈ RC×H×W , where C, H, and W signify the channel number, height, and
width in the feature map separately. Both one-dimensional (1D) global average pooling
(GAP) and 1D global max pooling (GMP) are performed for each channel along horizon-
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tal and vertical directions in 4 spatial dimensions. Then, the orientation-aware features
FW ∈ RC×H×1 and FH ∈ RC×1×W are obtained as{

FW = Are(FGAP−W; FGMP−W)
FH = Are(FGAP−H; FGMP−H)

(1)

where Are is the average function, FGAP−W, FGMP−W, FGAP−H, and FGMP−H are the interme-
diate feature maps of GAP and GMP in the horizontal and vertical directions, respectively.

The concat operation is used to fuse the orientation-aware features on the channel
dimension before the batch normalization (BN) operation, followed by the h-swish ac-
tivation function to increase the nonlinear fitting ability of the model. Additionally, a
weight generation submodule is devised to produce attention weights. The fused fea-
ture map Fcat ∈ RC×1×(W+H) is split into the two feature vectors FTH ∈ R(C/r)×H×1 and
FTW ∈ R(C/r)×1×W along the horizontal and vertical directions, respectively. Then, they
are processed using a 1 × 1 convolution with a Sigmoid activation function, yielding the
attention weight.

Fweight = σ(Conv(FTH))× σ(Conv(FTW)) (2)

where σ is the Sigmoid activation function and Conv is the convolution function.
Finally, the original feature map F ∈ RC×H×W is weighted with the attention weight

to generate an attention map.
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2.2.3. Improved Vision Transformer Module

(1) Classical Transformer model

The transformer model was initially proposed for natural language processing by
the team at Google [34]. Recently, the Transformer model was successfully adapted for
visual tasks. The key innovation of the transformer model is a self-attention mechanism,
which enables parallel training and facilitates the capture of global information. When
applied to visual data, this architecture can effectively process image information in a
manner analogous to its success in NLP tasks. In the transformer model, there are two
main components: the encoding component consists of multiple encoder layers, while
the decoding component consists of an equivalent number of decoder layers. In order
to address the sequence-related challenges at both the input of the encoder and decoder,
locational encoding information is added. The position is encoded with sine and cosine
functions as follows:

P(p, 2j) = sin

(
p

10000
2j

dmodel

)
, P(p, 2j + 1) = cos

(
p

10000
2j

dmodel

)
(3)

where P represents the position of the sequence of words in the sentence, j represents the
dimensional position of the vector, and dmodel represents the size of the vector dimension.

The self-attention mechanism plays a pivotal role by simulating a human in the trans-
former model cognitive behavior, dynamically focusing on specific regions. The attention
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mechanism comprises two essential components: The first component is the transfor-
mation layer, which performs linear transformations on the input sequence information
X ∈ Rnx×dx , Y ∈ Rny×dy to three distinct sequence vectors, respectively, with linear trans-
formation. These three vectors are called query vector Q, key vector K, and value vector V.
Here, n and d are the input sequence length and dimension, respectively. The self-attention
mechanism is manifested with the following:

Attention(Q, K, V) = Softmax
(

Q · KT
√

dk

)
· V (4)

where Q, K, V are the three input matrices, and their dimensions are dq, dk, dv.
The limitation of the single-headed attention layer is that it can only focus on a specific

location and cannot focus on other important locations at the same time. To solve this
problem, the multi-head attention mechanism uses Q, K, V to calculate multiple information
selected in parallel from the input information for linear projection, and each attention is
focused on a different part of the input information and output the content. Finally, the
output values are again concatenated and projected to generate the output value. The
multi-head attention mechanism is presented as follows:

MultiHead(Q, K, V) = Concat(head1, . . . , headn)W0

headi = Attention(QWq
i , KWk

i , VWv
i )

(5)

where Wq, Wk, and Wv are parameter matrices for linear projection, n is the head number,
and W0 is the projection weight.

(2) Improved vision Transformer module

Vision transformers (ViT), which is a transformer model for computer vision, substi-
tute transformer structures for convolutional structures. Suppose the input feature map is
X ∈ RH×W×C, and it is subdivided into N two-dimensional patches with a size of P × P.
Then the length of the transformer input sequence is N = HW/P2. N patches are projected
onto a D-dimensional space with a projection matrix. Its output is called patch embedding.
The position information of each patch is preserved by inserting the learnable positional
embedding into the patch embedding to obtain Z0 ∈ RN×D. After standardization, Q, K, V
are obtained and sent to Multi-Head Attention for attention operations. Transformers pri-
marily use self-attention techniques to extract global contextual semantic information from
images, yet this process is known to be computationally intensive. The time complexity
during the calculation process is O(N2D).

In the context of optimizing the time complexity of calculating attention in transformer
models, we attempt to sparsify the attention matrix. Inspired by [35], row–column attention
(RCA) is introduced to replace the multi-head attention block, as shown in Figure 3. Mean-
while, in order to make use of the position relationship between different regions, positional
encoding is added to the RCA. In this work, the improved module refers to the convolution
process, which calculates within a fixed receptive field range. Therefore, the receptive
field is first fixed as each column on the feature map ((H/P)× (P2C)). H/P patches of
columns are projected onto a D-dimensional space. By adding the positional encoding
E

′
pos ∈ R1×H/P×C,

{
Zj ∈ RH/P×D

∣∣∣j = 1, 2, . . . , W/P
}

is obtained. Finally, the attention
results are calculated row by row and concatenated as the output features. Obviously, the
features fully cover the contextual information of elements between rows in the vertical
direction. Meanwhile, the receptive field is fixed on each row of the output feature map
and perform similar operations to obtain features with global information interaction. The
time complexity during the calculation process is O(ND(H + W)/P). In addition, the layer
norm (LN) layer and multi-layer perceptron (MLP) layer are replaced with an asymmetric
convolutional block (ACB) and a Leaky ReLU activation layer to reduce the computational
burden brought by MLP and make up for the local information of RCA.
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2.2.4. CAPAFE++ Upsampling Module

To create feature maps with rich semantic information, the CAPAFE++ method [36] is
employed as an upsampling operator to decrease the loss of upsampled information and
enhance the receptive field. The content-aware reassembly submodule and the kernel pre-
diction submodule make up the CARAFE++ module. The function of the kernel prediction
submodule is to generate the upsampling reorganization kernel in a content-aware form so
that the reassembly submodule can achieve the upsampling work. Suppose a feature map
size is H × W × C, and an upsampling ratio is ω. Firstly, the input feature map channel
from C to Cv is compressed via a 1 × 1 convolution layer, reducing the parameters of the
following steps. Secondly, based on the compressed feature map, a convolution layer of a
kernel size of ke × ke is used to generate the upsampled reassembly kernel. The channel
dimension is expanded on the spatial dimension. The size of the reassembly kernel is
ωH × ωW × Cr. Here, ω is the upper sampling rate. Finally, the values for the reassembly
kernel with a size of kr × kr are normalized using a softmax function so that the sum of the
kernel values is 1. In the content-aware reassembly submodule, each position in the output
feature is mapped to the input feature map to gain the feature N(χp, kr). Then, the region
of each location center p = (i, j) is taken out for dot-product operation with the reassembly
kernel kr. Then, the upsampling feature map with a size of ωH × ωW × C is obtained.

2.2.5. Loss Function

The cross-entropy loss function [14] may result in the model excessively emphasizing
categories that possess substantial samples, then inadvertently disregarding categories that
possess fewer ones. This issue is particularly problematic in pixel-level segmentation tasks
where class imbalance is prevalent. To reduce attention towards the background class, the
Dice loss function [37] is introduced. Then a combined loss function is designed using
the following:

LCOM = αLCE + βLDice (6)

where LCE is the cross entropy loss function, and LDice is Dice the loss function, α and β are
set as 0.5.

3. Results
3.1. Evaluation Metrics

For the objective evaluation of the proposed method, three widely recognized indica-
tors were selected: mean intersection over union (mIoU), mean F1 score (mF1), and overall
accuracy (OA). The evaluation metrics can be computed as follows:

OA =
TP + TN

TP + TN + FP + FN
(7)
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Pre =
TP

TP + FP
(8)

Rec =
TP

TP + FN
(9)

F1 =
2 × Pre × Rec

Pre + Pre
(10)

IoU =
TP

TP + FP + FN
(11)

where Pre is the precision, and Rec is the recall. The test results can be divided into TP, FP,
TN, and FN, which signify true positive, false positive, true negative, and false negative
values of a particular class.

3.2. Dataset Settings and Implementation Details

To measure the effectiveness of the suggested methodology, the comparison exper-
iments were performed on the three public datasets, namely the Vaihingen dataset, the
Potsdam dataset, and the LoveDA dataset. Particularly for the Vaihingen and Potsdam
datasets, the images were cropped to 512 × 512 pixels. The images in the Val dataset were
selected for testing. The selected samples were randomly divided into a training set and a
test set at a ratio of about 1.4:1.

The experiments were taken by using an NVIDIA GPU (11G), and the framework
was created using Pytorch. The network was trained by applying the Adam optimizer, the
batch size was set to eight, the initial learning rate was set as 0.001, and 100 epochs were
utilized for training.

3.3. Comparison of Different Methods

For confirming the efficacy of the suggested approach in semantic segmentation, the
OA, mIoU, and mF1 indexes after 100 trainings with various classical segmentation algo-
rithms in the three datasets were calculated. The classical semantic segmentation algorithms
include the following: Deeplabv3+ [38], Segformer [39], DNLNet [40], Segmenter [41],
SegNeXt [42], CMTFNet [29], and SAN [43].

For the Vaihingen dataset, the comparisons were made with other advanced al-
gorithms, as exhibited in Table 1. This technique achieved the best mIoU (71.48%),
mF1 (81.81%), and OA (90.50%) on the Vaihingen dataset, outperforming other networks.
Specifically, the proposed approach not only outperforms the multiscale feature model
Deeplabv3+ by 3.5% in terms of mIoU but also outperforms the self-attention-based model,
DNLNet, by 3.21%. The segmentation in the background category, in particular, showed a
surprising advantage that was far ahead of other methods with IoU. Figure 4 exhibits the
semantic segmentation effects of the networks on the Vaihingen dataset. Particularly in the
red box, it is evident that the effectiveness of the proposed method is superior to the others,
especially in the red box. The ground truth is obviously mislabeled because of a car in the
red box.

Table 1. Comparisons of the methods on Vaihingen dataset (%).

Methods
IoU Indicators

Imp. Surf. Building Low Veg. Tree Car Background mIoU mF1 OA

Deeplabv3+ 84.86 90.86 71.46 80.88 59.81 14.01 66.98 76.54 89.17
Segformer 84.11 88.28 70.53 80.51 58.30 10.38 65.35 74.92 87.97
DNLNet 84.52 90.00 70.33 80.04 60.67 24.03 68.27 78.68 89.44

Segmenter 83.09 89.23 71.65 79.55 44.95 13.54 63.67 73.84 89.05
SegneXT 81.09 86.24 67.50 78.22 34.27 11.52 59.81 70.38 87.40

CMTFNet 84.36 89.68 69.79 78.79 67.21 34.82 70.78 81.41 89.89
SAN 81.77 87.34 67.53 77.63 57.09 22.64 65.67 76.81 87.60

Proposed 86.52 92.40 71.51 80.93 61.27 36.28 71.48 81.81 90.50
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Table 2 presents the comparisons with other techniques on the Potsdam dataset. In
comparison to previous networks, the proposed technique produced the mIoU (74.34%),
mF1 (83.77%), and OA (88.90%) in the Potsdam dataset. Note that the approach just in the
car category earned an IoU of 84.06%, less than 5% lower than the two recent networks,
CMTFNet and SAN, resulting in the lower mIoU. It is seen that the OA of the proposed
method is the best in Table 2. Figure 5 illustrates how the boundary segmentation detail
using the suggested method is more accurate than most of the other networks. The border
of the segmented objects in the remote-sensing images can be more accurately depicted
about buildings using the suggested way.

Table 2. Comparisons of the methods on Potsdam (%).

Methods
IoU Indicators

Imp. Surf. Building Low Veg. Tree Car Background mIoU mF1 OA

Deeplabv3+ 80.40 88.09 70.79 72.55 76.04 33.05 70.15 80.98 86.59
Segformer 81.79 89.64 71.72 73.72 77.98 32.97 71.30 81.69 87.35
DNLNet 82.14 89.54 71.91 73.95 81.43 33.15 72.02 82.15 87.15

Segmenter 82.38 90.69 73.09 74.76 75.80 36.71 72.24 82.57 87.99
SegneXT 80.73 88.11 70.90 73.39 72.53 34.05 69.95 80.92 86.79

CMTFNet 84.70 90.28 74.31 76.13 90.28 40.77 76.08 85.19 86.92
SAN 84.80 91.36 74.23 74.73 90.5 35.13 75.13 84.17 87.68

Proposed 84.19 92.08 73.94 76.30 84.06 35.48 74.34 83.77 88.90

For the LoveDA dataset, comparative experiments were conducted, further estimating
the performance of the presented approach. Table 3 illustrates that the suggested approach
can gain superior results on the LoveDA dataset. According to Table 3, the suggested
method produced satisfactory results with regard to mIoU (52.57%), mF1 (67.98%), and OA
(70.80%). The classification of buildings, roads, and forests shows outstanding advantages.
Figure 6 demonstrates the visual results of the LoveDA dataset. It can be observed that a
portion of the forest in the red box is identified as water or background in these classical
methods. The suggested strategy can significantly enhance the performance, according to
the aforementioned experimental results.
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Table 3. Comparisons of the methods on LoveDA (%).

Methods
IoU Indicators

Background Building Road Water Barren Forest Agricultural mIoU mF1 OA

Deeplabv3+ 54.22 57.94 49.58 65.57 20.87 38.24 51.06 48.21 63.81 68.61
Segformer 51.52 60.37 51.26 67.87 32.70 41.52 54.09 51.33 67.16 69.31
DNLNet 53.28 57.70 49.17 64.85 31.50 40.30 54.09 50.13 66.17 69.31

Segmenter 52.99 58.55 49.98 69.58 30.37 42.25 49.46 50.45 66.29 68.82
SegneXT 53.51 55.95 48.46 69.76 22.07 39.78 51.58 48.73 64.30 68.62

CMTFNet 52.61 55.05 51.15 57.95 22.02 37.31 45.87 45.99 62.05 68.48
SAN 53.51 64.00 56.90 69.73 26.23 39.53 51.50 51.63 66.95 72.01

Proposed 52.76 62.49 54.94 68.16 27.60 44.23 57.81 52.57 67.98 70.80
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4. Discussion
4.1. Analysis of the Attention Mechanism

This case is used for confirming the impact of the attention mechanism, by comparing
the results of the model with and without the attention mechanism. The baseline method
is designed without the improved attention modules of the proposed method. The three
datasets were utilized in the studies for the baseline and suggested techniques. The
comparable results of the suggested and the baseline methods are displayed in Table 4.
It is clear that the mIoUs of the suggested method in the three datasets are enhanced by
3.58%, 3.19%, and 3.69%, respectively, in comparison to the baseline method. The ablation
experiment demonstrates how well the enhanced attention modules can enhance the
semantic segmentation effect. By emphasizing small-scale characteristics and suppressing
unnecessary background information, the attention mechanism helps to improve feature
representation, which leads to enhanced segmentation performance.

Table 4. Comparisons with the baseline method (%).

Methods
Vaihingen Potsdam LoveDA

mIoU mF1 OA mIoU mF1 OA mIoU mF1 OA

Baseline 67.90 77.20 90.11 71.15 81.54 87.13 48.88 64.14 67.79
Proposed 71.48 81.81 90.50 74.34 83.77 88.90 52.57 67.98 70.80

4.2. Limitations

The proposed method demonstrates promising results, but there are still some limi-
tations. For instance, the model misidentifies objects that are similar, and the accuracy of
the object boundaries needs to be further enhanced. In future work, we will continue to
focus on improving the performance of semantic segmentation by introducing an advanced
backbone; thereby, the presented model may attain more precision for the boundary details
under more complex situations.

5. Conclusions

In this paper, a TransUNet-based semantic segmentation technique is presented with
sparse matrix and coordinate attention for remote-sensing images. To minimize the back-
ground interference and highlight the small features, an improved coordinate attention
module is used to focus on interest goals and the goal location. The transformer model
is improved to enhance the computation efficiency and refine segmentation results. To
reduce the category imbalance, the loss function is coupled with both the cross-entropy
loss and Dice loss functions. The experimental results demonstrate that, when compared
to alternative approaches on the three datasets, the suggested algorithm has a superior
segmentation effect. The attention mechanism can be also applied to other computer vision
tasks, and its influence on different network performance is worthy of further study.
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