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Abstract: The increasing integration of the Internet of Things (IoT) into daily life has led to significant
changes in our social interactions. The advent of innovative IoT solutions, combined with the
enhanced capabilities and expanded reach of 5G wireless networks, is altering the way humans
interact with machines. Notably, the advancement of edge computing, underpinned by 5G networks
within IoT frameworks, has markedly extended human sensory perception and interaction. A
key biometric within these IoT applications is electroencephalography (EEG), recognized for its
sensitivity, cost-effectiveness, and distinctiveness. Traditionally linked to brain–computer interface
(BCI) applications, EEG is now finding applications in a wider array of fields, from neuroscience
research to the emerging area of neuromarketing. The primary aim of this article is to offer a
comprehensive review of the current challenges and future directions in EEG data acquisition,
processing, and classification, with a particular focus on the increasing reliance on data-driven
methods in the realm of 5G wireless network-supported EEG-enabled IoT solutions. Additionally,
the article presents a case study on EEG-based emotion recognition, exemplifying EEG’s role as a
biometric tool in the IoT domain, propelled by 5G technology.

Keywords: IoT; 5G; EEG signal; wearable IoT devices; Internet of Things; seamlessly IoT devices;
sensors

1. Introduction

The capability to process, store, and transmit the immense volume of data produced
by sensors, controllers, and various interconnected devices is essential for the optimal
operation of the IoT. The IoT comprises a network of interlinked objects and devices that
exchange data and communicate across diverse and decentralized networks, including
both local area networks (LANs) and wide area networks (WANs) [1]. This interconnected-
ness facilitates an unprecedented level of automation, as devices, sensors, and connected
entities provide crucial data that can be utilized to make informed decisions and improve
efficiency [2].

The extensive amount of data produced by IoT devices presents a significant challenge,
underscoring the need for adequate storage and organization to ensure effective use. Data
analytics is fundamental in this context, as it allows for the identification of trends and
patterns within these data. Utilizing these insights can lead to the automation of processes
and more informed decision-making, thereby enhancing accuracy and diminishing the
reliance on manual checks. A prominent instance of this was observed during the recent
COVID-19 pandemic, where IoT devices were extensively utilized for monitoring purposes.
These devices enabled the remote measurement of patients’ temperatures through real-time
data transmission over the internet, thus significantly aiding healthcare professionals in
their response efforts [3].
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According to a prediction by the International Telecommunication Union (ITU), the
quantity of devices linked to internet protocol (IP) networks is expected to exceed three
times the global population. By 2023, it is expected that machine-to-machine (M2M)
connections will constitute almost half of all worldwide connected devices and connections.
Furthermore, a significant surge in global mobile data traffic is forecasted over the next
decade. An increasing share of this traffic is predicted to be allocated to machine-to-machine
communications, signaling the imminent advent of an IoT revolution. Figure 1 presents
a visual representation of the forecasted global mobile data traffic as projected by the
International Telecommunication Union (ITU), illustrating the expected growth in exabytes
per month from 2020 to 2030 [4].

Figure 1. Global mobile data traffic forecast for the 2020 to 2030 period (ITU).

Fifth-generation (5G) networks are recognized as a key element of IoT systems, owing
to their capability to provide the high speed and low latency essential for real-time commu-
nication between IoT devices and the internet. Furthermore, 5G technology facilitates the
connection of up to one million devices per square kilometer, making it vital for extensive
IoT deployments. Beyond scalability, 5G also enhances data rate efficiency, leading to
reduced energy usage and longer battery lifespan in IoT sensors. These technological
advancements amplify the future prospects of IoT, positioning 5G as a central force in
realizing its utmost potential [5].

Moreover, 5G signals operate across three distinct frequency spectrums: millimeter
waves, mid-band, and low-band, each with a specific bandwidth range. Millimeter waves
deliver a downlink bitrate between 1 Gbps and 2 Gbps, operating at carrier frequencies
ranging from 24 GHz to 72 GHz. Mid-band signals, on the other hand, offer downlink
bitrates between 100 Mbps and 400 Mbps and utilize carrier frequencies between 2.4 GHz
and 4.2 GHz. Lastly, the low-band spectrum functions within the same bandwidth range as
4G networks, providing the broadest coverage, albeit with a slower downlink bitrate [6,7].

The capacity of IoT solutions to collect, process at the edge, and transmit human bio-
metric data via 5G networks is fundamental for the efficacy of the human–machine interface.
This survey explores the diverse biometric authentication methods implemented in IoT
frameworks, particularly emphasizing EEG biometric authentication. EEG data—known
for their stability, universality, and distinctiveness—have broadened their applications from
conventional brain–computer interface (BCI) solutions to encompass more varied fields,
including neuroscience and neuromarketing. Figure 2 illustrates the primary emerging
markets where EEG biometrics find applications within the context of the IoT [8].

BCI technology encompasses a broad spectrum of applications. A prominent example
is BCI-controlled prosthetics, which enable individuals to use their thoughts to control
devices aiding in daily activities. These devices range from wheelchairs to exoskeletons,
designed to improve mobility for those with motor disabilities. Additionally, BCI tech-
nology shows promise in therapeutic domains. Current research is exploring the use of
BCIs for monitoring, understanding, and potentially addressing neurological disorders like
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depression and anxiety. Another significant area of BCI applications is health monitoring.
Analyzing brainwaves through BCIs can detect shifts in mental states, such as fatigue,
alertness, or levels of intoxication [9–13].

Figure 2. Various applications of EEG biometric signals in IoT solutions.

Technology can also function as an instrument for identifying individuals with certain
neurological or psychological conditions. For example, EEG, a component of BCI, can
be employed in the diagnosis of epilepsy and other neurological disorders, including
Alzheimer’s disease and autism spectrum disorder [14–17]. Additionally, it can aid in the
diagnosis of mood disorders like depression and anxiety [18]. EEG can also help identify
individuals who may be experiencing sleep problems, such as insomnia [19].

BCI systems utilizing EEG initially enabled the movement of a cursor on a computer
screen or the selection between two images using brain signals. A key advantage of EEG
signals is their rich content, reflecting a person’s mental state, cognitive and motor functions,
and a range of other neurological activities [9,20]. Therefore, EEG signals are particularly
well-suited as input sources for BCI systems.

EEG can be employed for individual identification based on prior training. Researchers
have explored the potential of using a person’s EEG as a biometric identifier by analyzing
the unique properties and patterns of their EEG signals [21]. Beyond its traditional uses,
EEG has found applications in tailored scenarios like yoga classes, meditation sessions,
immersive gaming experiences, and virtual reality platforms [22]. ts widespread use in
understanding human brain functionality extends to gaining insights into human thoughts,
needs, and emotions, particularly in marketing and strategic planning. EEG is increasingly
being used to gauge customer reactions to marketing messages, advertisements, and
product designs. In the realm of marketing, EEG provides valuable insights into customer
perceptions, emotions, and responses to various stimuli. It can reveal hidden consumer
preferences and guide the development of effective marketing strategies, messages, and
product designs [23].

EEG fusion, a novel technological advancement, merges the capabilities of EEG, known
for detecting brainwave patterns, with the IoT. This approach involves linking sensors and
devices to the internet and leveraging these connections for the analysis and interpretation
of brain signals. This technology is increasingly being used to create applications focused
on monitoring, diagnosing, and treating mental illnesses, improving cognitive functions,
and promoting overall health and wellness [24].

The biometric technology market is anticipated to expand from USD 21.5 billion in
2019 to USD 64.8 billion by 2025, demonstrating a compound annual growth rate (CAGR)
of 22.0% during the forecast period [25]. The growth of this market is attributed to factors
such as the rising demand for biometric security systems in sectors like banking, finance,
and government, and there is an increased emphasis on access control and individual
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authentication in healthcare and retail. Furthermore, the use of mobile biometrics is
escalating swiftly, establishing itself as a potent authentication method in virtually every
mobile device and smartphone [26].

Regarding the IoT, human biometrics has emerged as a powerful technique that im-
proves security and convenience in a variety of applications. Biometric authentication
technologies such as fingerprint recognition, iris scanning, face recognition, and voice veri-
fication are being incorporated into IoT devices, allowing for safe and smooth interactions
between people and connected devices [27]. When compared to traditional password-based
or token-based authentication systems, these biometric-based solutions offer higher levels
of accuracy and dependability. Furthermore, they provide a better user experience by
eliminating the need to memorize difficult passwords or carry physical keys. IoT devices
can precisely identify and verify individuals by employing biometrics, allowing for person-
alized experiences, secure access management, and efficient monitoring in sectors such as
healthcare, smart homes, transportation, and security [28].

Incorporating EEG signals into biometric recognition systems represents a significant
advancement in the field of identity authentication. While traditional biometric methods
like fingerprint and facial recognition have been widely used, EEG-based biometrics offer
unique advantages that, in some cases, surpass these conventional techniques. EEG-
based biometric recognition utilizes the distinct and hard-to-replicate electrical activity
of the brain, positioning it as a secure and innovative approach in identity verification.
EEG captures the brain’s electrical activity, offering deep and dynamic insights into an
individual’s cognitive processes. This uniqueness forms the cornerstone of its application
in biometric recognition, enabling a more robust and personalized approach [29].

One of the key advantages of EEG-based biometrics is its ability to capture not only
static physical attributes but also dynamic cognitive responses. This dynamic nature adds
an additional layer of security, posing a challenge for malicious entities attempting to
replicate or deceive the system [30].

In practice, EEG-based biometrics typically involve recording brainwave patterns
through non-invasive electrodes. Advanced algorithms and machine learning techniques
are then applied to analyze these patterns and extract distinctive features for individual
identification. This method finds applications in secure access control, user authentication
in computing systems, and forensic science. Despite its potential, EEG biometrics face
challenges such as signal variability due to emotional or physiological states and the neces-
sity for user cooperation. Future research is directed toward improving data acquisition
methods, enhancing signal processing algorithms, and integrating EEG biometrics into
practical, user-friendly systems [31].

Key attributes of EEG in biometrics include the inherent uniqueness of EEG patterns
to individuals, shaped by their distinct neural pathways and brain activities. The dynamic
nature of brain waves, which react to various stimuli, adds a layer of complexity, thereby
enhancing security. Moreover, unlike fingerprints or iris patterns, EEG signals are difficult
to mimic, reducing the likelihood of spoofing attacks. Standing at the forefront of secure
authentication technology, EEG-based biometric recognition, with continued research and
technological advancements, has the potential to revolutionize personal identification and
security measures in the digital era [32,33].

In this review article, our primary focus is on the use of EEG signals for sensing human
emotions among the various biometric signals and their associated features. This emphasis
is due to the unique human ability to perceive and express emotions, a trait that is central
to our survival, decision-making, and daily interactions. The following section will present
a representative example of how EEG biometrics are integrated into IoT solutions.

The integration of IoT with 5G wireless networks marks a significant milestone, partic-
ularly in the field of EEG signal classification. This fusion introduces a range of advantages,
deeply transforming the field of neuroscience. Additionally, it allows the potential to bring
innovative changes in healthcare, human–computer interaction, and related domains. The
convergence of IoT and 5G technology in the fields of biomedical research and neurotech-
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nology represents a critical advancement, especially in enhancing EEG applications. EEG,
known for its ability to record brain electrical activity, holds immense promise in diverse
sectors such as medical diagnostics and BCI [8]. The integration of IoT and 5G into EEG
systems signifies a substantial progression, opening up novel opportunities for enhanced
data acquisition, processing, and utilization. The employment of IoT technology in EEG
systems entails the utilization of sophisticated, interconnected devices designed for the
acquisition and transmission of brainwave data. These devices, which include wearable
EEG headbands or caps, are outfitted with numerous electrodes that capture the brain’s
electrical signals. The primary benefit of IoT-enabled EEG devices is their capacity to pro-
vide continuous monitoring and real-time data transmission, thereby enabling consistent
evaluation and analysis [34].

The integration of IoT devices into EEG systems has transformed them into more
lightweight and portable tools, significantly enhancing EEG accessibility beyond tradi-
tional clinical environments. This portability is particularly beneficial for remote patient
monitoring and ambulatory EEG studies. IoT devices are capable of collecting extensive
data sets, which are then transmitted to cloud-based platforms for storage and sophisti-
cated analysis. This process is crucial for managing large data volumes and is essential
in advanced research and analysis. Furthermore, the incorporation of 5G technology into
EEG systems primarily addresses challenges associated with data transmission and pro-
cessing [35]. Moreover, 5G networks provide significantly higher speeds compared to
their earlier counterparts, a critical feature for transmitting the substantial data volumes
produced by EEG devices, especially in detailed brain mapping. The minimal latency
of 5G networks enables almost rapid data transmission, which is crucial for applications
that require prompt responses or interventions, such as neurofeedback therapy or BCI.
Additionally, 5G networks offer more reliable and stable connections, which are vital for
continuous monitoring applications and ensuring the integrity of the transmitted EEG
data [36,37].

The combination of IoT and 5G technologies within EEG systems opens up a diverse
range of applications. In healthcare, it facilitates enhanced monitoring and management
of neurological disorders, providing valuable insights into brain activity patterns that can
inform treatment strategies. In research, it allows for more in-depth and detailed studies
of brain functioning and neurophysiology. Furthermore, in the field of brain–computer
interfaces, this integration sets the stage for the development of more sophisticated systems
that offer faster and more accurate responses, potentially transforming the way humans
interact with technology [38]. Overall, the integration of IoT and 5G technologies into EEG
systems represents a significant advancement in neurotechnology. This merging is set to
improve data collection, processing, and application, leading to deeper insights into the
human brain and fostering innovative solutions in both healthcare and technology sectors.
As these technologies continue to evolve, their impact on EEG research and applications is
expected to expand, broadening our understanding and use of brain activity data [39,40].

The scope of the study was initially defined, encompassing key terms that are essential
to the research, such as EEG, IoT, and 5G. This scope was instrumental in accurately identi-
fying relevant aspects of the literature study. Academic databases like Elsevier, MDPI, IEEE
Xplore, etc., were utilized. Keywords related to EEG, IoT, 5G, and their interrelated aspects
were combined in the search strategy. The literature was thoroughly filtered based on
criteria such as relevance, recency, and methodology. Priority was given to peer-reviewed
articles and reliable sources, especially those focusing on the classification of EEG signals
in the context of IoT and 5G integration. A thematic analysis was conducted on the chosen
literature to extract and highlight key methodologies, challenges, and advancements, as
reported in various studies. The primary goal was to develop a comprehensive understand-
ing of how IoT and 5G technologies enhance EEG signal classification. Specific research
questions were formulated to steer the study, including the investigation of the impact of
5G on real-time EEG monitoring and the exploration of the role of IoT in the development
of interconnected EEG devices.
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The diagram in Figure 3 presents a logical flow and interconnection of the various
sections in the review paper, indicating how each section builds upon the previous ones
and contributes to the overall narrative and understanding of integrating EEG with 5G and
IoT technologies. Section 2 follows the introduction, delving into a specific application of
EEG technology in the realm of emotion recognition. This section discusses the progress
in EEG-based emotion recognition and relevant EEG databases. Section 3 provides an
exploration of the fundamental properties of EEG signals, which is essential to understand-
ing the subsequent sections on signal acquisition and processing. Section 4 addresses the
common issues and noise factors in EEG data, which are crucial for ensuring accurate data
interpretation in EEG studies. The acquisition of EEG signals is detailed in Section 5, where
various methods for capturing EEG signals, such as different types of sensors (e.g., elec-
trical geodesic, cup electrodes, dry electrodes, inductive sensors, ultrasound sensors), are
presented. This section is foundational to understanding how EEG data are gathered before
they are processed and analyzed, while subsequent pre-processing and feature extraction
are detailed in Section 6, this section focuses on the techniques used for preparing EEG
data for analysis, including filtering, segmentation, channel selection, feature extraction,
and classification. This section might also delve into the methodologies, applications,
challenges, and future directions in EEG signals. An architectural overview of the EEG
biometric deployment in 5G-enabled IoT is presented in Section 7; this section explores the
integration of EEG technology with modern IoT and 5G infrastructures, discussing aspects
like EEG sensing networks, IoT cloud layers (mobile and edge computing, storage, applica-
tion, intelligence, connectivity and integration, security, and authentication), and graphical
user interfaces. Section 8 specifically delves into the architecture and infrastructure of 5G
IoT, which is likely related to the deployment of EEG technology in these environments.
Finally, challenges and opportunities for the seamless integration of wearable devices with
IoT are described in Section 9, where the potential and difficulties associated with wearable
EEG devices and their integration into daily life or medical applications are addressed.
Section 10 wraps up the review paper, summarizing the findings, insights, and possible
future directions in EEG and applied science.

Figure 3. Review structure.
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2. Case Study: Digitizing Human Emotions

Emotions represent complex mental states resulting from electrochemical changes in
the brain. While there is no universally accepted definition of emotions, they are commonly
classified as either positive or negative. The exploration of emotions encompasses various
disciplines, such as neuroscience, psychology, psychiatry, and medicine. Despite thorough
research, the underlying mechanism through which thoughts and feelings translate into
emotions is not yet fully understood. However, recent advancements in artificial intelli-
gence and machine learning technologies have markedly propelled the field of emotion
recognition research forward.

2.1. Progress in EEG-Based Emotion Recognition

Among various artificial intelligence approaches, deep learning has shown the most
potential and has been extensively utilized in the study of human emotions [41–43]. Most deep
learning models are trained on extensive datasets, containing labeled facial images [42,44,45],
audio waves [46], and textual data [47,48]. These models utilize extracted features to
classify emotions with a higher degree of accuracy than traditional methods. Furthermore,
researchers are currently investigating multimodal approaches that integrate two or more
types of inputs, such as visual and textual data, to achieve more precise representations of
emotions [48,49]. Computer vision methods, such as gaze and body gesture tracking, have
been proposed [49] to capture subconscious emotional indicators.

Emotion recognition employs a diverse array of methodologies to accomplish its goals.
Initially, the focus was on analyzing facial expressions, which resulted in the creation of
a highly efficient and subject-independent system for emotion detection. This process
involves identifying specific facial features (like the eyes, eyebrows, and mouth) and com-
paring these features against a predefined set of emotions [44,45,50]. For example, aspects
such as the shape of the eyes, the movement of the eyebrows, and the curvature of the
mouth can be employed to identify emotions like happiness, sadness, anger, or surprise [51].
After identifying these facial features, a computer vision algorithm can be applied to recog-
nize the facial expression and categorize it into one of the predetermined emotions.

Initially, facial expression recognition exhibited low efficiency, but with technological
advancements, including high-definition (HD) cameras, and the implementation of deep
learning and machine learning algorithms, there has been significant improvement in effi-
ciency. In certain instances, the accuracy of recognition has surpassed 95% [42,44,50,52,53].
A primary advantage of using facial expressions for emotion recognition is their subject-
independent nature, as they tend to be relatively consistent across different individuals.
However, relying solely on facial expressions for emotion detection presents a significant
challenge due to their potential to be feigned. For example, an individual might force a
smile despite feeling sad or depressed, or display tears of joy, which could be challenging
for systems based solely on facial expressions to accurately discern. Moreover, these sys-
tems necessitate a continuous HD camera focused on the subject’s face to monitor facial
expressions consistently, enabling the analysis and extraction of human emotions.

In addition to facial expressions, other vital signs have been employed for emotion
recognition, including speech [54], human posture, and functional magnetic resonance
imaging (fMRI) [55]. Conversely, with notable advancements in portable, user-friendly
EEG headsets, brain signals have become increasingly common for emotion recognition
in both single and multimodal systems [45,56,57]. While EEG signals are utilized in
this domain, there is a notable variation in the features extracted, as evidenced in prior
studies [58]. Techniques for emotion recognition often employ both time-based and frequency-
based features.

Regarding the number of channels and their optimization for use in neural networks
for recognition, researchers have investigated 62 different channels on the human scalp,
as delineated in the 10–20 system illustrated in Figure 4. These 62 channels, cataloged
in an online database, have been employed in numerous studies using various training
techniques, predominantly the support vector machine (SVM) method [13,59–61]. The
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channels are distributed with 27 on the left side of the scalp, 27 on the right side, and
the remaining 8 along the midline of the scalp. Most research in this field concentrates
on the EEG signal itself rather than on brain mapping activities [60,62]. Although the
brain map activity, a virtual representation of the EEG signal, is not currently used for
emotion detection, it presents potential for future applications involving convolutional
neural networks.

Figure 4. The optimal locations for all 62 EEG electrodes on the human scalp [41].

Researchers are employing a variety of features extracted from EEG signals, including
those from the time domain [63], frequency domain [53], and mixed domain features [64].
Multimodal systems may integrate EEG signals with one or more other types of input
signals. These additional inputs can include skin conductance, facial expressions, eye
movement, muscle activity, or other vital signs, used in conjunction with EEG to create a
comprehensive multimodal system. Among these inputs, facial expressions are frequently
used in conjunction with EEG in emotion recognition systems due to their high accuracy
relative to other signals [42,45,52,56]. The effectiveness of these systems in detecting dif-
ferent emotions varies, with accuracies ranging from 83% to 89.6%. The highest accuracy,
89.6%, was achieved by Aguiñaga, Adrian R. in 2021 [45] using 15 EEG channels. This
system utilized signal processing to extract wavelet features from the EEG signals, recogniz-
ing a four-class emotions model: happiness (high arousal–high valence (HA-HV)), anger
(high arousal–low valence (HA-LV)), and sadness (low arousal–low valence (LA-LV)). EEG
signals have also been incorporated into a multimodal system along with galvanic skin
conductance and blood volume pressure, using 15 EEG channels [65]. The accuracy of
this system was approximately 75% for three different emotional states. Table 1 presents a
comparison of various EEG-based emotion recognition techniques.
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Table 1. Comparison between various EEG-based emotion recognition methods.

Ref. Channels Accuracy Subject Database Detection

[41] 62 N/A Dependent Seed
Positive
Neutral
Negative

[42] 14 77.6–78.96% Dependent DEAP
Valence
Arousal
Dominance

[43] 12 81.5–86.87% Independent 12 subjects
High
Low Valence
Arousal

[66] 14 87.25% Dependent 19 subjects

Happiness and
Sadness
Fear and Anger
Surprise and Disgust

[44] 32 96.28–96.62% Dependent DEAP
High
Low Valence
Arousal

[45] 62 83.33% Independent Seed
Neutral
sadness and fear
happiness

[46] 32 N/A Dependent MAHNOB
High
Low Valence
Arousal

[47] 10 58.47–60.90% Independent N/A
High
Low Valence
Arousal

Moreover, the integration of EEG with the IoT has the potential to develop applications
designed to enhance cognitive performance, improve physical and mental well-being, and
aid in comprehending the human brain and its functions. For example, technology that uti-
lizes EEG sensors and IoT-connected devices could be used to detect and interpret signals
associated with emotions. This would enable users to gain a deeper understanding of, and
potentially exert greater control over, their conscious and subconscious behaviors. Addi-
tionally, this technology could be applied to create applications aimed at boosting memory,
concentration, and creativity by analyzing and interpreting cognitive processes [1,24,67].

Numerous studies and surveys have concentrated on classifying emotions and de-
veloping physical systems to achieve the highest possible accuracy [68]. These activities
comprehend the application of various machine learning techniques and the investigation
of different methods for feature extraction and frequency range analysis [69]. Additionally,
some research has been directed toward optimizing the selection of channels for emotion
recognition processes [70] and monitoring other health conditions [71]. Furthermore, gen-
eral daily movements and actions were analyzed and mapped using EEG signals in [72].
However, relatively few studies have focused on the implementation of secure EEG biomet-
ric data transfer between servers and clients within the framework of IoT solutions over 5G
wireless networks [67,73–75].

2.2. EEG Databases for Emotion Recognition

In the classification of human emotions through EEG signal recordings, it is a standard
practice to use musical videos or short clips to evoke a range of emotional responses from
participants. The duration of these clips can range from a few seconds to six minutes, where
participants may display their emotions in diverse ways. Despite the growing interest
in exploring the influence of emotions on brain signals, there remains a notable lack of
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readily available databases for such studies. Table 2 presents a summary of five publicly
available datasets.

Table 2. Comparison among EEG datasets in terms of participants, clips, channels, emotions, and
frequencies.

Dataset Participants Clips EEG Channels Emotions Sampling
Frequency

DEAP 32 40 32
Valence 512 Hz–down

Arousal sampled to
128 Hz

Dominance

SEED-IV 15 15 62
Valence 200 Hz–down
Arousal
Dominance

DREAMER 23 18 14
Valence N/A
Arousal
Dominance

AMIGOS

40 Short 16 Short

14

Valence N/A
Experiment Arousal

37 Long 4 Long Dominance
Experiment

MAHNOB HCI 30

Exp 1: 20 clips

32

Valence 256 Hz
Arousal

Exp 2:
28 images

MPED 23 28 62

Joy 1000 Hz
Funny
Neutral
Sad
Fear
Disgust
Anger

Most of these databases are aimed at identifying emotions across three primary di-
mensions: valence, arousal, and dominance. Arousal reflects the spectrum from passive
disinterest to stimulated enthusiasm, whereas valence covers the spectrum from tense
unhappiness to joyfulness. The dominance dimension comprehends feelings, ranging from
vulnerability to a sense of empowerment, as represented in the illustration provided in
Figure 5.

The self-assessment manikin (SAM) is the most widely used standard for reporting
emotions in studies [76–78]. This method involves presenting manikins to users, who
then describe their emotional state according to a linear scale on each emotional axis, as
illustrated in Figure 5. A significant limitation of the databases currently using SAM is
that participants are required to represent their feelings throughout an entire video or
experimental trial with a single value. However, it is more realistic to consider that a
participant’s emotions may vary during the course of the experiment.

The DEAP database [79] includes 32 recordings from 32 subjects engaging in various
emotional processing tasks, making it a popular resource in research. Each participant
viewed 40 one-minute-long videos that acted as emotional stimuli. During each of the two
experimental sessions, a two-minute baseline recording was conducted. A total of 32 elec-
trodes, positioned according to the international 10–20 system, captured physiological
data, including EEG and GSR, at a sampling rate of 512 Hz, which was then downsampled
to 128 Hz for analysis. The data were divided into training and testing sets to facilitate
research. Additionally, the database includes extra information, such as measurements
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of the left pinky finger’s body temperature and GSR, along with observations of facial
expressions, eye movements, mouth shapes, and lip expressions [80].

Figure 5. Three emotion-scaling axes superimposed on the standard self-assessment manikin system
(SAM).

The SEED IV EEG database is an extensive collection featuring EEG recordings from
15 subjects who engaged in 24 distinct mental activities or tasks. These recordings were
captured using the Neuroscan SynAmps 2 amplifier, coupled with a 62-channel high-
resolution EEG cap. Each participant underwent three sessions. The EEG data include
responses to a range of auditory, visual, and somatosensory stimuli, and also include eye
movement information [67,81].

The Dreamer EEG database features EEG recordings from 14 channels of 23 healthy
adults, aged 22–33. These participants were exposed to 18 different video clips, during
which their brain’s electrical activity was recorded using an EMOTIV EPOC headset. The
data were initially collected at a sampling rate of 256 Hz and subsequently downsampled
to 128 Hz for analysis [82].

The AMIGOS dataset serves as a significant resource for investigating the effects of
visual media on group dynamics, emotional states, and mood. It is particularly useful
for exploring how emotions (like positivity and arousal) manifest in brain activity and
for studying the neural mechanisms influencing individual and group behaviors. This
dataset involves physiological recordings from multiple body sites, including EEG, elec-
trocardiography (ECG), and galvanic skin response (GSR). These recordings are beneficial
for research in emotion regulation, attention, and affective neuroscience. The data were
collected through two separate experiments. In the first experiment, EEG signals were
recorded from 40 participants as they watched 16 short video clips, each less than 250 s in
duration. The second experiment involved EEG recordings from 37 participants, who were
also part of the first experiment, as they viewed four longer video clips, each exceeding
14 min. In both experiments, the same 14 channels from the EPOC headset were utilized
for recordings [83].

The MAHNOB-HCI database is highly suitable for researchers exploring the impact
of visual media on human emotions. It comprises EEG recordings from 27 healthy subjects,
including both males and females, who took part in two distinct experiments. In the first
experiment, the participants watched 20 short video clips, while in the second experiment,
they were exposed to a combination of images and videos (28 images and 14 videos). The
EEG data were gathered using 32 channels, and additional psychophysiological data, such
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as facial expressions and heart rate (HR), were simultaneously recorded. This database of-
fers an extensive range of data for studying the neural mechanisms that underlie emotional
responses to visual stimuli [84].

The MPED database includes EEG recordings from 23 participants who viewed 28 dis-
tinct videos. These recordings were captured using a total of 62 channels, incorporating
EEG artifact rejection techniques. A sampling frequency of 1000 Hz was employed. Along-
side the EEG data, other physiological measurements, such as respiration, galvanic skin
response (GSR), and electrocardiography (ECG) data were concurrently collected for each
participant during their viewing of the stimulus videos [85].

All datasets in Table 2 employ a scale from 1 to 9, as shown in Figure 5, except for the
AMIGOS and DREAMER databases, which use a linear scale from 1 to 5.

3. Signal Morphology

The morphology of EEG signals is shaped by the brain activity at the time of waveform
capture, which depends on the active section of the brain. The anatomy of the human brain
comprises three primary lobes, as illustrated in Figure 6. The cerebrum, being the largest
and most significant part, is split into two hemispheres, each containing four lobes: the
frontal, parietal, temporal, and occipital lobes. The frontal lobe manages planning and
complex voluntary movements, personality, judgment, decision-making, and cognitive
functions, like language, abstract thinking, and problem-solving. The parietal lobe pro-
cesses somatosensory information, such as touch and coordinate movements [86], while the
temporal lobe handles auditory information and is integral for memory and speech. The
occipital lobe, the smallest of the lobes, is tasked with vision, including color and spatial
perception. The brain stem oversees basic life functions like breathing, blood pressure,
and swallowing, and the cerebellum controls balance and fine movement coordination,
including activities like walking and speaking [87]. EEG waveforms exhibit distinct shapes
that are indicative of various types of brain activities. The EEG signal is represented as
a time series of voltage values corresponding to electrical activity detected by electrodes,
measured in microvolts (µV), and is typically sampled at regular intervals ranging from
128 Hz to 1024 Hz. Common EEG signals have a frequency range of up to 45 Hz, and EEG
frequencies are usually standardized as delta, theta, alpha, beta, and gamma waves [72].
However, in certain cases, the EEG frequency range can extend beyond 200 Hz. These
frequencies offer insights into the functioning of different brain areas and are instrumen-
tal in diagnosing and treating various neurological and psychiatric conditions. They are
also employed to monitor brain activity during various states like sitting, sleeping, and
meditating [73].

Figure 6. Brain anatomy with the primary lobes highlighted.
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4. Artifacts in the EEG

As previously noted, EEG signals have potential use in biometric identification [21].
The raw EEG signals can be altered by various neurological and psychological conditions.
Numerous factors influence EEG signals, including aging, certain medications or drugs,
diseases, sleep deprivation, physical activity, mental states, eye or muscle movements,
substance use, metabolic conditions, hydration levels, environmental factors, and even the
type and placement of the EEG electrodes.

EEG is a valuable tool used in diagnosing a range of diseases. For instance, seizures
and epilepsy can be identified by analyzing brain activity patterns in EEG recordings [17].
Other neurological diseases, particularly those leading to dementia, can also be detected
through EEGs. Structural brain changes, such as tumors, are often reflected in EEG signal
alterations. Furthermore, EEG modifications can be helpful in diagnosing and monitoring
certain sleep-related disorders, including narcolepsy [13,15,74,75].

EEG signals are also capable of mirroring an individual’s emotions. Distinct brainwave
patterns are produced when a person experiences specific emotions such as happiness,
sadness, anger, fear, or surprise. Both positive and negative emotions induce changes
in EEG activity. For example, sudden emotions like surprise or fear are associated with
high-frequency beta activity, indicative of alertness and arousal [48,88–90]. Additionally,
EEG signals show increased delta and theta activities, which are related to deep relaxation
and enhanced mental receptivity. In conclusion, various emotions significantly influence
EEG signals [69,72].

Muscle movements can significantly influence EEG recordings, often leading to ar-
tifacts in the signal. The most common artifact observed in EEG due to muscle activity
is the muscle jerk or spike, which is an electrical impulse generated by muscle contrac-
tions or relaxations and captured in the EEG recording. Other muscle-related artifacts
include movements of the eyes and face, blinking, chewing, and jaw movements. More-
over, muscle movements can modify the characteristics of EEG waveforms, causing them
to appear wider, shallower, or to display spikes. These movements can also introduce
artifacts into other parts of the EEG recording, such as the baseline and transitions between
waveforms [91–93]. Noise is another element that can impact the EEG signal, leading
to interference, distortion, and additional artifacts in the recording. This can complicate
the signal analysis process, potentially resulting in inaccurate conclusions. To counteract
the effects of noise, various methods are employed, including signal averaging, artifact
detection and rejection, signal filtering, multiband or wavelet-based filtering, and the appli-
cation of robust statistical techniques. These approaches are instrumental in minimizing
noise and enhancing the EEG signal’s quality for more reliable analysis [94,95]. The choice
of electrodes can also affect the outcome of an EEG recording. Electrodes differ in size,
shape, and material, which can influence the EEG signal’s quality. Some electrodes, for
example, may be better suited for capturing a broader frequency range. The material of the
electrode affects its impedance, directly impacting signal quality. The shape of electrodes
can be tailored to optimize signal detection from specific scalp locations. Additionally, the
conductive gel or paste used to create a connection between the electrode and the skin also
influences the signal. Variations in viscosity among different brands or types of conducting
gels or pastes can affect the signal quality [41,96,97].

5. Signal Acquisition Approaches

An EEG sensor is an instrument that captures brain signals using electrodes placed
on the scalp, which detect and record the brain’s electrical activity. Various types of EEG
sensors are employed in data acquisition, including the following.

5.1. Electrical Geodesic Sensors

These sensors are specifically designed to measure electrical activity on the scalp
and are widely used in EEG studies for their ability to monitor activity across the entire
scalp [98]. Electrical geodesic sensors utilize a geodesic sensor net to provide even coverage
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and reliable scalp contact. Typically, these sensors incorporate a large number of electrodes,
enhancing the resolution and accuracy of the EEG data. They find extensive application in
fields like cognitive neuroscience and clinical diagnostics, proving especially effective in
high-density EEG recordings.

5.2. Cup Electrodes

Comprising small cups made of silver or gold plating, these electrodes are positioned
on the scalp to record electrical activity from specific or multiple areas [99]. The choice of
materials, such as silver or gold, is crucial for their high conductivity and biocompatibility.
Setting up these electrodes involves using conductive paste or gel, and their placement is
critical for targeted brain region monitoring. While they offer high signal quality, the setup
can be cumbersome, and there might be discomfort involved for the subject, especially in
long-term recordings.

5.3. Dry Electrodes

These are adhesive sensors that do not require conductive gel. They can be applied
directly to the skin and provide a high signal-to-noise ratio [95]. The advancement in
materials and technology enables these electrodes to function without conductive gel, often
using micro-needle arrays or novel conductive materials. Their ease of use, comfort, and
minimal preparation make them increasingly popular in portable EEG devices, suitable for
long-term monitoring in telemedicine and consumer-based health applications.

5.4. Inductive Sensors

These sensors detect changes in the electromagnetic field caused by brain electrical
activity, capturing comprehensive brainwave patterns. They are typically used in research
settings [100]. Operating on the principle of electromagnetic field detection, these sensors
are adept at capturing specific types of brainwave patterns. While their non-contact, non-
invasive nature is a significant advantage, there are limitations to the kinds of signals they
can detect. They are most beneficial in studies that require non-contact methods of brain
activity monitoring.

5.5. Ultrasound Sensors

Employing ultrasound waves, these sensors measure the brain’s electrical activity and
are often used in medical settings to detect seizure activity. Ultrasound sensors work by
using sound waves to detect changes in brain activity, a method known as echoencephalog-
raphy. They are particularly useful in medical diagnostics for detecting abnormalities in
brain activity, such as seizures, and in monitoring cerebral blood flow. Recent advance-
ments in ultrasound technology have improved the efficacy and applications of these
sensors in neurological research and diagnostics.

6. EEG Signal Pre-Processing and Feature Extraction
6.1. EEG Signal Pre-Processing
6.1.1. EEG Signal Filtering

EEG signals exhibit a measurable power spectral density across various frequency
bands. Typically, the frequency content of EEG signals spans from 0.5 Hz to around 70 Hz.
The frequency bands of EEG signals are standardized, as detailed in Table. 3.

Elevated signal power in the delta band is often associated with brain activity during
deep sleep. Recent research has demonstrated that the frequency bands most relevant
for emotion recognition, based on various publications, are the theta, alpha, and beta
bands [88,101,102]. To focus on these specific bands, a second-order band-pass filter is
employed to exclude unwanted frequencies.
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Table 3. EEG frequency bands.

Signal Band Frequency Range

Delta <3 Hz

Theta 4–7 Hz

Alpha 8–12 Hz

Beta 13–30 Hz

Gamma >30 Hz

6.1.2. EEG Signals Segmentation

The brain produces signals rich in information, not limited to emotions. These signals
are too complex to be analyzed in their entirety. To enhance the effectiveness of detection
techniques, a method known as window-based segmentation is utilized. This approach
breaks down the signals into smaller, more manageable segments for analysis. This segmen-
tation helps in reducing noise and simplifying the detection process. The duration of the
segmentation window can vary, typically ranging from 0.5 s [89] to 60 s [103], depending
on the specific requirements of the study or research.

6.1.3. EEG Channels Selection

Optimizing the number of EEG channels used for recognition is crucial to enhancing
recognition performance. This involves experimenting with various combinations of EEG
channels, conducting tests, and selecting the combination that provides the best results.
Additionally, the impact of different algorithms and methods of feature extraction and
selection on performance can be evaluated to further refine recognition accuracy.

The placement of sensors on the scalp is vital for minimizing artifacts. Some studies
utilize all available sensors in a dataset, regardless of the number [79], while others focus
on optimizing the channels to reduce noise and increase system efficiency [104].

6.2. EEG Signals Feature Extraction

Nonlinear features are commonly used in emotion recognition research utilizing
EEG signals. When using datasets like DEAP, the correlation between electrode voltage
and reported emotions is often weak, as indicated by statistical analysis [79]. Therefore,
incorporating nonlinear features is essential in EEG-based emotion recognition systems.
After determining the appropriate frequency band and the number and placement of
sensors, the most frequently used feature is power spectral density. In some studies, power
density is employed to create a topographical representation of brain signals, considering
specific sensor numbers and frequency ranges within a selected window size, as illustrated
in the heat map in Figure 7.

Figure 7. EEG topography heat brain image.
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Generally, EEG features can be classified into three categories: time domain, frequency
domain, and time–frequency domain features. Time domain features including various
statistical measures such as the mean, standard deviation, range, skewness, kurtosis, as
well as Hjorth parameters including activity, mobility, and complexity [105–107]. These
standard statistical features are described below:

• Mean:

Mean(x) =
1
n

n

∑
t=1

x(t) (1)

• Standard Deviation:

Std(x) =
1
n

n

∑
t=1

(x(t)− Mean(x)) (2)

• Range:
Range(x) = max (x)− min (x) (3)

• Skewness:
Skewness(x) = Mean((x − Mean(x))3) (4)

• Kurtosis:

Kurtosis(x) =
Mean((x − Mean(x))4)

Std(x)4 (5)

• Hjorth parameter-activity:
Activity(x) = Std(x)2 (6)

• Hjorth parameter-mobility:

Mobility(x) =

√√√√ (Std( dx
dt ))

2

(Std(x))2 (7)

• Hjorth parameter-complexity:

Complexity(x) =

√
Mobility( dx

dt )

Mobility(x)
(8)

In this context, x(t) denotes the raw EEG signal comprising n samples. The described
features are commonly known as statistical features. Frequency domain features, on the
other hand, are derived from the frequency components extracted from the original signal.
The key frequency features include power, power ratio, and power spectral density, which
can be summarized as follows:

• Power spectral density:

PSD(x) = lim
T→∞

1
2T

∫ T

−T

∣∣∣s(t)e−j2πxtdt
∣∣∣2 (9)

• Power:

Power (k) =
∫ ∞

−∞
PSD(x) dx (10)

• Power Ratio:

Power Ratio (x) =
Power

Power Sum
(11)
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where

Power Sum =
5

∑
k=1

Power (12)

The final category of features includes those derived from both the time and frequency
domains. Although fewer in number, these features are frequently utilized in numerous
studies [13,64,94,103]. The principal time–frequency domain feature is the wavelet energy
of the signals. Additionally, a feature known as wavelet entropy is notable in this domain.
These two features can be characterized as follows:

• Wavelet Energy:

ENG(x) =
n

∑
t=1

(x(t))2 (13)

• Wavelet Entropy:

ENT(x) = −
n

∑
t=1

(x(t))2 log (x(t))2) (14)

6.3. EEG Signals Classification

The core of EEG signal processing is encapsulated in the classification stage, where
extracted features are utilized to train machine learning algorithms for pattern recogni-
tion. This stage is crucial for categorizing EEG signals into distinct classes based on their
characteristics, aiming to interpret the underlying brain activities or states.

6.3.1. Methodologies in EEG Signal Classification

The classification of EEG signals typically involves advanced algorithms and methods.
Techniques such as support vector machines (SVMs), neural networks, and k-nearest
neighbor (k-NN) are commonly employed. These classifiers are selected for their proficiency
in handling the high-dimensional nature of EEG data and their effectiveness in addressing
non-linear relationships within these data [108].

6.3.2. Applications in Medical Diagnoses and Brain–Computer Interfaces (BCIs)

EEG signal classification is vital in medical diagnosis, especially for identifying neu-
rological disorders like epilepsy, Alzheimer’s disease, and sleep disorders. In the realm
of BCI, EEG classification plays a key role in interpreting user intentions from brain activ-
ity, facilitating the control of external devices or communication, especially in scenarios
involving severe motor disabilities [109].

6.3.3. Challenges in EEG Signal Classification

A major challenge in EEG classification is the high variability of EEG signals among
individuals, compounded by the presence of artifacts and noise. This variability can
markedly affect the accuracy of classification algorithms. Overcoming this challenge
requires sophisticated preprocessing and feature extraction techniques to ensure the use of
the most relevant and noise-free features for classification [110].

6.3.4. Future Directions in EEG Classification Research

Ongoing research in EEG signal classification is moving toward developing more
robust, adaptive algorithms capable of managing the inherent complexities and variabilities
of EEG data. This includes the exploration of deep learning and artificial intelligence
techniques, which have shown potential in autonomously extracting and learning features
from EEG signals [111].

In summary, EEG signal classification is a complex and multifaceted field of research
with profound implications in medical and technological spheres. Despite existing chal-
lenges, continual advancements in computational methods and an enriched understanding
of EEG data are driving progress in this area.
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7. Deploying EEG within IoT 5G Environment

The integration of EEG technology within the IoT 5G framework offers the poten-
tial to seamlessly incorporate real-time brain activity and behavioral data into existing
digital health networks. Utilizing advancements in wearable and mobile computing tech-
nology, EEG in the 5G era can facilitate real-time monitoring of a patient’s brain waves.
This integration allows for immediate access to a vast array of personal digital health
data and insights [71,112]. Furthermore, the advancements in low-power 5G networks,
coupled with energy-efficient ‘Always-On’ 5G-enabled devices, are poised to meet the
emerging demands for cost-effective and long-term EEG monitoring. These technological
innovations have the potential to reduce operational costs for healthcare providers and
enhance patient outcomes by enabling remote access and monitoring of EEG data from
any internet-connected location [113]. In summary, the advent of the IoT 5G era indicates a
transformative phase in the monitoring, analysis, and application of EEG data, heralding
new opportunities in digital health and personalized medicine. IoT-based EEG monitoring
systems are typically comprised of three interconnected components: the EEG sensing
network, the IoT cloud, and the graphical user interface (GUI). This structure is depicted in
the representative example shown in Figure 8.

Figure 8. An example of an IoT-based EEG monitoring system.

7.1. EEG Sensing Network

The primary objective of the sensing network is to gather data and extract pertinent
features. In the example illustrated in Figure 8, a headset is employed for capturing
raw EEG data. The data are then processed to extract features from various dimensions,
including time, frequency, and electrode location, to discern the emotional state of the
subject. Feature extraction can be conducted either at the sensing node or on the IoT
edge processor. Once the raw EEG signal data are successfully transmitted through the
medium, they are forwarded to the IoT cloud. Generally, the EEG sensing network involves
steps such as EEG signal acquisition, pre-processing, and feature extraction [70]. This
process includes selecting an appropriate EEG sensor, determining the optimal sensor
placement, establishing the data sampling rate, and signal quantization. The collected EEG
signals are preprocessed to eliminate artifacts and normalized using baseline data. Signal
processing techniques like principal component analysis (PCA) and wavelet transforms are
then applied to extract features from the EEG signals [114].

Following the transmission of EEG data to the cloud, the next steps typically involve
data storage and analysis, integral to delivering a personalized EEG monitoring service.
Utilizing Bluetooth technology, the sensor data can be linked to various devices such
as mobile phones, laptops, or computers. Subsequently, a secure data packet is created,
facilitating the transfer of data to a cloud-based platform backed by a high-performance
computing center. Within the IoT cloud, the signals undergo analysis, and the derived
real-time information is relayed back to the initial device or directed to the owner’s mobile
phone, wearable device, or laptop, based on the user’s preferred device selection [24,44].
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To enhance the classification accuracy of the signal and the individual’s physical state,
advanced EEG signal processing algorithms are employed. Moreover, the analyzed EEG
data can be archived or utilized for further processing in applications like detecting sleep
state disorders, emotion recognition, and various other aspects pertinent to optimizing
human well-being. Beyond analysis, the cloud can also offer additional services, including
user behavior monitoring and general health and lifestyle management [115].

Various wireless networking options are available for transmitting raw EEG signal
data from devices to the cloud for processing and analysis. As detailed in Table 4, Wi-Fi
employs radio waves to connect devices over short to medium distances, ensuring high
data transfer rates without data loss. Bluetooth, utilizing low-energy radio frequency,
facilitates connections over short distances of up to 30 feet but typically has lower data
transfer rates compared to Wi-Fi. Zigbee technology, also using low-energy radio frequency,
connects devices over distances up to 230 feet. It is often chosen for applications needing
lower data transfer rates, and its minimal power requirements make it suitable for battery-
operated devices.

Table 4. Comparison of typical EEG sensing networks: Wi-Fi, Bluetooth, and Zigbee.

Standards/Methods Wi-Fi-Based EEG
Sensing Network

Bluetooth-Based EEG
Sensing Network

ZigBee-Based EEG
Sensing Network

Protocol TCP or UDP Bluetooth ZigBee Protocol

Coverage 150 Feet indoor 30 Feet indoor 230 Feet indoor

Data rates 2.4 GHz 2 MHz 2.4 GHz

Power consumption High Low Low

7.2. IoT Cloud

The data gathered from the EEG sensing network are transmitted to the IoT cloud
for long-term storage and further analysis. This cloud can be hosted on a remote server
or a public cloud platform, such as Amazon Web Services. It offers remote access to users,
enabling data analysis, monitoring, and remote control capabilities. The cloud platform
facilitates resource sharing, making it a compelling choice for EEG authentication [116].
IIoT enhances device-to-device communication by enabling secure data sharing over the
internet. Cloud technology in IoT also supports scalability in data storage and management
from thousands of devices. It adds value to the data collected from IoT by enabling users
and organizations to identify trends and insights, while also minimizing costs. Addition-
ally, the cloud provides a more rapid response to large data volumes and improves the
management of the IoT environment. To effectively handle EEG signal data, an IoT cloud
must incorporate six essential levels [80,117,118].

7.2.1. Mobile and Edge Computing Layer

This layer is tasked with collecting, processing, and forwarding data from connected
devices and sensors. In the realm of EEG signals, this could include sensors that gather and
store data at a patient’s location and subsequently transmit it to the cloud.

7.2.2. Storage Layer

This layer handles the storage of data received from sensors and devices. The data
can be stored in various databases and file systems, including structured query language
(SQL), not only SQL (NoSQL), Big Data, and others.
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7.2.3. Application Layer

This layer is responsible for delivering application-specific services and functions.
It processes the data collected from devices by extracting, analyzing, and visualizing
key insights.

7.2.4. Intelligence Layer

This layer provides insights useful for making health monitoring decisions. It might
incorporate data mining, machine learning, predictive analytics, and other related analytical
techniques.

7.2.5. Connectivity and Integration Layer

This layer ensures the connection of diverse IoT devices and systems, such as sensors,
gateways, and data sources, to the cloud. It involves the use of application programming
interfaces (APIs), electronic data interchange (EDI), file transfer protocol (FTP), and other
related technologies.

7.2.6. Security and Authentication Layer

This layer guarantees the security and integrity of the data stored in the cloud, encom-
passing identity and access management, encryption, digital signatures, and other security
protocols. Given the sensitive nature of EEG data, maintaining stringent security measures
is crucial.

7.3. Graphical User Interface (GUI)

The GUI is utilized for the visualization of EEG signal, feature extraction, and authen-
tication outcomes. It enables users to monitor the authentication system’s performance in
real-time, observing any changes in accuracy. The GUI also allows for the adjustment of
authentication parameters to enhance system performance [119]. It includes a web page
and various user interfaces like virtual keyboards, mice, and touchscreens. Moreover, the
GUI offers functionalities for data storage, analysis, and sharing, displaying alarm alerts,
patient information, trend analyses, and diagnostic data [120].

In a specific implementation [121], a BCI system was established to control a surro-
gate humanoid robot or virtual agents, as depicted in Figure 8. This setup allowed the
robot to simulate empathy and interact with the subject based on pre-defined behavioral
models [90].

8. 5G IoT Architecture and Infrastructure
8.1. 5G Architecture

Fifth-generation (5G) networks are increasingly adopted for their high-speed con-
nectivity and low latency. This fifth-generation technology employs a high-bandwidth
spectrum with wider channels to facilitate faster data transfers. It also enhances spectrum
efficiency, supporting seamless connections for numerous users. Additionally, 5G tech-
nologies lead to more reliable wireless connections and increased data transfer speeds,
making them ideal for connecting a multitude of devices to the Internet and advancing IoT
applications [122].

The 5G architecture comprises three primary components: the radio access network,
the core network, and the transport network. The radio access network, functioning as a
cellular network, connects devices via radio waves. This network includes base stations
or towers for wireless coverage, alongside transmitters, receivers, and antennas. The core
network connects the radio access network components to the internet, handling tasks like
IP address allocation, authentication, and VoIP (voice over internet protocol). The transport
network, consisting of wires and fiber-optic cables, is fundamental in facilitating data
transfer within the 5G network, ensuring high-speed access and network scalability [123].

As illustrated in Figure 9, the 5G architecture is structured into five layers. The sensor
layer, the first layer, is made up of wireless sensing devices that collect data, including
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physical and environmental parameters, and EEG brain signals in this research context.
These sensors, both active and passive, can detect various parameters like temperature,
pressure, and light. The gateway layer, the second layer, functions as the access layer, en-
compassing the radio access network (RAN), which interfaces between the user equipment
and the core network of the mobile service provider [124]. The third layer, the network
layer, includes the core and transport networks, acting as the backbone connecting multiple
access points. The fourth layer, the service layer, is responsible for providing active services
to users and applications, managing service access, and bridging the gap between network
and application layers to meet user expectations. Lastly, the application layer, the fifth layer,
enables user access to services and applications provided by the service layer, offering the
user interface and experience for these applications [125].

Figure 9. Architecture of 5G IoT.

8.2. 5G Infrastructure

Fifth-generation (5G) technology holds the potential to revolutionize EEG biometric
authentication in health and IoT services. This network offers a reliable and secure channel
for transmitting EEG data, crucial for authentication and related services. Furthermore,
5G enables efficient computation of EEG biometric data through its distributed computing
capabilities. Additionally, the advanced signal processing capabilities of 5G, including
artificial intelligence, can significantly enhance the accuracy of biometric authentication.
The consistent and reliable data transmission capabilities of the 5G network are also
particularly beneficial for real-time health monitoring and diagnostic applications using
wearable and implantable sensors. With its extensive frequency range reaching up to
100 GHz, 5G networks are equipped to achieve substantially faster speeds and more
efficient data transmission compared to the existing LTE networks [126].

Fifth-generation (5G) technology is engineered to accommodate a greater number
of users simultaneously, optimizing the use of limited spectrum resources. It aims to
achieve peak speeds of up to 20 Gbps in millimeter wave networks and up to 1 Gbps
in lower-band frequencies. A primary goal of 5G is to consistently provide sufficient
spectra to support high-bandwidth applications, while also maintaining broad coverage.
Moreover, 5G technology offers faster response times and reduced latency compared to
current technologies [37]. Wireless 5G networks comprise the new-generation radio access
network (NG-RAN) and the 5G core network (5GC), as illustrated in Figure 10.

The NG-RAN architecture for 5G encompasses both ng-eNBs (next-generation evolved
Node B) and gNBs (gigabit network base stations) [127]. This architecture integrates the
existing LTE radio access network (eNodeB) with new 5G next-generation radio access
network nodes, including gNBs, to support both 4G and 5G services. This integration
results in improvements in speed, latency, and coverage. The Xn interface plays a cru-
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cial role in facilitating the transfer of control and user plane traffic between these nodes
and is commonly used for inter-eNB connections, forming a key component of the 5G
RAN architecture. With advancements in 5G technology, EEG and biometric data can
now be collected, processed, and analyzed remotely, enabling non-intrusive and portable
authentication in various EEG deployment scenarios [128].

Figure 10. NG radio access network.

The rise of EEG-enabled IoT deployments offers new opportunities for organizations
and individuals to monitor and respond to brain activities in real time. Smart wearables
and EEG sensors are increasingly used for biofeedback and performance metrics, enabling
the measurement of attention and autonomic nervous system (ANS) responses, crucial in
the diagnosis and management of conditions such as autism and epilepsy [129].

EEG-enabled IoT deployments have a vast array of potential applications. When
combined with AI, these devices can provide predictive analytics applicable in multiple
industries, including mental health and augmentative robotics. An EEG-enabled IoT
platform can offer invaluable insights into user behavior and needs, leading to informed
decision-making and improved strategies for growth and efficiency. Real-time collection
and analysis of EEG data in biomedical applications can be significantly enhanced by such
platforms. The incorporation of nanomaterials in electrodes and EEG sensors allows for the
capture of a wider range of neurological signals, providing more detailed information than
traditional electrodes. This use of nanomaterials also facilitates the miniaturization of EEG
systems, making them smaller, more portable, and suitable for non-invasive EEG scans
outside conventional settings, thus increasing accessibility for general healthcare. This
miniaturization empowers individuals to conduct EEG tests at home, reducing reliance on
costly hospital equipment [24,70].

Big data also plays a crucial role in providing insights into personalized healthcare
services, consumer behavior, operational efficiency, feedback from healthcare settings, and
disease management patterns [117]. Big data analytics tools can analyze patient data and
individual genomic profiles, enhancing the understanding of diseases and identifying
trends and patterns. The use of big data analytics enables the creation of predictive models
for disease patterns and risk prediction in specific populations, contributing to precise
diagnoses, effective treatments, and improved health outcomes. The application of big
data analysis in healthcare also involves developing algorithms for early detection and
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disease prevention, streamlining costs and communication, and providing personalized
recommendations for decision-making [18].

Nanomaterials are also advancing the development of smart textiles for measuring
EEG signals. These nanotech-enabled fabrics can capture brain signals accurately, even
from a distance, improving the ease and reliability of EEG recordings.

However, challenges remain, including the accuracy and reliability of EEG-based
data, privacy and data security concerns, integration with traditional systems, cultural and
contextual considerations, and regulatory compliance.

Despite these challenges, EEG-enabled IoT deployments hold vast potential and
present a dynamic area for further research and innovation. Addressing these challenges
can unlock a myriad of possibilities, including relationship building, health monitoring,
predictive analytics, and beyond.

In terms of security measures for EEG data in IoT systems, encryption, authentica-
tion, and authorization are essential. Encryption protects data by converting it into an
unreadable format, accessible only to authorized individuals [80]. Authentication verifies
the identity of users seeking access, while authorization grants access post-authentication.
Privacy-enhancing technologies (like anonymization and pseudonymization) protect user
anonymity, supplemented by auditing and data backup measures to ensure data secu-
rity [37].

9. Challenges and Opportunities of Wearable and Seamlessly Integrated Devices

The utilization of wearable IoT devices can expose users to potential risks, like cyberat-
tacks, data theft, and malicious tracking. To ensure data privacy and security, it is essential
to deploy advanced security measures, such as robust authentication protocols, encryption,
and sophisticated data encryption algorithms [130]. Moreover, users need to be informed
about basic security practices, including the importance of regularly updating passwords
and exercising caution when dealing with suspicious links or messages. As the IoT market
expands, wearable systems are expected to become increasingly significant. Addressing
the critical challenges for their successful integration into the IoT ecosystem is paramount.
These challenges encompass energy efficiency, data management and aggregation, device
interoperability, user privacy and security, and scalability [131]. With the growing number
of connected devices, managing these challenges becomes more complex, necessitating
solutions tailored to IoT applications. Service providers should also focus on network
security and reliability to ensure smooth user interactions [132].

Additionally, there is a need to make IoT systems more affordable to enhance acces-
sibility and service quality. The emergence of 5G networks and cloud computing offers
researchers a platform to develop cost-effective and efficient IoT solutions, focusing on
power consumption and reduced latency. Wearable devices should support standard-
ized, interoperable applications, calling for the development of open libraries and APIs,
such as communication protocols for risk evaluation in low-power wireless systems [133].
These steps are vital for integrating and ensuring the functionality of various devices,
crucial for delivering comprehensive and reliable user-centric services. This strategy allows
for intricate customization and boosts user satisfaction through effective data analysis
and processing.

Recent advancements in wearable technology and the IoT have brought EEG into
everyday applications through wearable and seamlessly integrated devices. This integra-
tion offers new opportunities for real-time monitoring and understanding of brain activity,
with significant implications in healthcare, wellness, and lifestyle sectors. However, in-
corporating EEG into these devices presents several challenges. One primary challenge
is designing wearable EEG devices that are comfortable and capable of capturing reliable
signals. Accurate placement of EEG electrodes on the scalp is crucial for optimal signal
quality [134,135]. Developments in materials science and nanotechnology are leading to
more user-friendly and efficient electrodes. Nanomaterials, for instance, enhance electrode
conductivity and flexibility, improving signal acquisition. Additionally, the miniaturization
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of EEG sensors facilitates their integration into wearable devices like headbands, helmets,
or clothing, making EEG monitoring more accessible and convenient [136].

Processing and analyzing data from wearable EEG devices is another challenge. EEG
signals are complex and often noisy, necessitating advanced signal processing techniques
for extracting meaningful information. Real-time analysis requires low-latency processing,
which can be addressed by edge computing. This approach, leveraging the processing
capabilities of wearable devices and IoT connectivity, allows local data processing and
analysis, reducing reliance on cloud-based solutions and minimizing latency. Privacy and
security are critical when handling EEG data from wearable and integrated devices, as
the data contain sensitive information about the individuals’ brain activity and cognitive
states. Robust data encryption, authentication, and authorization mechanisms are essential
to protect data privacy and integrity. Strict access control measures should be implemented
to ensure that only authorized individuals access and manipulate EEG data [137,138].

Interoperability and standardization are vital for the seamless integration and compat-
ibility between different EEG devices and platforms. Standardized protocols, communica-
tion interfaces, and data formats are necessary for the exchange and sharing of EEG data
across various devices and systems. Open libraries and APIs can foster collaboration and
innovation, leading to diverse applications and services utilizing EEG data. Despite these
challenges, the use of EEG in wearable and integrated devices offers significant opportuni-
ties. Continuous monitoring of brain activity through wearable EEG devices can provide
valuable insights into mental health, performance, and emotional well-being [139]. Real-
time EEG data analysis can detect early signs of neurological or psychological conditions,
leading to timely interventions and improved treatment outcomes [140]. Furthermore,
EEG-enabled devices can enhance human–machine interactions and augment various ap-
plications. Brain–computer interfaces (BCIs), for example, enable individuals to control
external devices or interact with virtual environments using their brain signals, potentially
revolutionizing assistive technology, gaming, and rehabilitation, especially for individuals
with limited mobility or communication abilities [141].

In neuromarketing, wearable EEG devices offer valuable insights into consumer be-
havior, preferences, and emotional responses. Analyzing brain activity during shopping
or exposure to advertisements can provide companies with a deeper understanding of
consumer engagement, informing data-driven marketing strategies. Moreover, EEG inte-
gration with wearable devices facilitates personalized and adaptive interventions across
various fields. Wearable EEG devices can continuously monitor brain activity and mental
states, providing real-time feedback and interventions to optimize performance, enhance
learning, and improve well-being [142]. For instance, in educational settings, wearable
EEG devices can identify patterns of attention and cognitive load, enabling tailored learn-
ing experiences to individual needs. In sports and fitness, EEG-enabled wearables can
analyze mental states during training and competitions, aiding athletes in optimizing
performance and preventing injuries. The integration of EEG with other sensor modalities
in wearable devices can enhance health monitoring and intervention [143]. Combining
EEG with heart rate sensors, accelerometers, or sleep trackers offers a comprehensive
view of an individual’s physiological and mental states, leading to personalized healthcare
solutions like stress management tools, sleep optimization systems, and tailored mental
health interventions [144].

With 5G technology, the integration of EEG with wearable and seamlessly integrated
devices becomes even more potent. Furthermore, 5G networks provide higher bandwidth,
reduced latency, and increased device density, enabling efficient real-time communication
and data exchange between wearable devices, edge servers, and cloud platforms [145]. This
enables the rapid transmission and timely analysis of EEG data for improved healthcare
outcomes. Moreover, 5G’s edge computing capabilities allow for local processing and
analysis of EEG data, enhancing privacy and security. Realizing the full potential of EEG
in wearable and integrated devices requires collaboration between researchers, engineers,
and healthcare professionals. Further research is needed to improve EEG measurement
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accuracy and reliability, develop advanced signal processing algorithms, and explore novel
EEG applications. Establishing a privacy and integration policy is crucial to ethically use
EEG data, protect privacy, and address risks associated with integrating EEG into wearable
devices [146].

The integration of EEG with wearable and integrated devices holds significant promise
in healthcare, wellness, and lifestyle applications. Wearable EEG devices could revolution-
ize brain monitoring, diagnosis, and treatment of neurological and psychological conditions.
They also have the potential to enhance human–machine interactions, offer personalized
interventions, and yield insights into consumer behavior. However, challenges related
to signal quality, data processing, privacy, and standardization need addressing to fully
utilize EEG in wearable and integrated devices [147]. With ongoing research, technological
progress, and interdisciplinary collaboration, EEG-enabled wearables could significantly
change how we understand and interact with our brain activity, leading to enhanced
well-being and quality of life.

10. Conclusions

This survey delves into the various aspects and challenges of using EEG signals in
human biometric authentication systems, particularly within the 5G and IoT environments.
EEG-enabled IoT solutions hold the promise of transforming how brain activity is mea-
sured and monitored. Advances in sensor technology are increasingly contributing to the
diagnosis and monitoring of neurological disorders, offering insights into everyday brain
functions. Furthermore, these solutions can aid in developing preventative measures for
mental health, providing information on cognitive patterns and behavioral responses that
affect well-being. Looking ahead, EEG-enabled IoT solutions might be used to detect early
changes in brain activity that precede symptoms of neurological or psychological condi-
tions, offering valuable insights for healthcare professionals to enhance patient treatment.

The objective of this survey is to elucidate the effective implementation of EEG bio-
metric authentication systems within the 5G IoT architecture and infrastructure. It explores
factors influencing the use of EEG signals in biometric authentication systems, including
signal morphology and specific considerations for deploying EEG in 5G IoT environments.
The survey also addresses common methods for EEG signal acquisition, with a focus on
wearable and integrated devices, which are prominent in both IoT research and industry.
Additionally, it reviews commonly used EEG databases for raw signal data, preprocess-
ing and feature extraction techniques, the 5G IoT architecture, and the opportunities and
challenges involved in EEG deployment.

Overall, integrating EEG technology into the IoT landscape opens up numerous possi-
bilities in healthcare, wellness, and lifestyle applications. This integration can significantly
improve the efficacy of EEG technology in various healthcare contexts. However, ad-
dressing security concerns is essential when employing this technology. Developers and
manufacturers must ensure product security, proper data handling, and encryption, along
with implementing robust authentication measures. Users should also be cautious in han-
dling and storing their EEG devices, remaining vigilant against potential threats posed by
malicious actors. With careful consideration and preventive strategies, the risks associated
with EEG-enabled IoT solutions can be effectively managed, unlocking their full potential.
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