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Abstract: Speckle-shearing technology is widely used in defect detection due to its high precision
and non-contact characteristics. However, the wrapped-phase recording defect information is often
accompanied by a lot of speckle noise, which affects the evaluation of defect information. To solve
the problems of traditional denoising algorithms in suppressing speckle noise and preserving the
texture features of wrapped phases, this study proposes a speckle denoising algorithm called a
speckle denoising convolutional neural network (SDCNN). The proposed method reduces the loss
of texture information and the blurring of details in the denoising process by optimizing the loss
function. Different from the previous simple assumption that the speckle noise is multiplicative,
this study proposes a more realistic wrapped image-simulation method, which has better training
results. Compared with representative algorithms such as BM3D, SDCNN can handle a wider range
of speckle noise and has a better denoising effect. Simulated and real speckle-noise images are used
to evaluate the denoising effect of SDCNN. The results show that SDCNN can effectively reduce the
speckle noise of the speckle-shear wrapping phase and retain better texture details.

Keywords: material safety; digital shearing speckle pattern interferometry; wrapped phase; speckle
denoising; convolutional neural network

1. Introduction

Material safety stands as a crucial factor for ensuring aircraft structural integrity.
Therefore, the detection and assessment of material defects to ensure they remain within
critical limits are of paramount importance. This underscores the significance of employing
a highly precise and versatile inspection method. To ensure the dependable performance
of structures, non-destructive testing (NDT) is increasingly being employed. Among the
various NDT techniques, digital speckle interferometry has emerged as an indispensable
approach due to its universal applicability, ease of implementation, and exceptional ac-
curacy. Speckle interference techniques encompass digital speckle-pattern interferometry
(DSPI) [1–4] and digital speckle-shearing pattern interferometry (DSSPI) [5–9]. DSPI excels
in accurate displacement measurement but necessitates a more controlled environment
and may result in fuzzier detection of defect edges. In contrast, DSSPI is less sensitive to
displacement and requires lower levels of vibration isolation. However, shear misalignment
may introduce fuzziness or loss of information around certain defect edges. Consequently,
a denoising process becomes essential to obtain clear defect edges.

Numerous related algorithms have been proposed for speckle-noise reduction [10–17].
While non-local mean filtering algorithms, such as NLM [10] and OBNLM [11], effectively
reduce noise, they exhibit high computational complexity and tend to compromise texture
detail preservation. Three-dimensional block-matching algorithms like BM3D [12] excel
at denoising, with good detail preservation, but face challenges with complex structures.
The wavelet thresholding method [13] introduces boundary blurring during denoising,
accompanied by the challenges of threshold adjustment and increased computational
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complexity. The windowed Fourier transform (WTF) [14] has demonstrated efficacy in
denoising wrapped phases, albeit requiring substantial adjustments and processing time.
The sine/cosine average filter (SCAF) [15] is introduced to address speckle noise by separate
denoising of the numerator and denominator of the arctangent, effectively resolving the
phase 2π discontinuity and noise issues.

As neural networks progress, more study is focused on speckle-noise reduction. In
Reference [16], CNNs are used to denoise DSPI fringe maps in batches, effectively reducing
medium-level noise in fringes but potentially causing slight edge blurring. Reference [17],
based on DnCNN [18], proposed a method for the speckle suppression of digital holography,
which is effective for noise reduction of stripes with different noise levels, but it is not good
for edge recovery of stripes. Reference [19] proposed a DBDNet based on dilated blocks,
which effectively recovers DSPI-striped images with high noise levels. In Reference [20],
a lightweight residual dense neural network, LRDUNet, is proposed for ESPI stripe noise
reduction based on U-Net. While effective in noise reduction, a single model is tasked with
handling stripe maps of varying noise levels.

To denoise the wrapped phase, this study introduces a processing approach for denois-
ing interferograms acquired through DSSPI. To address the issues of noise and boundary
blurring within the wrapped phase, we propose a deep-learning technique for denoising
the sine and cosine fringes. Subsequently, the denoised sine and cosine fringes are pro-
cessed using the arctangent function to obtain an improved wrapped phase. Simulation
and experimental results demonstrate the effectiveness of this method in successfully
suppressing speckle noise and eliminating the boundary blurring associated with defects.

2. Theoretical Analysis and Proposed CNN Denoiser
2.1. Related Theoretical Model of DSSPI

In this study, the Wollaston shearing system is used as an example to introduce DSSPI.
As shown in Figure 1, a helium–neon laser is irradiated on the object surface after beam
expansion, and the scattered field emitted from the diffuse reflective object surface is
imaged by the Wollaston shearing system (object surface-shearing imaging). The intensity
of the sheared scattered field is recorded by the CCD and stored in the computer.
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Figure 1. Digital speckle-shearing interferometry system.

For single-beam laser irradiation, assume that Io1 and Io2 are the intensity of the
speckle fields corresponding to the two points O1(x0, y0) and O2(x0 + ∆x, y0 + ∆y) on the
object surface recorded at one point on the CCD, which can be expressed as

Io1(x, y) = A1 exp[iφ1(x, y)], (1)

Io2(x, y) = A2 exp[iφ2(x, y)], (2)
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where A1 and A2 are the beam amplitudes corresponding to Io1(x, y), Io2(x, y) respec-
tively, and φ1(x, y) and φ2(x, y) are the initial phases of the two speckle fields. Before the
deformation of the object, the intensity recorded on the CCD can be written as

I1(x, y) = |Io1(x, y) + Io2(x, y)|2 = Io1(x, y) + Io2(x, y) + 2
√

Io1(x, y)Io2(x, y) cos[∆φ(x, y)], (3)

where ∆φ(x, y) = φ2(x, y)− φ1(x, y), denotes the initial phase difference. The intensity
distribution of the speckle field after the object is deformed by the load can be expressed as

I2(x, y) = Io1(x, y) + Io2(x, y) + 2
√

Io1(x, y)Io2(x, y) cos[∆φ(x, y) + ∆δ(x, y)], (4)

where ∆δ(x, y) = δ2(x, y)− δ1(x, y). δ1(x, y) and δ2(x, y) are the deformation phases of the
two speckle fields, and ∆δ(x, y) denotes the deformation phase difference. The intensity
distributions before and after the deformation are subtracted and squared to obtain the
speckle fringe pattern, which can be expressed as

E(x, y) = [I2(x, y)− I1(x, y)]2 = 8Io1(x, y)Io2(x, y) sin2
[

∆φ(x, y) +
∆δ(x, y)

2

]
[1 − cos ∆δ(x, y)] (5)

By Equations (3)–(5), the speckle fringe patterns are obtained by the four-step phase-
shift method [1] with phase shifts of −3α, −α, α, and 3α.

Ei(x, y) = A(x, y) + B(x, y) cos[∆δ(x, y) + (2i − 5)α], i = 1, 2, 3, 4 (6)

The phase distribution of the object deformation is obtained by Equations (7) and (8).

∆δ(x, y) = arctan
{

tan β(x, y)
[I2(x, y)− I3(x, y)] + [I1(x, y)− I4(x, y)]
[I2(x, y) + I3(x, y)]− [I1(x, y) + I4(x, y)]

}
, (7)

β(x, y) = arctan

√
3[I2(x, y)− I3(x, y)]− [I1(x, y)− I4(x, y)]
[I2(x, y)− I3(x, y)] + [I1(x, y)− I4(x, y)]

, (8)

The phase distribution can be further derived so that

∆δ(x, y) = arctan
S0(x, y)
C0(x, y)

, (9)

where S0(x, y) is sine fringe patterns, C0(x, y) is cosine fringe patterns. ∆δ(x, y) is the
wrapped phase containing speckle noise, which is distributed in (−π/2, π/2].

2.2. Proposed CNN Denoiser
2.2.1. Network Architecture

CNN has been successful in processing various visual tasks and has demonstrated
effective performance in handling Gaussian denoising. In this work, SDCNN for denoising
the wrapped phase is based on FFDNet [21]. The deeper neural network architecture is
illustrated in Figure 2. SDCNN consists of a series of 3 × 3 convolution layers. Each layer
is composed of three types of operations: convolution (Conv), batch normalization (BN),
and rectified linear units (ReLU). More specifically, “Conv + ReLU” is adopted for the first
convolution layer, “Conv + BN + ReLU” for the middle layers, and “Conv” for the last
convolution layer. The noisy SN0 and CN0 fringe patterns are, respectively, reshaped into
four sub-images, which are then input into the 32-layer CNN together with the noise-level
map. The final output is reconstructed by the four denoised sub-images.
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Figure 2. The architecture of the proposed network for image denoising.

2.2.2. Loss Function

To better deal with the case of wrapped-phase boundary blurring, this work uses
smoothL1 to replace the L2 loss function. The L2 loss function typically results in a signifi-
cant loss of texture details when dealing with speckle maps. On the contrary, the denoising
model based on the L1 loss function can obtain an image with relatively clearer edges. The
L1 loss function calculates the average distance between the denoised image f (x) and its
corresponding noise-free image y. The definition and gradient calculation equations are
as follows

L1 = ∑ N
i=1| f (xi)− yi|/N, (10)

∂L1

∂d
=

{
1, d > 0
−1, d < 0

, (11)

where xi is the block of the input, x, yi is the block of the corresponding position of the
real value y, and d = f (xi)− yi. From Equations (10) and (11), for any input other than
d = 0, the absolute value of the gradient is the same. The increased stability of the gradient
suggests its resilience to outliers and reduced likelihood of gradient explosions.. However,
when the d value is very small, the absolute value of the gradient is still one, and the
model convergence is difficult. In addition, the non-differentiability of L1 at d = 0 is also
a shortcoming that cannot be ignored. Therefore, this paper uses the smoothL1 [22] loss
function. The definition of the loss function and its gradient calculation equations are
as follows

smoothL1(d) =
{

0.5e2, i f |e| < 1
|e − 0.5| otherwise

, (12)

∂smoothL1(d)
∂d

=

{
d, i f |d| < 1
±1, otherwise

, (13)

In Equations (12) and (13), the smoothL1 loss function retains the advantage that L1
is not easy to gradient explosions and can be derived at any point. Meanwhile, when
the d value is small, the corresponding gradient value is also small enough. Therefore,
without increasing the complexity of the model and affecting the real-time performance,
a low-cost solution is proposed; smoothL1 is used to replace the traditional L1 and L2 as
the loss function. Based on this, the trained denoising model can better preserve the image
details while denoising and reduce the loss of edge information.

2.2.3. Dataset Generation and Network Training

The establishment of the database is necessary to train the model. Combining
Equations (1)–(6) for data simulation, the undeformed intensity I1 can be generated by
Equation (3). The amplitude A is set as a random variable distributed within (0, 1], and
the initial phase difference ∆φ is set as a random variable uniformly distributed within
(−π, π]. Similarly, after the object deformation, the deformed intensity I2 can also be
simulated by Equation (4), where the phase φ of the object beam is changed into ∆φ + ∆δ.
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The deformation of I2 is controlled by expanding Equation (2) and varying it according to
Equation (14).

φ2(x, y) = φ1(x, y) + λ × (1 + cos(Q)× Z,
Z = 3 ∗ (1 − x)2 × exp

(
−x2 × (y + 1)2

)
−

10 ×
( x

5 − x3 − y5)× exp
(
−x2 − y2)− 1

3 × exp
(
−(x + 1)2 − y2

) (14)

where the laser wavelength λ= 632.8 nm, Q denotes the angle of light incidence relative to
the object surface, and Z symbolizes a three-dimensional surface subject to deformation
through adjustments in its value, thereby altering the object surface. By manipulating the
value of Z, such adjustments involve adding or removing various terms and modifying
coefficients. Figure 3 illustrates the wrapped phase resulting from distinct deformations.
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Figure 3. The wrapped phase produced by different deformations.

In addition, assume that the incident laser is perpendicular to the object surface and the
surface is sheared along the x direction. The relationship between the deformation phase,
the derivative of the out-of-plane displacement along the x direction, and the phase-shift
shear is shown in Equation (15).

∆δ =
4π

λ
× ∂G(x, y)

∂x
× ∆S (15)

G(x, y) = 600 × 1
2πσ2 exp

(
− (x − ε)2 + (y − ε)2

2σ2

)
(16)

where ∂G(x, y)/∂x is the derivative of the out-of-plane displacement in the x direction by
adjusting the Gaussian function with the different mean values (from 1 to 80) and standard
deviations (from 1 to 80) shown in Equation (15) to simulate the pixel displacement. The
wrapped phase produced by different shears ∆S (from 20 to 60) is shown in Figure 4.
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FFDNET introduces different noise-level maps to make the denoising model adapt to
different noise levels. In order to make the model adapt to different levels of speckle noise,
this paper proposes a new wrapped-phase map generation method based on the character-
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istics of speckle noise. A clean wrapped-phase diagram is obtained from Equations (1)–(9),
and wrapped-phase maps with different noise levels are obtained from Equations (17)–(19).

∆δ(x, y)N = ∆δ(x, y)× IG + IN (17)

IG(x; k, θ) =
xk−1e−

x
θ

Γ(k)θk (18)

IN(x; σ) =
1

σ
√

2π
exp

(
− x2

2σ2

)
(19)

where IG is a random variable whose value conforms to gamma distribution. k denotes
the shape parameter, with the default value of 1. θ is the inverse scale parameter of the
distribution. The larger the value, the lower the visibility of the wrapped-phase fringe.
In this paper, θ is used to adjust the noise level of the training image, θ = 0.5 to 4. IN is a
random variable whose value obeys the Gaussian distribution and σ is the variance. The
greater the value, the greater the noise, σ = 25 to 100.

3. Experiments

In this study, we conducted simulation experiments using an NVIDIA RTX 1080 Ti
GPU (NVIDIA, Santa Clara, CA, USA) with 11 GB of memory and implemented the
Python 3.6 programming language. The neural network was trained and tested us-
ing PyTorch 0.4.1. Our training dataset consists of 21,847 speckle-wrapped phase im-
ages with different shear amounts and different 3D deformations, each with a size of
480 × 480 pixels. During SDCNN training, we employ a chunking strategy to divide the
images into 32 × 32 pixels. Finally, the training effect is verified using 100 random images
generated in the same way. Furthermore, we utilize both PSNR (Peak Signal-to-Noise
Ratio), SSIM (Structural SIMilarity) and RMSE (Root Mean Square Error), to holistically
evaluate the denoising effectiveness.

3.1. Influence of the Input Noise Level

In this section, we evaluate the sensitivity of SDCNN by varying the input noise levels
while maintaining a constant simulated ground level of noise. In practical applications,
accurately estimating the noise-level map from observed noise can be challenging, often
resulting in a mismatch between the estimated input and the actual noise levels. When
the input noise level is lower than the real noise level, complete noise removal becomes
unfeasible. Consequently, users typically opt for higher noise levels to enhance noise
reduction, although this may inadvertently lead to the removal of some image details
along with the noise. In real-world scenarios, it is essential for denoising models to
exhibit tolerance towards such mismatches in noise levels. To address this, we utilized
Equation (16) to train the model by adjusting parameters θ and σ and enabling control over
the input noise level. The testing results of this training are presented in Table 1, offering
the following key observations.

The testing results of this training are presented in Table 1. Various trained models,
each with a distinct input noise level (e.g., ‘SDCNN-1-25’ signifying SDCNN with a fixed
input noise level of 1–25), are assessed using simulated images characterized by noise
levels ranging from 0.5–0 to 4–100. The multiplicative noise coefficient of the input noise
image was determined, and different additive noise coefficients were applied during
training. The sensitivity of the trained models to additive noise is evaluated using a
variety of noise speckle images. The results reveal that SDCNN exhibits robust adaptability
to denoise different additive noise speckle images. Similarly, when the multiplicative
coefficient is set to one, SDCNN produces better results in reducing noise and maintaining
structural similarity.
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Table 1. The average PSNR(dB), SSIM, and RMSE results of SDCNN on simulated noise images with
different noise level combinations θ = 0.5, 1, 2, 4 and σ = 10, 50, 90.

Additive Coefficient σ=10 σ=50 σ=90

Multiplicative Noise coefficient θ = 0.5

Model-θ-σ PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

SDCNN-0.5-25 22.73 0.916 0.073 20.96 0.85 0.089 11.99 0.282 0.251
SDCNN-0.5-50 23.87 0.892 0.064 22.3 0.868 0.077 17.42 0.658 0.135
SDCNN-0.5-75 20.96 0.847 0.089 22.4 0.899 0.076 18.48 0.724 0.119
SDCNN-0.5-100 16.71 0.788 0.146 22.06 0.864 0.079 18.79 0.766 0.115

Multiplicative Noise coefficient θ = 1

Model-θ-σ PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

SDCNN-1-25 24.64 0.896 0.059 23.16 0.867 0.069 18.36 0.665 0.121
SDCNN-1-50 25.25 0.92 0.054 23.58 0.868 0.066 19.29 0.75 0.108
SDCNN-1-75 24.6 0.898 0.059 23.75 0.88 0.065 20.91 0.85 0.09
SDCNN-1-100 24.22 0.902 0.061 24.13 0.899 0.062 22.93 0.877 0.071

Multiplicative Noise coefficient θ = 2

Model-θ-σ PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

SDCNN-2-25 25.01 0.918 0.056 20.34 0.851 0.096 16.37 0.61 0.152
SDCNN-2-50 22.04 0.865 0.079 23.17 0.881 0.069 17.14 0.643 0.139
SDCNN-2-75 20.88 0.887 0.09 23.4 0.894 0.068 20.74 0.809 0.092
SDCNN-2-100 19.35 0.831 0.108 23.08 0.846 0.07 20.54 0.818 0.094

Multiplicative Noise coefficient θ = 4

Model-θ-σ PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

SDCNN-4-25 24.3 0.907 0.061 17.02 0.686 0.141 12.94 0.372 0.226
SDCNN-4-50 21.43 0.891 0.085 20.87 0.807 0.09 14.37 0.415 0.191
SDCNN-4-75 22.74 0.848 0.073 17.43 0.707 0.134 13.68 0.371 0.207
SDCNN-4-100 21.16 0.795 0.087 19.19 0.732 0.11 16.58 0.583 0.148

3.2. Influence of the Loss Function

Furthermore, in order to evaluate the effectiveness of the SmoothL1 loss function in
denoising and detail preservation, a comparative analysis of the model performance based
on the two loss functions, SMELoss and SmoothL1Loss, is presented in Figures 5 and 6.
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The comparative results indicate that the SMELoss model, overall, exhibits slightly
lower denoising effectiveness than the SmoothL1Loss model. However, as the input noise
level increases, the difference between the two becomes negligible, particularly when
the noise level reaches 60. Furthermore, the SMELoss model notably lags behind the
SmoothL1Loss model in preserving image details, a trend that persists even at higher input
noise levels.

3.3. The Denoising Effect on Simulated Images

In order to test the training effect of the model more fully, this paper proposes a method
to generate wrapped phases with different noise intensities. This work first performs low-
pass filtering on the two speckle fields of Equations (1) and (2) by adjusting the aperture
size in the 4f system [2], and the filtered speckle field intensity can be expressed as

I1,2 = F−1{ f (d)× F[A exp(iφ1,2)]} (20)

where F represents the Fourier transform, F−1 represents the inverse Fourier transform,
f (k1, k2) represents a low-pass filter. The speckle fringes (480 × 480 pixels) with the
different aperture sizes generate different speckle sizes, where the smaller selected aperture
produces a larger speckle size.

In addition, to evaluate the denoising performance of SDCNN on wrapped phases
generated by apertures of different sizes, we conducted tests on 100 images and compared
the results with the algorithms OBNLM, BM3D, and DNCNN. The test comparison results
are illustrated in Figure 6; the test data is presented in Table 2.

Figure 7 and Table 2 reveal that SDCNN significantly outperforms OBNLM, BM3D,
and DNCNN in terms of denoising efficacy and the preservation of intricate details in
speckle-corrupted maps. This phenomenon clearly demonstrates the strong generalization
ability of SDCNN for effectively balancing noise reduction and detail preservation.
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An illustrative example, depicting the test results presented in Figure 8, reveals that
SDCNN significantly outperforms OBNLM, BM3D, and DNCNN in terms of denoising
efficacy and the preservation of intricate details in speckle-corrupted images.
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Table 2. The average PSNR(dB), SSIM, and results RMSE of different methods on simulated noise
images with different noise level combinations θ = 1 and σ = 0, 25, 50, 75, 100.

Methods Noise Level PSNR (dB) SSIM RMSE Time (s)

OBNLM

25 20 0.76 0.1 85
50 18.84 065 0.11 80.6
75 17.63 0.56 0.13 79.63

100 16.68 0.49 0.15 75.6

BM3D

25 25 0.97 0.13 289
50 23.07 0.95 0.30 290
75 21.8 0.94 0.26 287

100 21.46 0.93 0.18 292

DNCNN

25 24.41 0.895 0.06 0.01
50 23.50 0.864 0.07 0.01
75 22.53 0.87 0.07 0.01

100 21.84 0.866 0.08 0.01

SDCNN

25 25.88 0.89 0.05 0.01
50 24.78 0.92 0.06 0.01
75 23.64 0.88 0.06 0.01

100 22.16 0.89 0.07 0.01
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The enlarged details, highlighted by the red border in the image, provide compelling
evidence of this superiority. In Figure 8b, OBNLM performs well in denoising at lower
noise levels, but its effectiveness diminishes significantly when the noise intensity is higher.
In Figure 8c, BM3D demonstrates relative effectiveness in speckle-noise reduction while
excelling at preserving fine details. However, the BM3D algorithm performs filtering in
the transform domain, resulting in the appearance of pseudo-texture artifacts in the de-
noised images, which can affect the accuracy of phase unwrapping in the denoised images.
Conversely, in Figure 8d, DNCNN achieves remarkable denoising effects but introduces
noticeable boundary blurring, impacting visual quality. As evident from Figure 8e, images
processed by SDCNN not only attain outstanding denoising results but also exhibit clearer
edges and textures, preserving a greater amount of image detail.

3.4. The Denoising Effect on Experimental Data

To demonstrate the denoising effect of the model in structural damage detection, data
were obtained using the digital speckle-shear interferometry system shown in Figure 1 to
validate the performance. The experimental setup depicted in Figure 9 utilizes a 120 mm
diameter circular plate made of 6061 aluminum alloy, with a thickness measuring 4 mm.
Furthermore, coherent light from a helium–neon laser, characterized by a wavelength of
632.8 nm, is employed.
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Figure 9. Digital speckle-shear interferogram: (a) speckle-pattern image before deformation; (b) speckle-
pattern image after deformation.

In Figure 10, the contour pattern obtained by the four-step phase-shifting method is
shown. In addition, since there is no ground-truth image for a real noisy image, visual
comparison is employed to evaluate the performance of SDCNN. We choose the BM3D
and DNCNN method for comparison because it is widely accepted as a benchmark for
denoising applications.
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pattern with phase shift −α; (c) fringe pattern with phase shift α; and (d) fringe pattern with phase
shift 3α.
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Figure 11 compares the denoising results of BM3D, DNCNN, and SDCNN on wrapped-
phase maps. Visually, all three methods, BM3D, DNCNN, and SDCNN, effectively remove
a significant amount of speckle noise. BM3D and DNCNN show comparable denoising
results, but they are slightly outperformed by SDCNN. Regarding detail preservation, the
red border in the lower right corner of the image demonstrates the effects on details. BM3D
and DNCNN reduce noise but may introduce blurring in details, potentially impacting
subsequent phase unwrapping. Figure 12a,b demonstrates the phase unwrapping effect of
BM3D and DNCNN, from which the boundary blurring caused by poor noise reduction
can be clearly seen. In contrast, SDCNN not only removes noise but also keeps important
details intact, avoids interference between fringes, and shows better generalization abilities.
Figure 12c shows the effect of phase unwrapping after noise reduction, and the unwrapping
is significantly smoother and clearer.
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Figure 12. The unwrapped phase of Figure 11: (a) the unwrapped phase of BM3D; (b) the unwrapped
phase of DNCNN; and (c) the unwrapped phase of SDCNN.

Figure 13 provides additional insight into the denoising capabilities of SDCNN on
a series of authentic experimental maps. The visual results are notably effective. From
Figure 13b, it is obvious that the SDCNN presents good results in both stripe preservation
and noise-reduction effects, while Figure 13c unpacks the phase of the parcels after noise
reduction. The unpacked phase information can be more intuitively seen in Figure 13d.
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Figure 13. Experiment results: (a) experimental wrapped-phase noise maps; (b) denoising result of
(a) by SDCNN; (c) the unwrapped phase of (b); and (d) contour map of (c).

4. Conclusions

In this study, we introduce a CNN model, called SDCNN, with the aim of achieving
a balance between speckle-noise reduction and boundary preservation in the context of
defect detection using speckle-shear interferometry. To realize this objective, we incorporate
various techniques during the network’s design and training phase, including cosine
regularization, a more realistic speckle-noise simulation approach, and the application
of a specific loss function. Based on the results obtained from four-step phase-shifting
simulated images, SDCNN demonstrates outstanding performance not only when the input
noise levels match the actual speckle noise but also in effectively harmonizing denoising
and detail preservation in the wrapped phase. Furthermore, through a comprehensive
analysis of experimental results pertaining to the wrapped phase, we observe that SDCNN
also performs favorably in handling real-world speckle-noise scenarios. Consequently,
SDCNN provides valuable insights and a practical tool for future research in wrapped-
phase denoising.
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