
Citation: Choi, N.; Sung, M.

CWD-Sim: Real-Time Simulation on

Grass Swaying with Controllable

Wind Dynamics. Appl. Sci. 2024, 14,

548. https://doi.org/10.3390/

app14020548

Academic Editor: João M.

F. Rodrigues

Received: 29 November 2023

Revised: 1 January 2024

Accepted: 6 January 2024

Published: 8 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

CWD-Sim: Real-Time Simulation on Grass Swaying with
Controllable Wind Dynamics
Namil Choi and Mankyu Sung *

Department of Computer Engineering, Keimyung University, Daegu 42601, Republic of Korea;
chnamil21@gmail.com
* Correspondence: mksung@kmu.ac.kr

Abstract: In this paper, we propose algorithms for the real-time simulation of grass deformation
and wind flow in complex scenes based on the Navier–Stokes fluid. Grasses play an important role
in natural scenes. However, accurately simulating their deformation due to external forces such as
the wind can be computationally challenging. We propose algorithms that minimize computational
cost while producing visually appealing results. We do this by grouping the grass blades and then
applying the same force to the group to reduce the computation time. We also use a quadratic
equation to deform the blades affected by the wind force rather than using a complicated spline
technique. Wind force is fully modeled by the Navier–Stokes fluid equation, and the blades react to
this force as if they were being swept by the wind. We also propose the AGC interface (Arrow-Guided
wind flow Control), which allows the direction and intensity of the wind to be manipulated using an
arrow-shaped interface. Through this interface, users can have grass sway in response to user-defined
wind forces in a real-time rate. We verified that the proposed algorithms can simulate 900% more
grass blades than the compared paper’s algorithms.

Keywords: interactive visualization; natural scene visualization; grass animation; real-time
simulation; fluid dynamics in graphics

1. Introduction

Simulating natural phenomena presents a significant challenge but is essential in
computer graphics, especially for creating realistic scenes in applications like video games
and virtual environments. Grass, ubiquitous in natural landscapes, plays a pivotal role. The
accurate simulation of grass swaying in the wind necessitates a detailed modeling of each
blade and an in-depth understanding of the wind flow dynamics. Achieving such realism
requires sophisticated physics algorithms capable of simulating intricate wind patterns and
blade deformation along with substantial computing resources to simulate and render a
large number of blades effectively.

In this paper, we introduce the Controllable Wind Dynamics (CWD) techniques, which
were designed to facilitate the real-time simulation of numerous grass blades interacting
with external forces. This approach leverages the parallel computation capabilities of GPUs
for the simulation, deformation, and rendering of grass blades. To minimize unnecessary
transfer overhead between the CPU and GPU, all data updates are confined to the GPU
memory buffer. The computation of blade deformation is contingent upon the direction
and magnitude of the artificially generated wind. We achieve a precise representation
of wind force and its interaction with the blades through fluid simulation governed by
the Navier–Stokes equations, which are fundamental to fluid dynamics. The methodol-
ogy for implementing fluid simulation using the Navier–Stokes equations is extensively
documented. In our research, we have adopted the methods delineated in [1–5].

The reason why the CWD-Sim algorithm uses minimal computational resources
compared to previous methods is that it uses a combination of techniques specifically

Appl. Sci. 2024, 14, 548. https://doi.org/10.3390/app14020548 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14020548
https://doi.org/10.3390/app14020548
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0003-6147-5093
https://orcid.org/0000-0001-5807-6719
https://doi.org/10.3390/app14020548
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14020548?type=check_update&version=1


Appl. Sci. 2024, 14, 548 2 of 14

designed to optimize simulation steps. First, unlike the method proposed in [6], which uses
Bezier curves to deform the grass blades, our method uses a simple quadratic equation to
stretch the grass blade model vertically and bend it in all directions. This approach requires
fewer operations than spline curves, although both produce similar results. Second, instead
of simulating individual blades, we group them based on their world positions and place
them in a grid structure. All blades in a group can have different deformation effects,
even if they are exposed to the same wind force because they have slightly different initial
physical properties. This grouping significantly reduces the computation time without
causing any noticeable visual artifacts. Through experiments, we have found that the
computation speed remains almost constant regardless of the number of blades and objects.
Essentially, the value of a cell on the grid computed by the fluid simulation determines the
curvature, orientation, and shadow of the blade through specific separate equations. In
particular, we use the quadratic equation to deform the blade model into a curved shape,
as if it were under the influence of gravity. The curved shape of the blade model can also
be bent or stretched by external wind forces.

An important problem to be addressed is how to efficiently specify the direction and
force of the wind in the environment. Our method proposes the AGC (Arrow-Guided wind
flow Control) interface, which allows users to intuitively control wind flow. The interface
adds a set of 2D arrows that represent wind directions for a given time period directly into
the environment. These arrows are connected to control the flow. Using this interface, users
can manage complex flows, such as branching and merging of the wind.

The remaining sections consist of the following. Section 2 provides an overview of
related work and a comparison with the proposed algorithm. Section 3 describes the
technical details of the CWD-Sim algorithms. Section 4 presents the experimental results
and performance graphs. Finally, Section 5 concludes the paper with a discussion and
outlines future work that could improve our CWD method.

2. Related Works
2.1. Static Grasses

In recent years, several methods have been proposed for real-time grass simulation.
For example, ref. [7] proposed a non-dynamic method to render more than 627,000,000
virtual grass blades in real time at 18 fps. However, this method could not simulate the
deformation of grass by external forces, such as the wind or objects, and could only render
a static grass model without dynamic grass deformation. Similarly, Deussen et al. proposed
a method that did not focus on rendering time [8]. It showed the most colorful plant
composition among the papers referenced, but it could only render a static grass model
and takes 75 min to render the scene.

2.2. Grass Deformation with External Forces

Habel focused on real-time vegetation rendering and animation [9] but did not specif-
ically address the aspects of wind interaction and manipulation in detail. Chen et al.
presented a 2D approach to animate 3D vegetation in real time [10]. While their previous
method proposed a simple method to animate vegetation with billboard images based
on simulation-guided grid-based warping, the methods did not provide specific features
for the wind interaction. Qiu et al. proposed a rendering system for large-scale grass [11].
The three-layer framework separated the rendering task from the data logic, making it
convenient to add new vegetation simulation methods on the data layer, but it did not
propose an interaction with external forces. Max et al. proposed a method for render-
ing grasses blowing in the wind with global illumination [12] using a lattice Boltzmann
model, a mass-spring system and multiple scattering. However, since the simulation
and rendering were performed on the CPU, performance was limited. Fan et al. utilized
physical laws to simulate the movement of grasses deformed by a rolling ball [13]. The
authors were able to reduce the computational load by activating and deactivating tile
groups, which is the subdivision of the environment, as the ball passes over them for a



Appl. Sci. 2024, 14, 548 3 of 14

certain period of time. Although this approach showed highly dynamic grass interactions,
it did not account for interactions with the wind. Furthermore, if global wind affecting
the entire scene or interactions with rigid body objects was required, then this method
would result in a significant computational burden. Similarly, Wang et al. proposed a
GPU-based grass simulation with accurate blade reconstruction [14], which focused on im-
proving the grass blade representation. But it still did not address the wind interaction and
manipulation extensively.

2.3. Grass Deformation with Fluid Dynamics

In [6], Lo et al. used a 60 × 60 × 20 3D Navier–Stokes simulation for wind dynamics,
and each grass blade calculated four control points of the parametric spline to represent a
curved shape swaying by the wind. Although their approach was able to produce highly
realistic grass animation, simulating 3D fluids and finding four control points of each blade
of grass were computationally intensive for large scenes.

Our method proposes a 1000 × 1000 2D Navier–Stokes simulation for wind dynamics
instead. Complex wind dynamics created by the proposed method and its interaction
with grasses in Figure 1. Our method produces more detailed wind interaction than [6]
and is able to cover larger complex scenes due to a more detailed and highly optimized
wind dynamic control scheme. For instance, our quadratic equation for the deformation
of the grass blade offers an alternative approach that can represent natural movement in
all directions within a three-dimensional space while reducing the computational com-
plexity involved in deforming the blades. Please refer to the accompanying video clip
(Supplementary Materials) for more details.

Appl. Sci. 2024, 1, 0 3 of 14

period of time. Although this approach showed highly dynamic grass interactions, it
did not account for interactions with the wind. Furthermore, if global wind affecting
the entire scene or interactions with rigid body objects was required, then this method
would result in a significant computational burden. Similarly, Wang et al. proposed a
GPU-based grass simulation with accurate blade reconstruction [14], which focused on
improving the grass blade representation. But it still did not address the wind interaction
and manipulation extensively.

2.3. Grass Deformation with Fluid Dynamics

In [6], Lo et al. used a 60 × 60 × 20 3D Navier–Stokes simulation for wind dynamics,
and each grass blade calculated four control points of the parametric spline to represent a
curved shape swaying by the wind. Although their approach was able to produce highly
realistic grass animation, simulating 3D fluids and finding four control points of each blade
of grass were computationally intensive for large scenes.

Our method proposes a 1000 × 1000 2D Navier–Stokes simulation for wind dynamics
instead. Complex wind dynamics created by the proposed method and its interaction with
grasses in Figure 1. Our method produces more detailed wind interaction than [6] and is
able to cover larger complex scenes due to a more detailed and highly optimized wind dy-
namic control scheme. For instance, our quadratic equation for the deformation of the grass
blade offers an alternative approach that can represent natural movement in all directions
within a three-dimensional space while reducing the computational complexity involved
in deforming the blades. Please refer to the accompanying video clip (Supplementary
Materials) for more details.

Figure 1. Complex wind dynamics created by the proposed method and its interaction with grasses.
The blue arrows splat the wind and can be moved through the red colored control point.

Another point that makes our approach different from all the other work is the wind
force authoring technique. Our method includes the ability to control the flow of the
wind in a way that designers intend. All previous work [8,12,13,15–18] did not address
the problem of wind authoring. For comparison, ref. [6] provides only a one-way wind
generator. However, in our proposed method, the designer can place and modify the wind
flow directly in the environment with the AGC interface. The designer can also adjust
the strength of the wind and the area affected by the wind. To put a wind force, the AGC
interface allows users to put a starting point and an arrow guideline in front and behind
the starting point. It is also possible for multiple arrows to be branched out from a single
starting point, showing that various wind dynamics can be designed according to the
designer’s intent.

Figure 1. Complex wind dynamics created by the proposed method and its interaction with grasses.
The blue arrows splat the wind and can be moved through the red colored control point.

Another point that makes our approach different from all the other work is the wind
force authoring technique. Our method includes the ability to control the flow of the
wind in a way that designers intend. All previous work [8,12,13,15–18] did not address
the problem of wind authoring. For comparison, ref. [6] provides only a one-way wind
generator. However, in our proposed method, the designer can place and modify the wind
flow directly in the environment with the AGC interface. The designer can also adjust
the strength of the wind and the area affected by the wind. To put a wind force, the AGC
interface allows users to put a starting point and an arrow guideline in front and behind
the starting point. It is also possible for multiple arrows to be branched out from a single



Appl. Sci. 2024, 14, 548 4 of 14

starting point, showing that various wind dynamics can be designed according to the
designer’s intent.

3. Proposed Algorithms

The CWD-Sim method describes a computationally efficient technique to realistically
simulate the sway of the grass by the wind. It involves grouping grass blades into a
two-dimensional grid, simplifying the forces affecting the grass, on the vertex shaders to
deform the grass model, and allowing the designer to control the flow of wind using arrow
guides. We are going to explain all steps in detail in the following sections.

3.1. Grouping of Grasses

Performing individual fluid simulation calculations for every grass blade increases the
computational load. It blocks the real-time performance required for interactive applica-
tions. To solve this problem, the grass blades are grouped and assigned to a grid structure.
To do so, the world positions of the blade groups are converted to a group index. The group
index, G ∈ Z, is calculated in Equation (1).

G =

(
Px

w
+ 0.5,

Pz

h
+ 0.5

)
(1)

where G ∈ R2, w is the width of the grid, h is the height of the grid, Px and Pz are the x and
z world coordinates of the blade.

This equation divides the whole world into a 2D grid with a fixed cell size. Each cell
contains a group of grass blades within its range. The grid, which has a
1000 × 1000 resolution in our case, is used for fluid simulation of wind dynamics. However,
this grid resolution can be reduced to obtain faster simulation speeds. Our experiments
indicate that reducing it to 200 × 200 would not make a big difference in visual quality.
The 1000 × 1000 grid size means that there would be a total of 1,000,000 groups of grass
blades. Using the instance ID, which is the ID number of the instance when we use the GPU
Instancing technique [19], we can calculate the appropriate grid position for each grass
blade based on its world coordinates and then assign it to the appropriate group. Once we
determine the cells of all blade groups, we can make all blades in a group receive the same
force instead of applying a different force to each individual blade. This approach greatly
reduces the computational load because all blades within a group receive the same force.
However, the visual quality does not decrease because there are so many grasses with
different sizes and orientations. Figure 2 represents the 2D grid structure and the positions
where the grass blades are placed. Note that the grass blades are randomly distributed on
the cell.

Appl. Sci. 2024, 1, 0 4 of 14

3. Proposed Algorithms

The CWD-Sim method describes a computationally efficient technique to realistically
simulate the sway of the grass by the wind. It involves grouping grass blades into a
two-dimensional grid, simplifying the forces affecting the grass, on the vertex shaders to
deform the grass model, and allowing the designer to control the flow of wind using arrow
guides. We are going to explain all steps in detail in the following sections.

3.1. Grouping of Grasses

Performing individual fluid simulation calculations for every grass blade increases the
computational load. It blocks the real-time performance required for interactive applica-
tions. To solve this problem, the grass blades are grouped and assigned to a grid structure.
To do so, the world positions of the blade groups are converted to a group index. The group
index, G ∈ Z, is calculated in Equation (1).

G = (
Px

w
+ 0.5,

Pz

h
+ 0.5) (1)

where G ∈ R2, w is the width of the grid, h is the height of the grid, Px and Pz are the x and
z world coordinates of the blade.

This equation divides the whole world into a 2D grid with a fixed cell size. Each
cell contains a group of grass blades within its range. The grid, which has a 1000 × 1000
resolution in our case, is used for fluid simulation of wind dynamics. However, this grid
resolution can be reduced to obtain faster simulation speeds. Our experiments indicate that
reducing it to 200 × 200 would not make a big difference in visual quality. The 1000 × 1000
grid size means that there would be a total of 1,000,000 groups of grass blades. Using
the instance ID, which is the ID number of the instance when we use the GPU Instancing
technique [19], we can calculate the appropriate grid position for each grass blade based on
its world coordinates and then assign it to the appropriate group. Once we determine the
cells of all blade groups, we can make all blades in a group receive the same force instead
of applying a different force to each individual blade. This approach greatly reduces the
computational load because all blades within a group receive the same force. However,
the visual quality does not decrease because there are so many grasses with different sizes
and orientations. Figure 2 represents the 2D grid structure and the positions where the
grass blades are placed. Note that the grass blades are randomly distributed on the cell.

(a) (b)

Figure 2. (a): Visualization of the 2D grid. (b): Grass blades represented as black points in the (a) cell.

3.2. Wind Force Modeling

Simulating wind on a computer is commonly achieved using the Navier–Stokes equa-
tions. These can be effectively solved through computational fluid dynamics methods,
as detailed in [1]. The wind force in our simulation is modeled by a real-time fluid simula-

Figure 2. (a): Visualization of the 2D grid. (b): Grass blades represented as black points in the (a) cell.



Appl. Sci. 2024, 14, 548 5 of 14

3.2. Wind Force Modeling

Simulating wind on a computer is commonly achieved using the Navier–Stokes equa-
tions. These can be effectively solved through computational fluid dynamics methods, as
detailed in [1]. The wind force in our simulation is modeled by a real-time fluid simulation
algorithm grounded in the theory of Stable Fluid introduced by Jos Stam in [1,3]. In this
section, we will briefly summarize the basic fluid simulation algorithms. This algorithm
provides a stable numerical solution to solve the Navier–Stokes equation, which is denoted
in Equation (2).

∂u
∂t

= −(u·∇)u − 1
ρ
∇p + ν∇2u + F (2)

∇·u = 0 (3)

where ∂ is partial derivative, u is fluid velocity, t is time, ∇ is gradient operator, ν is the
kinematic viscosity, ∇2 is the Laplacian operator quantifying the diffusion, p is pressure,
∂u
∂t is the local or temporal acceleration, reflecting the changes in velocity at a specific

point over time, and the term (u·∇)u is the convective acceleration that represents the
transport of momentum by the fluid. The term ν∇2u represents the viscous diffusion
of momentum. The term −∇p represents the pressure gradient, which is responsible
for driving or opposing fluid motion. Finally, F represents any external forces acting
on the fluid, such as the wind. Most air movement in the atmosphere is considered
incompressible, and Equation (3) embodies the assumption of incompressibility for the
fluid. Our implementation is based on the procedures proposed by Dobryakov et al. [3].
The procedures consist of multiple steps given a 2D grid to obtain the velocity grid V,
where Vi,j ∈ R2 is a cell in the ith row and the jth column. To obtain the final updated
velocity grid V′′′, the algorithm performs the following processes from (4) to (9) in order.
First, we calculate the curl of the velocity field as shown in Equation (4) that provides a
quantification of the rotation at each point.

Ci,j = Vi+1,j − Vi−1,j + Vi,j+1 − Vi,j−1 (4)

where Ci,j is a 2D curl value at the ith row and jth cell of the grid. The subtraction term,
Vi+1,j − Vi−1,j, approximates the median difference for the derivative of the velocity. The
term Vi+1,j represents a single step speed to the right cell from the current position and
Vi−1,j represents a single step speed for the left cell. Also, Vi,j+1 − Vi,j−1 indicates the
vertical speed. The calculation of these two directions gives a rotation measurement at (i, j)
points. Next, we apply the vorticity confinement as described in Equation (5). This process
helps to improve the smaller swirls that are noticeable in the fluid flow.

fi,j =
(
Ci,j+1 − Ci,j−1, Ci+1,j − Ci−1,j

)
·λ

V′
i,j = Vi,j + fi,j·∆t (5)

where V′
i,j is the first updated velocity, fi,j ∈ R2 is the force at (i, j), ∆t is the time step and

λ is the vorticity confinement factor. The divergence of the velocity field is then computed
as in Equation (6) in the next step. In fluid dynamics, this calculation gauges the rate at
which the density leaves a specific region of space.

Di,j =
(

V′
i,j+1 − V′

i,j−1 + V′
i+1,j − V′

i−1,j

)
/2 (6)

where Di,j ∈ R2 is the divergence value. This step is followed by the projection of the
pressure, which is described in Equation (7). This step eliminates the component of the
velocity that does not contribute to the advection along the vector field, leaving only the
divergence-free component.

Pi,j =
(
Pi,j+1 + Pi,j−1 + Pi+1,j − Pi−1,j − Di,j

)
/4 (7)



Appl. Sci. 2024, 14, 548 6 of 14

where Pi,j ∈ R2 is the pressure and Di,j is the divergence at the gi,j. Next, the pressure
gradient is subtracted from the velocity field as indicated in Equation (8). This step ensures
the conservation of mass within our fluid system.

V′′
i,j = V′

i,j −
(
Pi+1,j − Pi−1,j, Pi,j+1 − Pi,j−1

)
(8)

where V′′
i,j is the second updated velocity and V′

i,j the first updated velocity obtained in
Equation (5). In the final step, the velocity field is then advected along itself. This stage
creates the illusion of motion and fluidity, which is a critical aspect of fluid dynamics
visualization. Let us say that the 2D coordinates of cell is α = (i, j). Then, the updated
coordinate α′ is first calculated from the second updated velocity and the grid size s. Note
that the grid has a square shape where the width and height are equal to s.

α′ = α − V′′
i,j·s·∆t (9)

Once the advection is complete, the final velocity V′′′
i,j is obtained through Equation (10).

V′′′
i,j = V′′

α′/(1.0 + λ·∆t) (10)

The calculated V′′′ in Equation (9) is used to model the deformation of the grass group.
Each blade in a grass group calculates the deformation vector with Equation (12) based on
V′′′ in the next Section 3.3.

3.3. Deformation of the Grass Model

From real-world observations of grass swaying in the wind, we propose a basic grass
deformation model. It replicates grass dynamics through a blend of the two most significant
grass motions, as shown in Figure 3. Bending is due to the influence of gravity, and the
swaying of the grass is due to the wind force.

Appl. Sci. 2024, 1, 0 6 of 14

where Pi,j ∈ R2 is the pressure and Di,j is the divergence at the gi,j. Next, the pressure
gradient is subtracted from the velocity field as indicated in Equation (8). This step ensures
the conservation of mass within our fluid system.

V′′
i,j = V′

i,j − (Pi+1,j − Pi−1,j, Pi,j+1 − Pi,j−1) (8)

where V′′
i,j is the second updated velocity and V′

i,j the first updated velocity obtained in
Equation (5). In the final step, the velocity field is then advected along itself. This stage
creates the illusion of motion and fluidity, which is a critical aspect of fluid dynamics
visualization. Let us say that the 2D coordinates of cell is α = (i, j). Then, the updated
coordinate α′ is first calculated from the second updated velocity and the grid size s. Note
that the grid has a square shape where the width and height are equal to s.

α′ = α − V′′
i,j · s · ∆t (9)

Once the advection is complete, the final velocity V′′′
i,j is obtained through Equation (10).

V′′′
i,j = V′′

α′/(1.0 + λ · ∆t) (10)

The calculated V′′′ in Equation (9) is used to model the deformation of the grass group.
Each blade in a grass group calculates the deformation vector with Equation (12) based on
V′′′ in the next Section 3.3.

3.3. Deformation of the Grass Model

From real-world observations of grass swaying in the wind, we propose a basic grass
deformation model. It replicates grass dynamics through a blend of the two most significant
grass motions, as shown in Figure 3. Bending is due to the influence of gravity, and the
swaying of the grass is due to the wind force.

(a) (b) (c)

Figure 3. Shows the detailed bending effect of a grass blade due to the wind force. (a): Default state.
(b): Only gravity. (c): Gravity with external wind force.

The deformation of the grass is carried out in the vertex shader. Initially, before the
wind force is applied, the only force that acts on the grass is gravity. This force consistently
bends the blade downward, and the amount of bending depends on the weight of the blade
in the absence of wind force. This process is divided into gravity deformation and external
force deformation. In the first step, we apply an initial deformation based on the elevation
value Py ∈ R of the position of the vertex. This step modifies the original position of the
vertex P ∈ R3 to a new position P′, as shown in Figure 4. The second step converts the
external force into a translation vector using a quadratic equation, as shown in Figure 5.

Figure 3. Shows the detailed bending effect of a grass blade due to the wind force. (a): Default state.
(b): Only gravity. (c): Gravity with external wind force.

The deformation of the grass is carried out in the vertex shader. Initially, before the
wind force is applied, the only force that acts on the grass is gravity. This force consistently
bends the blade downward, and the amount of bending depends on the weight of the blade
in the absence of wind force. This process is divided into gravity deformation and external
force deformation. In the first step, we apply an initial deformation based on the elevation
value Py ∈ R of the position of the vertex. This step modifies the original position of the
vertex P ∈ R3 to a new position P′, as shown in Figure 4. The second step converts the
external force into a translation vector using a quadratic equation, as shown in Figure 5.



Appl. Sci. 2024, 14, 548 7 of 14

This calculation of a quadratic equation eliminates the computational overhead of using a
Bezier curve in [6] and provides a similar translation result.

P′ =
(

Px, Py − k1·
(

Py
)2, Pz + k2·

(
Py
)2
)

(11)

where k1 and k2 are parameters to control the shape of the curve. For comparison,
Figure 4a,b show an example of bending of a grass blade. Figure 4a is the result when we
apply our simple quadratic equation, whereas Figure 4b shows the case when we apply the
Bezier curve. For comparison, we put two graphs together to check the similarity for both
Figures 4a and 5a where the dotted curves are the Bezier curves and the green curves are
our proposed methods. We also show the red dots for control points for the Bezier curves.
As we can see from the picture, the bending result is quite similar for both cases, although
our equation needs fewer computations. We also add numerical comparisons in Table 1.

Appl. Sci. 2024, 1, 0 7 of 14

This calculation of a quadratic equation eliminates the computational overhead of using a
Bezier curve in [6] and provides a similar translation result.

P′ = (Px, Py − k1 · (Py)
2, Pz + k2 · (Py)

2) (11)

where k1 and k2 are parameters to control the shape of the curve. For comparison,
Figure 4a,b show an example of bending of a grass blade. Figure 4a is the result when we
apply our simple quadratic equation, whereas Figure 4b shows the case when we apply
the Bezier curve. For comparison, we put two graphs together to check the similarity for
both Figures 4a and 5a where the dotted curves are the Bezier curves and the green curves
are our proposed methods. We also show the red dots for control points for the Bezier
curves. As we can see from the picture, the bending result is quite similar for both cases,
although our equation needs fewer computations. We also add numerical comparisons in
Table 1.

(a) (b)

Figure 4. Comparison of grass’s default state due to gravity. (a): Proposed deformation equa-
tion (11) is shown as a green line, the Bezier curve is shown as a red dotted line superim-
posed on our equation. (b): Bezier curve equation (P = (1 − t)3P1 + 3(1 − t)2tP2 + 3(1 − t)
t2P3 + t3P4, 0 ≤ t ≤ 1) proposed in [20].

(a) (b)

Figure 5. Comparison of grass’s swaying state due to external force. (a): Proposed deformation
equations (11) and (12) applied are shown as a green line, the Bezier curve is shown as a red dotted
line superimposed on our equation. (b): Bezier curve equation (P = (1− t)3P1 + 3(1− t)2tP2 + 3(1−
t)t2P3 + t3P4, 0 ≤ t ≤ 1) proposed in [20].

Figure 4. Comparison of grass’s default state due to gravity. (a): Proposed deformation Equation (11)
is shown as a green line, the Bezier curve is shown as a red dotted line superimposed on our equation.

(b): Bezier curve equation
(

P = (1 − t)3P1 + 3(1 − t)2tP2 + 3(1 − t) t2P3 + t3P4 , 0 ≤ t ≤ 1) proposed
in [20].

Appl. Sci. 2024, 1, 0 7 of 14

This calculation of a quadratic equation eliminates the computational overhead of using a
Bezier curve in [6] and provides a similar translation result.

P′ = (Px, Py − k1 · (Py)
2, Pz + k2 · (Py)

2) (11)

where k1 and k2 are parameters to control the shape of the curve. For comparison,
Figure 4a,b show an example of bending of a grass blade. Figure 4a is the result when we
apply our simple quadratic equation, whereas Figure 4b shows the case when we apply
the Bezier curve. For comparison, we put two graphs together to check the similarity for
both Figures 4a and 5a where the dotted curves are the Bezier curves and the green curves
are our proposed methods. We also show the red dots for control points for the Bezier
curves. As we can see from the picture, the bending result is quite similar for both cases,
although our equation needs fewer computations. We also add numerical comparisons in
Table 1.

(a) (b)

Figure 4. Comparison of grass’s default state due to gravity. (a): Proposed deformation equa-
tion (11) is shown as a green line, the Bezier curve is shown as a red dotted line superim-
posed on our equation. (b): Bezier curve equation (P = (1 − t)3P1 + 3(1 − t)2tP2 + 3(1 − t)
t2P3 + t3P4, 0 ≤ t ≤ 1) proposed in [20].

(a) (b)

Figure 5. Comparison of grass’s swaying state due to external force. (a): Proposed deformation
equations (11) and (12) applied are shown as a green line, the Bezier curve is shown as a red dotted
line superimposed on our equation. (b): Bezier curve equation (P = (1− t)3P1 + 3(1− t)2tP2 + 3(1−
t)t2P3 + t3P4, 0 ≤ t ≤ 1) proposed in [20].

Figure 5. Comparison of grass’s swaying state due to external force. (a): Proposed de-
formation Equations (11) and (12) applied are shown as a green line, the Bezier curve is
shown as a red dotted line superimposed on our equation. (b): Bezier curve equation(

P = (1 − t)3P1 + 3(1 − t)2tP2 + 3(1 − t)t2P3 + t3P4, 0 ≤ t ≤ 1
)

proposed in [20].



Appl. Sci. 2024, 14, 548 8 of 14

Table 1. Comparative analysis of algorithmic efficiency in processing vertex points.

# of Vertex Points Computation Time of
Equation (11) (ms)

Computation Time of Bezier
Curve (ms)

1000 1.9 6.8
5000 5.9 37.9

10,000 13.0 75.8

Table 1 shows the evaluation of up to 10,000 virtual vertex points. Our proposed
algorithm (11) shows a speed faster than that of using the Bezier curve in terms of com-
putation times, which is approximately 82.8% faster, with a time savings of 62.8 ms. This
efficiency difference is quite important when we are dealing with a large set of vertex
points such as grasses because it underscores the impact of computational complexity on
processing speed and therefore highlights the importance of choosing the right algorithm
for time-sensitive computational tasks.

In the second step of our process, we take into account the impact of the wind force on
the grass blades. We calculate the wind translation vector T from the wind direction vector
W and its magnitude F. This vector T essentially quantifies how the wind force should alter
the position of the grass blades. The elevation value of the deformed vertex P′

y is again
used to calculate the wind translation. Specifically, we calculate T, which encapsulates
both the direction vector of the wind W and its magnitude F. The height of the deformed
vertex, which we refer to as P′

y, plays a critical role in this calculation. The effect of the
wind changes depending on the height of the blade, and this is captured in the height value.
For example, the wind may have a stronger impact on the top of the blade than on the
lower base part. Therefore, we use P′

y to adjust the strength of the wind translation vector
T. Equation (12) describes how these computations are performed.

T = F·
(

V′′′
x

(
P′

y

)2
,−

∣∣∣∣V′′′
∣∣∣∣(P′

y

)2
,−V′′′

y

(
P′

y

)2
)

(12)

Figures 4 and 5 show another comparison between our equation proposed in (12) and
the Bezier curve. As we can see, these two curves are almost identical, which proves that
our equation can be used to bend the grass blade influenced by wind force. The final step
involves updating the vertex positions by applying the wind translation T to the initial
deformed positions P′. Transformation of the positions of the vertex positions is facilitated
by the model matrix M. As shown in Equation (13), the final position of the vertex, P′′,
is calculated.

P′′ = M
(
(1 − λ)T + λP′) (13)

where λ is the weighting parameter. The λ is a weighting parameter that represents the
degree of effect that wind translation T and initial deformation P′ have on the final position
P′′. When λ is closer to 0, the wind translation T has more influence on the final position,
and when λ is closer to 1, the initial deformation P′ has more influence.

3.4. Shadows between Grasses

Without the shadows, realism is greatly reduced, and blade interaction is difficult
to perceive. However, calculating the shadows between all blades of grass can be com-
putationally expensive. In particular, if we use a conventional method such as shadow
mapping, which requires multi-pass rendering, it would not be effective to generate the
map considering a large number of geometry data to render.

To solve this problem, we propose a simplified self-shadow calculation technique, as
shown in Figure 6. We use a simplified equation to handle the shadows between all the
grass blades. When a blade is in shadow, its color becomes dark. The brightness of the
grass is adjusted based on the highest height of every group of grasses. The vertex of the
highest position has the lightest color, while the color becomes dimmer as it goes down.
This principle is based on the fact that when a blade of grass is pushed downward, it has a



Appl. Sci. 2024, 14, 548 9 of 14

high chance of being obscured by other blades of grass. Equation (14) represents the color
adjustment formula. Figure 3 shows the detailed bending effect of a grass blade due to the
wind force. Note that the x axis is the x or z offset from the local origin, while the y axis
indicates the y offset from the origin, which shows the amount of bending. The original
upright grass blade is also shown for comparison. As we can see in the figure, there were
no unnatural artifacts on the mesh. As shown in Figure 7, the difference in naturalness
with and without shadows is significant.

c f = ct·max(mmin, min(P′′
y − |F|·c1 + c2, mmax)) (14)

where c f ∈ R4 is the color of a vertex, ct ∈ R3 is a diffuse color, mmin and mmax are the
darkest and brightest values, c1 and c2 are control parameters and p′′y is the height of the
blade. Through experimentation, we believe that this approach is sufficient for grasses in a
large meadow where a large number of homogeneous grasses are packed. We have shown
the comparison results in Section 4.

Appl. Sci. 2024, 1, 0 9 of 14

high chance of being obscured by other blades of grass. Equation (14) represents the color
adjustment formula. Figure 3 shows the detailed bending effect of a grass blade due to the
wind force. Note that the x axis is the x or z offset from the local origin, while the y axis
indicates the y offset from the origin, which shows the amount of bending. The original
upright grass blade is also shown for comparison. As we can see in the figure, there were
no unnatural artifacts on the mesh. As shown in Figure 7, the difference in naturalness
with and without shadows is significant.

c f = ct · max(mmin, min(P′′
y − |F| · c1 + c2, mmax)) (14)

where c f ∈ R4 is the color of a vertex, ct ∈ R3 is a diffuse color, mmin and mmax are the
darkest and brightest values, c1 and c2 are control parameters and p′′y is the height of the
blade. Through experimentation, we believe that this approach is sufficient for grasses in a
large meadow where a large number of homogeneous grasses are packed. We have shown
the comparison results in Section 4.

Figure 6. As the bending of the blade goes deeper due to the wind force, vertex colors become darker.

(a) (b)

Figure 7. (a): Without the shadow between grasses. (b): After applying the proposed shadow
generation technique to grasses.

3.5. Arrow-Guided Wind Flow Control

One of the problems with using fluid for wind dynamics is how we can specify the
wind the way the designer wants. Our algorithm gives designers the ability to control
the wind flow in a scene using the so-called AGC (Arrow-Guided wind flow Control)
interface. These arrow guides consist of a root point and multiple ending points, which
can be added or removed as needed. The root point acts as the starting point for the wind
flow. Clicking the points also opens the inspector window. In this window, the force
strength can be adjusted by changing sliders or by entering a number. Setting an end point
determines the direction of the flow from the root point, which automatically changes to an

Figure 6. As the bending of the blade goes deeper due to the wind force, vertex colors become darker.

Appl. Sci. 2024, 1, 0 9 of 14

high chance of being obscured by other blades of grass. Equation (14) represents the color
adjustment formula. Figure 3 shows the detailed bending effect of a grass blade due to the
wind force. Note that the x axis is the x or z offset from the local origin, while the y axis
indicates the y offset from the origin, which shows the amount of bending. The original
upright grass blade is also shown for comparison. As we can see in the figure, there were
no unnatural artifacts on the mesh. As shown in Figure 7, the difference in naturalness
with and without shadows is significant.

c f = ct · max(mmin, min(P′′
y − |F| · c1 + c2, mmax)) (14)

where c f ∈ R4 is the color of a vertex, ct ∈ R3 is a diffuse color, mmin and mmax are the
darkest and brightest values, c1 and c2 are control parameters and p′′y is the height of the
blade. Through experimentation, we believe that this approach is sufficient for grasses in a
large meadow where a large number of homogeneous grasses are packed. We have shown
the comparison results in Section 4.

Figure 6. As the bending of the blade goes deeper due to the wind force, vertex colors become darker.

(a) (b)

Figure 7. (a): Without the shadow between grasses. (b): After applying the proposed shadow
generation technique to grasses.

3.5. Arrow-Guided Wind Flow Control

One of the problems with using fluid for wind dynamics is how we can specify the
wind the way the designer wants. Our algorithm gives designers the ability to control
the wind flow in a scene using the so-called AGC (Arrow-Guided wind flow Control)
interface. These arrow guides consist of a root point and multiple ending points, which
can be added or removed as needed. The root point acts as the starting point for the wind
flow. Clicking the points also opens the inspector window. In this window, the force
strength can be adjusted by changing sliders or by entering a number. Setting an end point
determines the direction of the flow from the root point, which automatically changes to an

Figure 7. (a): Without the shadow between grasses. (b): After applying the proposed shadow
generation technique to grasses.

3.5. Arrow-Guided Wind Flow Control

One of the problems with using fluid for wind dynamics is how we can specify the
wind the way the designer wants. Our algorithm gives designers the ability to control the
wind flow in a scene using the so-called AGC (Arrow-Guided wind flow Control) interface.
These arrow guides consist of a root point and multiple ending points, which can be added
or removed as needed. The root point acts as the starting point for the wind flow. Clicking
the points also opens the inspector window. In this window, the force strength can be
adjusted by changing sliders or by entering a number. Setting an end point determines the



Appl. Sci. 2024, 14, 548 10 of 14

direction of the flow from the root point, which automatically changes to an arrow. Because
all points can be added or removed directly anywhere in the environment, the designer has
complete control over editing the wind forces, as shown in Figure 8.

Appl. Sci. 2024, 1, 0 10 of 14

arrow. Because all points can be added or removed directly anywhere in the environment,
the designer has complete control over editing the wind forces, as shown in Figure 8.

(a) (b)

Figure 8. Starting with the state of (a) and adding as shown in (b) using the controllable arrow guide
wind editing tool.

One of advantages of our proposed AGC interface is that multiple arrows can be
connected to build more complicated wind dynamics. Thus, the wind flow can be a simple
line or can be designed to resemble a tree structure or other complex patterns. By changing
the position and length of the arrows, designers can adjust the direction of the wind flow.
Once the design is complete, the wind forces are generated from the root to the end point
along the series of arrows. Each point, which is the end point of the arrow, applies a force
to the fluid simulation in the direction of the arrow from the start point. In the case of a tree
structure, the forces are applied in a sequence based on the direction of the arrow’s flow to
make it appear continuous.

4. Experiments

To verify our algorithms, we built a system and performed a set of experiments.
Hardware specifications include an E3-1230 v2 CPU and GTX 660 2GB GPU. For 3D
rendering, we used the OpenGL and GLSL version 4.5. The grass model that we used in
the experiments was in Autodesk’s FBX format. Please see the accompanying video clip
that we submitted (Supplementary Materials) and the Youtube video (https://youtu.be/
uV0CFSqszJE (accessed on 5 January 2024)).

For fluid simulation, we used a 2D texture grid size of 1000 × 1000 to simulate fluid dy-
namics, applying Equations (4)–(10). In Equation (5), we set the vorticity confinement factor
λ to 50. Regarding grass deformation, in Equation (11), we set the deformation parameters
k1 to 0.05 and k2 to 0.1. These values were used to control the initial shape of the grass,
which represented the weight of a grass blade due to gravity. Furthermore, in Equation (13),
we set 0.2 for λ to control the flexibility of the grass blade under external force.

In the first experiment, we checked the performance of our algorithm. As we increase
the number of grass blades, we checked its fps. Note that all computations and rendering are
performed on the GPU side. The result is shown in Figure 9. As we can see in the figure, our
algorithm maintained the real-time performance even if we increased the number of grasses
up to 1,200,000. For comparison with other algorithms, we picked [6], which we believe to
be one of the complete solutions for grass rendering and animation. Figure 9 shows the
performance comparison between our algorithm and [6]. Note that the narrow blue and
orange bands represent the trends of the graph. For this test, we used the same GPU to
obtain an unbiased result. From this test, we knew that our algorithm did not significantly
reduce performance as we increase the number of grasses. On the contrary, the algorithm
proposed in [6] had a substantial decrease in fps. It turned out that our simulation can
achieve speeds 10× to 50× faster than [6] in a similar hardware environment.

Figure 8. Starting with the state of (a) and adding as shown in (b) using the controllable arrow guide
wind editing tool.

One of advantages of our proposed AGC interface is that multiple arrows can be
connected to build more complicated wind dynamics. Thus, the wind flow can be a simple
line or can be designed to resemble a tree structure or other complex patterns. By changing
the position and length of the arrows, designers can adjust the direction of the wind flow.
Once the design is complete, the wind forces are generated from the root to the end point
along the series of arrows. Each point, which is the end point of the arrow, applies a force
to the fluid simulation in the direction of the arrow from the start point. In the case of a tree
structure, the forces are applied in a sequence based on the direction of the arrow’s flow to
make it appear continuous.

4. Experiments

To verify our algorithms, we built a system and performed a set of experiments.
Hardware specifications include an E3-1230 v2 CPU and GTX 660 2GB GPU. For 3D
rendering, we used the OpenGL and GLSL version 4.5. The grass model that we used in
the experiments was in Autodesk’s FBX format. Please see the accompanying video clip
that we submitted (Supplementary Materials) and the Youtube video (https://youtu.be/
uV0CFSqszJE (accessed on 5 January 2024)).

For fluid simulation, we used a 2D texture grid size of 1000 × 1000 to simulate fluid dy-
namics, applying Equations (4)–(10). In Equation (5), we set the vorticity confinement factor
λ to 50. Regarding grass deformation, in Equation (11), we set the deformation parameters
k1 to 0.05 and k2 to 0.1. These values were used to control the initial shape of the grass,
which represented the weight of a grass blade due to gravity. Furthermore, in Equation (13),
we set 0.2 for λ to control the flexibility of the grass blade under external force.

In the first experiment, we checked the performance of our algorithm. As we increase
the number of grass blades, we checked its fps. Note that all computations and rendering
are performed on the GPU side. The result is shown in Figure 9. As we can see in the figure,
our algorithm maintained the real-time performance even if we increased the number of
grasses up to 1,200,000. For comparison with other algorithms, we picked [6], which we
believe to be one of the complete solutions for grass rendering and animation. Figure 9
shows the performance comparison between our algorithm and [6]. Note that the narrow
blue and orange bands represent the trends of the graph. For this test, we used the same
GPU to obtain an unbiased result. From this test, we knew that our algorithm did not
significantly reduce performance as we increase the number of grasses. On the contrary, the
algorithm proposed in [6] had a substantial decrease in fps. It turned out that our simulation
can achieve speeds 10× to 50× faster than [6] in a similar hardware environment.

https://youtu.be/uV0CFSqszJE
https://youtu.be/uV0CFSqszJE


Appl. Sci. 2024, 14, 548 11 of 14

Appl. Sci. 2024, 1, 0 11 of 14

Figure 9. Performance comparison between our algorithms and the method proposed in [6].

In the second experiment, we tested how efficient our algorithms are in designing
complicated wind dynamics. Figure 1 shows the case where winds coming from multiple
sources must interact with static obstacles. Our method could generate a realistic bump
and churn in a very realistic way between wind and obstacles. Figure 10 shows two winds
colliding in the middle of the environment. You can see that the two winds are deflecting
and changing direction smoothly as shown in Figure 11. Please refer to the accompanying
video of the result for more details. Figure 7 compared two cases in which we applied
the shadow generation technique proposed in Section 3.5 and not. We can easily tell that
shadowing between grasses improves visual quality. Finally, Figure 8 shows the wind-
editing process with the proposed AGC interface. Root points and end points are added
directly to the environment to form the arrow guides, and those guides are connected to
each other to create complicate tree-like wind forces, which improves controllability.

(a) (b)

Figure 10. The two winds interact in the middle and then turn from the other direction (a) to (b).

Figure 9. Performance comparison between our algorithms and the method proposed in [6].

In the second experiment, we tested how efficient our algorithms are in designing
complicated wind dynamics. Figure 1 shows the case where winds coming from multiple
sources must interact with static obstacles. Our method could generate a realistic bump
and churn in a very realistic way between wind and obstacles. Figure 10 shows two winds
colliding in the middle of the environment. You can see that the two winds are deflecting
and changing direction smoothly as shown in Figure 11. Please refer to the accompanying
video of the result for more details. Figure 7 compared two cases in which we applied
the shadow generation technique proposed in Section 3.5 and not. We can easily tell that
shadowing between grasses improves visual quality. Finally, Figure 8 shows the wind-
editing process with the proposed AGC interface. Root points and end points are added
directly to the environment to form the arrow guides, and those guides are connected to
each other to create complicate tree-like wind forces, which improves controllability.

Appl. Sci. 2024, 1, 0 11 of 14

Figure 9. Performance comparison between our algorithms and the method proposed in [6].

In the second experiment, we tested how efficient our algorithms are in designing
complicated wind dynamics. Figure 1 shows the case where winds coming from multiple
sources must interact with static obstacles. Our method could generate a realistic bump
and churn in a very realistic way between wind and obstacles. Figure 10 shows two winds
colliding in the middle of the environment. You can see that the two winds are deflecting
and changing direction smoothly as shown in Figure 11. Please refer to the accompanying
video of the result for more details. Figure 7 compared two cases in which we applied
the shadow generation technique proposed in Section 3.5 and not. We can easily tell that
shadowing between grasses improves visual quality. Finally, Figure 8 shows the wind-
editing process with the proposed AGC interface. Root points and end points are added
directly to the environment to form the arrow guides, and those guides are connected to
each other to create complicate tree-like wind forces, which improves controllability.

(a) (b)

Figure 10. The two winds interact in the middle and then turn from the other direction (a) to (b).Figure 10. The two winds interact in the middle and then turn from the other direction (a) to (b).

The data in Table 2 present additional performance metrics obtained using an Intel
Core i7-10700KF CPU and an NVIDIA RTX 2080 8 GB GPU. The simulations were conducted
with a varying number of grass blades, up to a maximum of 7,000,000, to evaluate real-time
performance. The optimal frame rate achieved under these conditions was 29 fps. The
grid size for wind simulation was 1000 × 1000. The whole simulation time includes the
processes time described in Equations (11)–(13). The time for the grass shadow indicates
the performance of the shading algorithm, as illustrated in Figure 7b. The grass rendering
time includes both the grass simulation and shadow rendering step.



Appl. Sci. 2024, 14, 548 12 of 14
Appl. Sci. 2024, 1, 0 12 of 14

(a) (b)

Figure 11. Two winds are changing direction over time after bending. (a) has been changed to (b).

The data in Table 2 present additional performance metrics obtained using an Intel
Core i7-10700KF CPU and an NVIDIA RTX 2080 8 GB GPU. The simulations were conducted
with a varying number of grass blades, up to a maximum of 7,000,000, to evaluate real-
time performance. The optimal frame rate achieved under these conditions was 29 fps.
The grid size for wind simulation was 1000 × 1000. The whole simulation time includes the
processes time described in Equations (11)–(13). The time for the grass shadow indicates
the performance of the shading algorithm, as illustrated in Figure 7b. The grass rendering
time includes both the grass simulation and shadow rendering step.

Table 2. Performance metrics of grass simulation.

Grass Count
Wind

Simulation
(ms)

Grass
Simulation

(ms)

Grass
Shadow (ms)

Grass
Rendering

(ms)
FPS

1,000,000 5.9 0.1 0.1 3.3 87
2,000,000 5.9 0.1 0.1 7.5 69
3,000,000 5.9 0.1 0.1 11.4 51
4,000,000 5.9 0.3 0.2 15.6 42
5,000,000 5.9 0.6 0.4 19.4 36
6,000,000 5.9 0.7 0.5 23.2 32
7,000,000 5.9 0.7 0.5 27.4 29

5. Conclusions

In this paper, we presented CWD-Sim, a real-time simulation algorithm for grass
deformation and wind dynamic control in complex scenes. Our algorithm is capable of
naturally simulating the effects of wind on grasses while allowing designers to have control
over the wind flow in complex scenes with obstacles or other structures. By grouping
grass blades and simplifying the force calculation, our algorithm significantly reduces
computational load and achieves faster and more efficient simulations. Our method also
allows for grass-model variation and efficient shadowing, which further enhances the
realism of the simulation.

However, we acknowledge some limitations of our method. While our algorithm is
well suited for animating large numbers of homogeneous grass blades, it focuses on the
aggregate behaviors, such as wind-induced swaying, and therefore may not be appropriate
for real-world physics-based animation, which would require a physics-based simulation
technique. Another drawback of our method is 2D wind dynamics. Our proposed grass
deformation is based on a 2D fluid simulation. Therefore, it is impossible to reproduce
certain 3D fluid behaviors, such as the three-dimensional vortex observed in the real world.
However, we believe that the 3D deformation can be approximated with the 2D simulation
with simple quadratic equations that we proposed.

Also, our method did not take into account collisions between grass blades. To solve
this problem, a more complex calculation method is needed. If our quadratic equation
is to reflect the deformation of the adjacent grass blades, the collision information can be

Figure 11. Two winds are changing direction over time after bending. (a) has been changed to (b).

Table 2. Performance metrics of grass simulation.

Grass Count Wind
Simulation (ms)

Grass
Simulation (ms) Grass Shadow (ms) Grass Rendering (ms) FPS

1,000,000 5.9 0.1 0.1 3.3 87
2,000,000 5.9 0.1 0.1 7.5 69
3,000,000 5.9 0.1 0.1 11.4 51
4,000,000 5.9 0.3 0.2 15.6 42
5,000,000 5.9 0.6 0.4 19.4 36
6,000,000 5.9 0.7 0.5 23.2 32
7,000,000 5.9 0.7 0.5 27.4 29

5. Conclusions

In this paper, we presented CWD-Sim, a real-time simulation algorithm for grass
deformation and wind dynamic control in complex scenes. Our algorithm is capable of
naturally simulating the effects of wind on grasses while allowing designers to have control
over the wind flow in complex scenes with obstacles or other structures. By grouping
grass blades and simplifying the force calculation, our algorithm significantly reduces
computational load and achieves faster and more efficient simulations. Our method also
allows for grass-model variation and efficient shadowing, which further enhances the
realism of the simulation.

However, we acknowledge some limitations of our method. While our algorithm is
well suited for animating large numbers of homogeneous grass blades, it focuses on the
aggregate behaviors, such as wind-induced swaying, and therefore may not be appropriate
for real-world physics-based animation, which would require a physics-based simulation
technique. Another drawback of our method is 2D wind dynamics. Our proposed grass
deformation is based on a 2D fluid simulation. Therefore, it is impossible to reproduce
certain 3D fluid behaviors, such as the three-dimensional vortex observed in the real world.
However, we believe that the 3D deformation can be approximated with the 2D simulation
with simple quadratic equations that we proposed.

Also, our method did not take into account collisions between grass blades. To solve
this problem, a more complex calculation method is needed. If our quadratic equation
is to reflect the deformation of the adjacent grass blades, the collision information can be
extracted and used. We will need to discuss this further in the future to incorporate the
collision of many grasses into our processing simulations.

According to experiments, our methods appeared a little slower than certain prior
methods such as [6] in performance, which had 43.5 fps for 50,000 grass blades compared to
our 35 fps. However, our method did not downgrade much in performance as the number
of blades increased. For example, while the [6] drops to 15.9 fps at 200,000 blades, our
method maintains a frame rate of 28 fps even with 500,000 blades as shown in Figure 9,
showing its advantage in large-scale simulations.

Additionally, we have also conducted experiments on the latest hardware specification
and can see that it shows excellent real-time performance at 29 fps at 7,000,000 of grass
count as shown in Table 2.



Appl. Sci. 2024, 14, 548 13 of 14

In future research, we would like to incorporate level of detail (LOD) and culling
techniques for optimization and complement them with different types of models, such as
flowers, and different types of grasses.

In the course of our current experiments, we have encountered a challenge in simulat-
ing the effects of strong winds on grass blades. We found that too much wind can cause
grass blades to become too dark and flat. Although allowing the user to adjust the wind
strength could potentially mitigate this problem, it could also lead to tedious control by the
user. An alternative approach was considered instead, such as limiting the maximum wind
strength, but this may cause the grass blades to appear unnaturally rigid. We also carried
out an experiment with interpolation methods to smoothly limit the wind intensity, but
this did not effectively solve the problem in the cases of very strong winds. Furthermore,
our attempts to use periodic functions such as cosine and sine to maintain constant motion
in grass blades were not successful, either. Identifying and solving this problem represents
a significant opportunity for future research, as it is critical to achieving more realistic and
dynamic simulations of natural environments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app14020548/s1.

Author Contributions: Conceptualization and methodology, N.C. and M.S.; software, N.C.; valida-
tion, N.C. and M.S.; formal analysis, N.C. and M.S.; investigation, N.C.; resources, N.C. and M.S.;
data curation, N.C.; writing—original draft preparation, N.C. and M.S.; writing—review and editing,
N.C. and M.S.; visualization, N.C.; supervision, M.S.; project administration, M.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2021R1A2C1012316) and was supported 2023 Cultural
Heritage Smart Preservation & Utilization R&D Program by Cultural Heritage Administration,
National Research Institute of Cultural Heritage (Project Name: A smart H-BIM modeling technology
of wooden architecture for the conservation of Historical and Cultural Environment, Project Number:
2023A02P01-001, Contribution Rate: 50%).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article or Supplementary Materials.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Stam, J. Stable fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques,

Los Angeles, CA, USA, 8–13 August 1999; pp. 121–128.
2. Harris, M.J. Fast Fluid Dynamics Simulation on the GPU. GPU Gems. 2005; Chapter 38. Available online: https://developer.

nvidia.com/sites/all/modules/custom/gpugems/books/GPUGems/gpugems_ch38.html (accessed on 12 April 2023).
3. Dobryakov, P. WebGL Fluid Simulation. Available online: https://github.com/PavelDoGreat/WebGL-Fluid-Simulation

(accessed on 12 April 2023).
4. haxiomic. Cross-Platform GPU Fluid Simulation. Available online: https://github.com/haxiomic/GPU-Fluid-Experiments

(accessed on 12 April 2023).
5. angeluriot. 2D Fluid Simulation. Available online: https://github.com/angeluriot/2D_fluid_simulation (accessed on

12 April 2023).
6. Lo, Y.; Chu, H.K.; Lee, R.R.; Chang, C.F. A simulation on grass swaying with dynamic wind force. In Proceedings of the 20th

ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, Redmond, DC, USA, 27–28 February 2016; p. 181.
7. Boulanger, K.; Pattanaik, S.N.; Bouatouch, K. Rendering Grass in Real Time with Dynamic Lighting. IEEE Comput. Graph. Appl.

2009, 29, 32–41. [CrossRef] [PubMed]
8. Deussen, O.; Hanrahan, P.; Lintermann, B.; Měch, R.; Pharr, M.; Prusinkiewicz, P. Realistic modeling and rendering of plant

ecosystems. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, Orlando, FL, USA,
19–24 July 1998; pp. 275–286.

9. Habel, R. Real-Time Rendering and Animation of Vegetation. Ph.D. Thesis, Technischen Universität Wien, Vienna, Austria, 2010.

https://www.mdpi.com/article/10.3390/app14020548/s1
https://www.mdpi.com/article/10.3390/app14020548/s1
https://developer.nvidia.com/sites/all/modules/custom/gpugems/books/GPUGems/gpugems_ch38.html
https://developer.nvidia.com/sites/all/modules/custom/gpugems/books/GPUGems/gpugems_ch38.html
https://github.com/PavelDoGreat/WebGL-Fluid-Simulation
https://github.com/haxiomic/GPU-Fluid-Experiments
https://github.com/angeluriot/2D_fluid_simulation
https://doi.org/10.1109/MCG.2009.14
https://www.ncbi.nlm.nih.gov/pubmed/19363956


Appl. Sci. 2024, 14, 548 14 of 14

10. Chen, K.; Johan, H. Animating 3D vegetation in real-time using a 2D approach. In Proceedings of the 19th Symposium on
Interactive 3D Graphics and Games, San Francisco, CA, USA, 27 February–1 March 2015; pp. 69–76.

11. Qiu, H.; Chen, L. Rendering System for Large-Scale Grass. In Proceedings of the 2009 International Conference on Computational
Intelligence and Software Engineering, Wuhan, China, 11–13 December 2009; pp. 1–4. [CrossRef]

12. Max, N.; Saito, S.; Watanabe, K.; Nakajima, M. Rendering grass blowing in the wind with global illumination. Tsinghua Sci.
Technol. 2010, 15, 133–137. [CrossRef]

13. Fan, Z.; Li, H.; Hillesland, K.; Sheng, B. Simulation and Rendering for Millions of Grass Blades. In Proceedings of the 19th
Symposium on Interactive 3D Graphics and Games, i3D ’15, San Francisco, CA, USA, 27 February–1 March 2015; pp. 55–60.
[CrossRef]

14. Wang, S.; Ali, S.G.; Lu, P.; Li, Z.; Yang, P.; Sheng, B.; Mao, L. GPU-based Grass Simulation with Accurate Blade Reconstruc-
tion. In Proceedings of the Advances in Computer Graphics: 37th Computer Graphics International Conference, CGI 2020,
Geneva, Switzerland, 20–23 October 2020; pp. 288–300.

15. Jahrmann, K.; Wimmer, M. Interactive Grass Rendering Using Real-Time Tessellation. In WSCG 2013 Full Paper Proceedings;
TU Wien: Vienna, Austria, 2013.

16. Bakay, B.; Lalonde, P.; Heidrich, W. Real-Time Animated Grass. In Eurographics (Short Presentations); TU Wien: Vienna, Austria,
2002.

17. Jens, O.; Salama, C.R.; Kolb, A. GPU-based responsive grass. J. WSCG 2009, 17, 65–72.
18. Belyaev, S.Y.; Laevsky, I.; Chukanov, V.V. Real-Time Animation, Collision and Rendering of Grassland. In Proceedings of the

GraphiCon2011, Moscow, Russia, 26–30 September 2011.
19. JoeyDeVries. LearnOpenGL-Instancing. Available online: https://github.com/JoeyDeVries/LearnOpenGL/tree/master/src/

4.advanced_opengl/10.1.instancing_quads (accessed on 12 April 2023).
20. Dobryakov, P. NURBS Demo-Evaluator for Non Uniform Rational B-Splines. Available online: http://nurbscalculator.in (accessed

on 12 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/CISE.2009.5364447
https://doi.org/10.1016/S1007-0214(10)70042-0
https://doi.org/10.1145/2699276.2699283
https://github.com/JoeyDeVries/LearnOpenGL/tree/master/src/4.advanced_opengl/10.1.instancing_quads
https://github.com/JoeyDeVries/LearnOpenGL/tree/master/src/4.advanced_opengl/10.1.instancing_quads
http://nurbscalculator.in

	Introduction 
	Related Works 
	Static Grasses 
	Grass Deformation with External Forces 
	Grass Deformation with Fluid Dynamics 

	Proposed Algorithms 
	Grouping of Grasses 
	Wind Force Modeling 
	Deformation of the Grass Model 
	Shadows between Grasses 
	Arrow-Guided Wind Flow Control 

	Experiments 
	Conclusions 
	References

