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Abstract: In this paper, we propose the Soft Generative Adversarial Network (SoftGAN), a strategy
that utilizes a dynamic borderline softening mechanism to train Generative Adversarial Networks.
This mechanism aims to solve the mode collapse problem and enhance the training stability of the
generated outputs. Within the SoftGAN, the objective of the discriminator is to learn a fuzzy concept
of real data with a soft borderline between real and generated data. This objective is achieved by
balancing the principles of maximum concept coverage and maximum expected entropy of fuzzy
concepts. During the early training stage of the SoftGAN, the principle of maximum expected entropy
of fuzzy concepts guides the learning process due to the significant divergence between the generated
and real data. However, in the final stage of training, the principle of maximum concept coverage
dominates as the divergence between the two distributions decreases. The dynamic borderline
softening mechanism of the SoftGAN can be likened to a student (the generator) striving to create
realistic images, with the tutor (the discriminator) dynamically guiding the student towards the
right direction and motivating effective learning. The tutor gives appropriate encouragement or
requirements according to abilities of the student at different stages, so as to promote the student to
improve themselves better. Our approach offers both theoretical and practical benefits for improving
GAN training. We empirically demonstrate the superiority of our SoftGAN approach in addressing
mode collapse issues and generating high-quality outputs compared to existing approaches.

Keywords: adversarial generation networks; fuzzy concept modeling; mode collapse; training
stability

1. Introduction

With the rapid advance in deep learning techniques and access to vast amounts of
data, generative models have come a long way in recent years. Generative Adversarial
Networks (GANs) [1–3] belong to a powerful subclass of generative models. They work by
pitting two networks against each other in a game-like scenario. The generator network
creates synthetic data from a noise source, while the discriminator network distinguishes
between the generator’s output and real data. Notably, these models can produce visually
stunning outputs without explicitly computing the probability densities of the underlying
distribution. Due to their ability to learn representations, GANs have been utilized in
various fields, including data synthesis [4,5], semantic image editing [6], style transfer [7],
image super-resolution [8] and classification [9]. However, achieving consistent and stable
GAN training remains an ongoing challenge. Despite this, GANs often encounter another
issue of mode collapse. This means that they tend to generate samples with limited diversity,
even if they are trained on a dataset that is quite varied.
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In this paper, we demonstrate specific strategies to stabilize GAN training, which lead
to higher-quality image generation and potentially mitigate the mode collapse issue. In
Section 4, we introduce the SoftGAN, a novel approach inspired by fuzzy set theory [10]
and fuzzy concept modeling [11]. Our goal for the discriminator is to establish fuzzy
concepts of real data, where the boundary between real and generated data is as soft as
possible. To achieve this, we balance the principles of maximum concept coverage and the
principle of maximum expected entropy of fuzzy concepts, as proposed in [12]. During the
early stage of SoftGAN training, the principle of maximum expected entropy dominates
the learning process due to the considerable divergence between the generated and real
distributions. As the training proceeds, the principle of maximum concept coverage takes
over, as the divergence between the two distributions diminishes. By constantly adjusting
the discriminator’s tolerance based on the generator’s ability, we implicitly drive the
generated distribution closer to that of real data while avoiding the issue of gradient vanish.
In total, our contributions to the GAN-based generative models field are three-fold:

• Mitigating mode collapse and enhancing training stability through the dynamic bor-
derline softening mechanism.

• Proposing a novel perspective of GAN training through the learning of fuzzy concepts.
The discriminator aims to learn a fuzzy concept of real data with a soft borderline
between real and generated data, achieving a balance between maximum concept
coverage and the maximum expected entropy of fuzzy concepts.

• Offering theoretical and practical advancements in GAN training. Empirical evidence
showcases the superiority of the SoftGAN in addressing mode collapse and generating
higher-quality outputs compared to existing approaches.

The presented approach possesses numerous advantages when compared to state-of-
the-art GAN-based generative models, as outlined below:

• The incorporation of the dynamic boundary softening mechanism enhances training
stability and directs the generator to navigate through the entire training process
without becoming ensnared in partial modes. The effectiveness of the SoftGAN in
addressing mode collapse issues becomes evident through the examination of the
Geometry Score indicator [13], as discussed in Section 6.3.

• Unlike WGAN-based methods [3,14–16] that focus on finding a discriminator that
satisfies Lipschitz constraints to mitigate gradient vanishing, the SoftGAN adjusts
the discriminator smoothness using the dynamic boundary softening mechanism.
This prevents gradient vanishing while maintaining the convergence speed. Simul-
taneously averting gradient vanishing and sustaining the convergence speed, this
mechanism ensures a balanced optimization process.

• The SoftGAN remains orthogonal to existing architectural techniques and regulariza-
tion methods in GANs, allowing the effortless integration of our dynamic borderline
softening mechanism into various GAN network architectures.

• Leveraging the approximated Earth Mover’s Distance between real and generated
data distributions as an indicator, our mechanism effectively guides the parameter
optimization direction during the generation process.

The rest of this paper is organized as follows. We first recall all notations, mathematical
symbols and basic concepts in Section 2. Then, in Section 3, we present a review of the
related works. The proposed idea is presented in Section 4 and Section 5 on the detailed
method description and theoretical analysis, respectively. Then, the extensive experiments
are provided in Section 6, followed by the conclusion in Section 7.

2. Preliminaries

Generative Adversarial Networks: As a generative model, Generative Adversarial
Networks (GANs) achieve the implicitly statistical distribution capture of training data
through game training. A common analogy used to explain their mechanism is to think of
one network as an art forger (generator G) and the other as an art expert (discriminator
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D). G creates forgeries with the aim of producing realistic images, while D receives both
forgeries and real images and aims to distinguish between them. Both networks are trained
simultaneously and in competition with each other [17]. This two-player minimax game is
formalized mathematically as follows:

min
G

max
D

E
x∼Pd

[log D(x)] + E
z∼Pz

[log(1− D(G(z)))] (1)

where pz is the prior distribution from which input samples z to the generator are drawn
(usually standard Gaussian) and Pd represents the target distribution associated with the
training data. E represents the expected value with respect to the distribution specified in
the subscript.

In the training stage, GANs always follow an alternating fashion by minimizing the
adversarial loss as the object of the discriminator and generator, respectively:

LD = − E
x∼Pd

[log D(x)]− E
z∼Pz

[log(1− D(G(z)))]

LG = − E
z∼Pz

[D(G(z))]
(2)

Fuzzy Concept Modeling: Fuzzy concept modeling has fundamental importance
in Cognitive Psychology and Artificial Intelligence. One prominent work on this topic
is prototype theory [11]. The fundamental idea of prototype theory is that concepts are
represented by a set of prototypical cases P. These cases correspond to those elements of the
underlying conceptual (attribute) space π that are certain to satisfy the concept. Meanwhile,
the fuzzy concept L has the form “about P”, “similar to P” or “close to P”, and “about”,
“similar to” and “close to” are fuzzy constraints. Hence, For any element x ∈ π, we can
measure the membership degree µL(x) ∈ [0, 1] that it belongs to the fuzzy concept L.

For the convenience of understanding, we summarized all the notations for the pre-
liminaries and our approach as a quick list in Table 1.

Table 1. Notations quick list.

Notation Definition

x the samples in the data set
π the underlying conceptual space the samples belong to
P prototypes, a set ot prototypical cases of the fuzzy concept L
L fuzzy concept, which has the form “about P”, “similar to P” or “close to P”
¬L the negation of the fuzzy concept L
µL(x) the degree of sample x belonging to the fuzzy concept L
HL(x) fuzzy entropy, the degree of x being a borderline case between L and ¬L
z random noise fed into the generator of GANs
G the generator of GANs
D the discriminator of GANs; in our SoftGAN, it is treated as a fuzzy concept
Pd the target distribution associated with the training data
Pz the prior distribution of z (usually standard Gaussian)
Pg the generated distribution of the GANs

3. Related Works

As described in Section 2, the training mechanism of GANs based on game theory
is elegant, but it is known to be unstable during training and may not converge at all.
Therefore, one must seize the best opportunity of alternate iterations of G and D, carefully
grasping the balance between the two. In addition, another common issue with GANs is
that they often produce samples with limited diversity, even when trained on a diverse
dataset. Specifically, when the generator G finds out that one or several generated outputs
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can easily deceive the discriminator D, it might limit itself to only generating those samples
without exploring other possibilities. This phenomenon is known as mode collapse.

While training instability is a critical factor in mode collapse, there is currently no
known method in the literature that addresses both issues simultaneously to improve GAN
training. There are a series of WGAN-based works [3,14,16,18] that claim to solve the
problem of training instability, which can help reduce mode dropping. However, there
has been no detailed discussion or explanation of why mode collapse is reduced in these
methods. Additionally, these methods face difficulties in effectively meeting Lipschitz
continuity and require complex network architectures (such as the ResNet block [19], Style
block [20–22] and Skip block [23]) to achieve optimal results. Furthermore, as noted in [14],
these approaches have a slower convergence speed compared to the original version [1,2].

In addition to the above-mentioned training instability and mode collapse problems,
the theoretical studies on GANs are generally divided into three directions: the improve-
ment of the objective function, the introduction of training techniques and the proposal
of an evaluation indicator. The research in this paper belongs to the first direction. In
this direction, the most successful research is a series of WGAN-based studies, as far as
we know [3,14,16,18]. Among them, the most relevant to ours is WGAN-C [15]. The
authors, Sharma et al. [15], also use the analogy of teaching and learning to describe the
whole training process. The SoftGAN adjusts the tolerability of the discriminator to the
generator through the dynamic borderline softening mechanism from the perspective of
fuzzy concept learning, while WGAN-C draw lessons from the progressive idea based
on WGAN-GP [14] to control the discriminant ability with a set of convex combinations
of predefined multiple discriminators. Although both use the analogy to learning, they
are different in their implementation and motivation. In addition to the above methods,
there are some approaches that reduce the risk of falling into local modes by building
multiple discriminators or multiple generators, such as Dropout-GAN [24], D2GAN [25],
GMAN [26] and DuelGAN [27]. These methods can significantly improve the robustness
of the model through the collaboration of multiple discriminators or generators, but they
exponentially increase the size and training difficulty. In contrast, the training cost of our
SoftGAN is much lower.

4. SoftGAN

In this section, we propose the SoftGAN, which solves the training instability and
mode collapse problem of the GAN simultaneously. It is a new discriminator mechanism
that can dynamically adjust the tolerance of the discriminator to samples. We will explain
the details of our approach below.

The training failure in the original GAN can be attributed to the discriminator com-
pletely differentiating between real and generated samples. It creates a hard boundary (or
cliff) between the discriminant outcomes, preventing the generator from receiving practica-
ble gradients and impeding its improvement, as depicted in Figure 1. Building upon this
observation, we introduce a novel training objective for the discriminator. In our SoftGAN,
the discriminator aims to implicitly learn a fuzzy concept of samples from distribution. And
the output of the discriminator for each real/generated sample is the degree of membership
of the sample to the fuzzy concept. During the early stages of training, the boundary of the
fuzzy concept is uncertain. So, the discriminator will not completely negate the generator
to lead to the problem of gradient vanishing. As the training progresses, the boundary of
the fuzzy concept shrinks and the uncertainty decreases. Correspondingly, the ability of
the discriminator increases with the decrease in uncertainty, and the generated distribution
learned by the generator gradually approaches the distribution of real data.

Formally speaking, the discriminator tries to learn a fuzzy concept D and its negation
¬D to describe real samples from Pd and fake samples from Pg, respectively. And the
borderline between D and ¬D should be as soft as possible.
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Figure 1. The discriminator of the original GAN is responsible for distinguishing between two
distributions. At the beginning of training, there exists a distinct boundary (or cliff) between the
discriminant outcomes, which prevents the generator from receiving the gradient information it
needs to enhance its performance.

In the following, we use µD(x) ∈ [0, 1] to represent the degree of sample x belonging
to the fuzzy concept D. In other words, µD(x) represents the degree of the concept coverage
of D to the sample x. Then, the entropy

HD(x) = −µD(x) ln µD(x)− µ¬D(x) ln µ¬D(x) (3)

reflects the degree of sample x being a borderline case between D and ¬D, where µ¬D(x) =
1− µD(x). We name this entropy fuzzy entropy of D. In particular, H¬D(x) = HD(x),
which means that a fuzzy concept has the same uncertainty of borderline with its negation.
According to the above definition, we have the following:

• E
x∼Pd

[µD(x)] reflects the concept coverage of D with respect to the true distribution Pd.

• E
x∼Pg

[µ¬D(x)] reflects the concept coverage of ¬D with respect to the generated distri-

bution Pg
• E

x∼Pd

[HD(x)] reflects the uncertainty of the borderline between D and ¬D with respect

to distribution Pd.
• E

x∼Pg
[H¬D(x)] reflects the uncertainty of the borderline between ¬D and D with respect

to distribution Pg.

According to the work by Tang and Xiao [12], when learning a fuzzy concept D from
samples we should adopt two learning principles of maximum concept coverage and
maximum fuzzy entropy:

max
D

[µD(x) + βHD(x)]

where β(> 0) is a factor compromising the concept coverage and the fuzzy entropy. So,
in order to learn a fuzzy concept D and its negation ¬D for distributions Pd and Pg,
respectively, the discriminator D has the following two subobjective functions:

max
D

E
x∼Pd

[µD(x) + βHD(x)]

max
D

E
x∼Pg

[µ¬D(x) + βH¬D(x)]
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In total, for our proposed SoftGAN, the value function V(D, G) is defined as follows:

V(D, G) = E
x∼Pd

[µD(x) + βHD(x)] + E
z∼Pz

[µ¬D(G(z)) + βH¬D(G(z))] (4)

When incorporating both the goals of the discriminator D and the generator G, the
minimax game between D and G is as follows:

min
G

max
D

V(D, G) (5)

The β in Equation (4) is the weight of the fuzzy entropy term (we also can call it the
encouragement term), which is used to control the uncertainty of the borderline between
real samples and fake samples. The contribution of the β to regulating the entropy is
three-fold:

1. In the early training stage, the larger β can make a global search, which pushes the
generated distribution Pg to have multiple modes, since it forces the support set of
Pg to be the same as the support set of Pd: supp(Pg) = supp(Pd) (see the theoretical
analysis in Proposition 3 of Section 5).

2. In the early training stage, the larger β can also be helpful to improve the tolerance of
the discriminator, which will be effective to avoid gradient vanishing and to accelerate
the training process.

3. As the capability of the generator increases, the discriminator also becomes very
rigorous. The smaller β can make a local search, and the generator is forced to
produce samples similar to the real ones, which means the generated quality will
be enhanced.

In brief, we call this process the dynamic borderline softening mechanism.
To better illustrate the dynamic borderline softening mechanism, let us use the analogy

of a tutor and a student instead of an art forger and an art expert. The generator, acting as
the student, aspires to learn effectively, while the discriminator, acting as the tutor, aims
to guide the student in the best possible way. Initially, the student struggles to grasp the
key points and barely completes the task. At this stage, the tutor appropriately lowers the
standards, allowing the student to pass exams. This approach provides the student with
more encouragement and confidence, fostering improvement. As the student progresses,
the tutor gradually raises the requirements to motivate the student to develop in a more
advanced direction. Through continuous encouragement, the student steadily grows and
meets the qualifications even as the standards improve. Ultimately, the student becomes
capable of excelling even when faced with challenging problems.

Similarly, let us examine the issue of mode collapse from the perspectives of the tutor
and the student. The reason behind the existence of mode collapse lies in the generator
discovering that certain modes it generates receive high evaluations from the discriminator.
Consequently, it tends to solely focus on generating those modes and avoids generating
modes where its performance is lacking. This can be compared to a student who excessively
focuses on or enjoys certain subjects while disliking others where they struggle to achieve
good grades. In order to receive praise from their tutor, the student consistently works
on improving their skills in subjects they excel at while avoiding the challenges posed by
subjects they struggle in. This phenomenon results in them leaning towards their strengths
rather than a balanced overall learning experience. To address this problem, the tutor
should encourage the student to maintain a balanced approach to their studies. The tutor
can achieve this by initially setting lower standards when the student does not display
a clear preference towards any subject. Subsequently, the tutor can gradually raise the
requirements in a balanced manner to motivate the student towards overall progress.

We can also reconsider the dynamic borderline softening mechanism from an optimiza-
tion viewpoint. The weighted fuzzy entropy term (encouragement term) can be seen as a
penalty term that helps in smoothing the curve of the objective function. By smoothing the
curve, we can bypass local optimal solutions and approach the vicinity of the global optimal
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solution. As the value of β decreases, the degree of curve smoothing decreases, eventually
approximating the actual objective function curve. At this point, the local optimal solution
obtained through gradient descent is equivalent to the global optimal solution.

To achieve the desired dynamic control mentioned above, it is important to consider
the weight factor, represented as β, in relation to the disparity between the distributions of
generated data and real data. To measure this correlation, we introduce the Earth Mover’s
Distance [28]. During the training process, after several iterations, an equal number of
samples are randomly selected from both the generated data and the real data. The Earth
Mover’s Distance between the two distributions is then calculated. The updated value of
β is determined by scaling the Earth Mover’s Distance between these two distributions.
In the experimental section, we scale the Earth Mover’s Distance to fit within the range
of [0, 1]. Then, we clamp it by the upper bound 1

2 ln 2 to update β . The proof of the upper
bound of β is in Proposition 4.

So far, we have provided a detailed explanation of the proposed method, and we
summarize it in Algorithm 1. Regarding the optimization algorithm choice, we uniformly
utilize the Adam algorithm [29]. Additionally, we employ a clever strategy to expedite the
training process for updating G. When it comes to the minimization problem

min
G

E
x∼Pg

[µ¬D(x) + βH¬D(x)] (6)

it shares the same solution as
min

G
E

x∼Pg
[µ¬D(x)] (7)

However, Equation (6) is more susceptible to being trapped in a local minimum
compared to the latter. Therefore, in Algorithm 1 (line 9), we directly calculate Equation (7)
to achieve the same objective.

Algorithm 1: Framework of SoftGAN
Input: the batch size m, the dimension of latent space nz, the number of iterations

t, the number of iterations of the discriminator per generator iteration ndisc,
the number of iterations of updating entropy weight nβ, Adam
hyperparameter α, β1, β2

Output: Discriminator parameters w and Generator parameters θ

1 Initialize discriminator parameters w0 and generator parameters θ0 randomly;
while t < iter do

2 foreach tdisc in [1, ...ndisc] do
3 Sample a batch of {x(i)}m

i=1 ∼ Pd from real data; Sample a batch of
{z(i)}m

i=1 ∼ Pz from nz-dimensional latent space; Compute V(D, G)←
1
m ∑m

i=1[µD(x(i)) + βHD(x(i)) + (µ¬D(G(z(i)))) + βH¬D(G(z(i)))];
Update w← Adam(−∇wL, w, α, β1, β2);

4 end
5 Sample a batch of latent variables {z(i)}m

i=1 ∼ Pz from nz-dimensional latent
space; Update θ ← Adam(∇θ

1
m ∑m

i=1 µ¬D(Gθ(z)), θ, α, β1, β2); if t
mod nβ == 0 then

6 Sample a batch of {x(i)}m
i=1 ∼ Pd from real data; Sample a batch of

{z(i)}m
i=1 ∼ Pz from nz-dimensional latent space; Compute the discrete

Earth Mover’s Distance between {x(i)}m
i=1 and {G(z(i))}m

i=1; Update β
with the scaled Earth Mover’s Distance;

7 end
8 Update t = t + 1;
9 end
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Fundamentally, the original GAN also can be interpreted from the perspective of fuzzy
concept learning, much like the SoftGAN. The goal of the discriminator in the original GAN is
also to learn a fuzzy concept, D, that models the true distribution, as depicted in Equation (1).
In comparison to the SoftGAN, the learning principle of the original GAN only aims to
maximize the concept coverage. This ensures that the learned fuzzy concept, D, and its
negation, ¬D, fully encompass the real and generated data, respectively. Simultaneously,
the objective of generator is to produce samples that fall within the purview of the fuzzy
concept D, thereby leading the discriminator to misidentify them as real data. Directed by this
single learning principle, the fuzzy concept can discern the real data from the generated data
in a quite “hard” manner. In contrast to the original GAN, the SoftGAN introduces a new
learning principle: the principle of maximum expected entropy. This ensures that real and
generated data are merely the borderline cases of the fuzzy concepts D and ¬D, respectively.
In simpler terms, the SoftGAN discriminates between real and generated data in a “soft” way.

5. Theoretical Analyses

In this section, we present a comprehensive theoretical analysis of the optimality within
the minimax game of the SoftGAN. Alongside this, we provide an interval analysis for the
hyperparameter β, which is the kernel to the dynamic borderline softening mechanism.

5.1. Optimality of the Discriminator

Proposition 1. For a given generator G, the optimal discriminator D is as follows:

µ∗D(x) =
1

1 + exp(− pd(x)−pg(x)
β(pd(x)+pg(x)) )

= σ(
pd(x)− pg(x)

β(pd(x) + pg(x))
) (8)

where σ(·) is the sigmoid function.

Proof. According to Equations (4) and (5), for a given generator G, the training criterion
for the discriminator D is to maximize the following value function marked as J:

J =
∫

x
pd(x)[µD(x) + βHD(x)]dx +

∫
x

pg(x)[µ¬D(x)dx + βH¬D(x)]dx

Let F be the following form:

F = pd(x)[µD(x) + βHD(x)] + pg(x)[µ¬D + βH¬D(x)]

Then, J =
∫

x Fdx. Combined with Equation (3) and µ¬D(x) = 1− µD(x), the first and
second derivatives of F with respect to µD(x) are as follows:

∂F
∂µD(x)

= pd(x)− pg(x)− β[pd(x) + pg(x)][ln µD(x)− ln µ¬D(x)] (9)

∂2F
∂µD(x)2 =

β(pd(x) + pg(x))
µD(x)2 − µD(x)

(10)

Obviously, Equation (10) is less than 0 since µD(x) ∈ [0, 1]. Therefore, the optimal
solution of J can be obtained by setting Equation (9) = 0. Consequently, we can obtain the
optimal discriminator D, as shown in Equation (8).

Next, we analyze the discriminator D qualitatively. According to Equation (8), µD(x) = 0.5
when pd(x) → 0 and pg(x) → 0. For the interval where pd(x) ≥ pg(x), the value of
µD(x) ∈ [0.5, 1], which is negatively correlated with the Earth Mover’s Distance between pd(x)
and pg(x). The larger the distance is, the smaller the µD(x) is, and the smaller the distance is,
the larger the µD(x) is. As the training progresses, Pg moves in the direction of Pd, and the
Earth Mover’s Distance between the two distributions decreases gradually. Correspondingly,
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the curve of the µD(x) also becomes flatter and flatter. When the training is over, µD(x) = 0.5
in the entire domain. The schematic diagram of this process is shown in Figure 2.

Figure 2. The schematic diagram of the training process for SoftGAN. The y-axis represents µD(x).

5.2. Optimality of the Generator

Now, let us focus on the optimal generator G. We discuss this issue in both β→ 0 and
β > 0 cases.

Proposition 2. When β→ 0 and µD(x) = µ∗D(x) for any x, the global optimum of Equation (5)
is achieved if and only if Pg = Pd almost everywhere.

Proof. Let Ω+ = {x : pd(x) > pg(x)}, Ω− = {x : pd(x) < pg(x)} and Ω0 = {x : pd(x) =
pg(x)}. According to Equation (8), we have

lim
β→0

µ∗D(x) =


1 Ω+
1
2 Ω0

0 Ω−

When given µ∗D(x) and β→ 0, the training criterion for the generator G is to minimize
the following function Q according to Equation (5):

Q =
∫

Ω
[pd(x)µ∗D(x) + pg(x)(1− µ∗D(x))]dx

Then, using the trick of adding and subtracting the same object, we obtain the following:

Q =
∫

Ω
[pd(x)µ∗D(x) + pg(x)(1− µ∗D(x))]dx

=
∫

Ω+

pd(x)dx +
∫

Ω−
pg(x)dx +

∫
Ω0

pg(x)dx

=
∫

Ω+

pd(x)dx +
∫

Ω−
pg(x)dx +

∫
Ω0

pg(x)dx −
∫

Ω
pg(x)dx +

∫
Ω

pg(x)dx

=
∫

Ω+

(pd(x)− pg(x))dx +
∫

Ω−
(pg(x)− pg(x))dx +

∫
Ω0

(pg(x)− pg(x))dx +
∫

Ω
pg(x)dx

=
∫

Ω+

(pd(x)− pg(x))dx + 1
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Consequently, Q reaches the minimum value if and only if Pg = Pd almost every-
where.

Proposition 3. When β > 0, the algorithm will force the support set of Pg to approximate to the
support set of Pd: supp(Pg) = supp(Pd).

Proof. For the training of Pg, according to our optimizing trick as shown in Equation (7),
we have the following:

min
pg

∫
Ω

pg(x)µ∗¬D(x)dx = max
pg

∫
Ω

pg(x)µ∗D(x)dx

According to Equation (8), we have the following:

µ∗D(x) ∈


( 1

2 , 1] Ω+

[ 1
2 ] Ω0

[0, 1
2 ) Ω−

Thus, we have the following form:∫
Ω

pg(x)µ∗D(x)dx

=
∫

Ω+∪Ω0∪Ω−
pg(x)µ∗D(x)dx

≥ 1
2

∫
Ω+∪Ω0

pg(x)dx +
∫

Ω−
pg(x)µ∗D(x)dx

=
1
2

∫
Ω+∪Ω0∪Ω−

pg(x)dx− 1
2

∫
Ω−

pg(x)dx +
∫

Ω−
pg(x)µ∗D(x)dx

=
1
2
+

∫
Ω−

pg(x)(µ∗D(x)− 1
2
)dx

When x ∈ Ω−, we have µ∗D(x)− 1
2 < 0. So, in order to maximize the lower bound, we

have either pg → pd for x ∈ Ω− or Ω− → ∅. In other words, when β > 0, for any x ∈ Ω,
either pd(x) > pg(x) or pg(x) = pd(x).

In addition, we also need to avoid the situation pg(x) = 0 for the goal of the generator.
In summary, we have the above Proposition 3.

According to this proposition, we can conclude that in the SoftGAN β not only makes
a global search of distribution comprehensively but also assigns the non-zero density of the
generated distribution to the support set of the true distribution. This kind of open-minded
strategy naturally avoids the mode collapse problem. So, in the very early training stage,
the generated distribution Pg will have enough multiple modes.

5.3. Interval Analysis of β

Proposition 4. The upper bound of β is 1
2ln2 .

Proof. There are two extreme cases for the relationship between Pd and Pg. One is that the
discriminator completely separates the two, and their distributions are disjunct. The other
is that the discriminator cannot tell the two apart, and their distributions are almost in-
distinguishable. Obviously, what we want is the second extreme case. Therefore, for the
minimization optimization problem of Pg, after the introduction of β, it is necessary to ensure
that the extreme value obtained in the second case is smaller than the first case:

When Pd and Pg do not intersect, the discriminator completely separates the two:∫
pd(x)[µD(x) + βHD(x)] + pg(x)[µ¬D(x) + βH¬D(x)]dx = 2
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When Pd and Pg are almost the same, the discriminator cannot separate them at all:

∫
pd(x)[µD(x) + βHD(x)] + pg(x)[µ¬D(x) + βH¬D(x)]dx = 1 + 2β ln 2

In order to ensure that the minimized optimization problem achieves the desired
solution, there must be

2 > 1 + 2β ln 2

So, β < 1
2 ln 2 .

Finally, we give an intuitive explanation of the hyperparameter β. According to
Proposition 1, the optimal discriminator is a sigmoid function about pd(x) and pg(x) with
the control of β. The relationship between β and discriminator D is shown in Figure 3. As
mentioned before, β is used to control the tolerability of the discriminator. The larger β is,
the more uncertain the soft borderline is and the higher the tolerance of the discriminator
is, and vice versa.

Figure 3. The influence of different β values to the discriminator D. β is proportional to the uncertainty
of the soft borderline.

6. Experiments

In the following section, we will showcase the practical benefits of our method while
providing an in-depth comparison between its behavior and that of traditional GANs.
Specifically, this part consists of five subsections:

(1) We conducted a series of controlled experiments on two real-world datasets [30,31].
On the one hand, we verified the effectiveness of the dynamic borderline soften-
ing mechanism proposed in Section 4. On the other hand, we demonstrated the
qualitative and quantitative superiority of the SoftGAN compared to other
algorithms [2,14,18,23,32–39] under the same architecture configurations.

(2) The learning goal of the generative model is to implicitly approximate the distribution
of the real data. We used qualitative and quantitative methods to visualize the distribu-
tion distance change between real data and generated data during training. It verified
the effectiveness of the dynamic borderline softening mechanism of our SoftGAN.
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(3) The mode collapse in GAN training is one of the research focuses of the SoftGAN.
With the help of the Geometry Score [13], we quantitatively compare the mode cov-
erage ability and the mode discovery efficiency of our SoftGAN with other meth-
ods [2,14] in the training process.

(4) Evaluating the mode coverage of a generative model on datasets with limited cat-
egories poses challenges. However, on datasets containing numerous categories,
a generative model boasting robust mode coverage capabilities is expected to generate
samples from a broader range of categories. As a result, we employed a classifier
model [40] to assess, specifically on the ImageNet dataset [41], whether our model’s
generator exhibits enhanced coverage across all 1000 categories. This evaluation
indirectly serves as evidence of the SoftGAN’s mode exploration prowess.

(5) Our work introduces a flexible dynamic borderline softening mechanism, which seam-
lessly integrates into pre-existing GAN frameworks. By combining this mechanism
with diverse architectures [1,19,20,42] and varied adversarial losses [1,3,14,20,23], we
have successfully demonstrated that the SoftGAN can enhance the target model’s ca-
pabilities without compromising the quality of the generated outputs, as evidenced by
qualitative and quantitative indicators. Additionally, the parameter sharing approach
for shallow layers effectively alleviates computational burdens, further enhancing the
efficiency of the model.

All experiments are conducted on four Nvidia GeForce RTX 3090 graphics cards with
24 GB implemented in Pytorch [43]. For the hyperparameter β, we use its theoretical upper
bound (as shown in Proposition 4) as the initial value in all experiments. And the demo
implementation is available at Github (https://github.com/liweileev/SoftGAN, accessed
on 23 August 2023).

6.1. Quality of Generated Image under Basic Architectures

In this section, we conduct experiments on real-world large-scale datasets [30,31] and
present both qualitative and quantitative evaluation results. To ensure a fair comparison,
we adopt experimental settings that are identical to those used in previous works [14,18]
under the same basic architecture configurations. As a result, we list the results from the
unconditional unsupervised GAN-based models and compare them with our SoftGAN.

Similar to WGAN-GP [14] and CT-GAN [18], we utilize the CIFAR-10 [30] dataset to
evaluate two architecture configurations for the generative model: one is a small CNN
architecture, and the other is a ResNet architecture. Tables 2 and 3 show the two architec-
tures, respectively.

Table 2. The small CNN architecture for SoftGAN on CIFAR-10 [30]. The traning batch size is 32.

Generator Output Shape Discriminator Output Shape

Noise [32, 128] Image [32, 3, 32, 32]
MLP→ReLU→BN→Reshape [32, 512, 4, 4] 5 × 5 Conv→lReLU [32, 128, 16, 16]
5 × 5 Deconv→ReLU→BN [32, 256, 8, 8] 5 × 5 Conv→lReLU [32, 256, 8, 8]
5 × 5 Deconv→ReLU→BN [32, 128, 16, 16] 5 × 5 Conv→lReLU [32, 512, 4, 4]
5 × 5 Deconv [32, 3, 32, 32] Reshape [32, 8192]
Tanh [32, 3, 32, 32] MLP [32, 1]

Table 3. The ResNet architecture for SoftGAN on CIFAR-10 [30]. The traning batch size is 32.

Generator Output Shape Discriminator Output Shape

Noise [32, 128] Image [32, 3, 32, 32]
MLP→ReLU→Reshape [32, 128, 4, 4] 3 × 3 ResBlock × 2→DownSample [32, 128, 16, 16]
3 × 3 ResBlock×2→UpSample [32, 128, 8, 8] 3 × 3 ResBlock×2→Downsample [32, 128, 8, 8]
3 × 3 ResBlock×2→UpSample [32, 128, 16, 16] 3 × 3 ResBlock×2 [32, 128, 8, 8]
3 × 3 ResBlock×2→UpSample [32, 128, 32, 32] 3 × 3 ResBlock×2 [32, 128, 8, 8]
3 × 3 Conv [32, 3, 32, 32] Global Mean Pooling→Reshape [32, 128]
Tanh [32, 3, 32, 32] MLP→sigmoid [32, 1]

https://github.com/liweileev/SoftGAN
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For quantitative comparison, we use the Inception Score [35] as the evaluation indica-
tor, similar to CT-GAN [18], and the specific comparison results are shown in Table 4. As
shown in the experimental results, the SoftGAN with the small CNN architecture is not
bad, and the SoftGAN with ResNet surpasses all of the isomorphic unconditional GAN-
based methods in the performance of the Inception Score. It is worth noting that some of
the methods [36,37] in Table 4 also use the multi-discriminator or multi-generator tricks.
Theoretically, under the same architectural configuration, the trick of parallel subnetworks
can improve the generation capability of the model. However, the SoftGAN still has a
significant performance advantage in comparison. Furthermore, these techniques are fully
orthogonal to our study, and they can be used together to enhance the model performance.
Experiments with combinations of different network architectures and training techniques
are presented in Section 6.5. In addition, we found that the dependence of our approach
on the network architecture (small CNN: 6.46 ± 0.42; ResNet: 8.55 ± 0.05) is significantly
lower compared with other methods, such as WGAN-GP [14] (small CNN: 2.98 ± 0.11;
ResNet: 7.86 ± 0.07) and CT-GAN [18] (small CNN: 5.12 ± 0.12; ResNet: 8.12 ± 0.12).
Whether in a simple network architecture or a complex network architecture, our proposed
method has strong robustness and generates samples with considerable Inception Scores.

Figure 4 shows images generated by our models with their Inception Scores. The entire
Inception Score curves during the training are shown in Figure 5, which demonstrates the
superiority of our approach in image generation quality.

(a) (b)

Figure 4. Samples generated by SoftGAN and their Inception Scores on CIFAR-10 [30]: (a) samples
generated by a small CNN SoftGAN and their Inception Score: 6.46 ± 0.42; (b) samples generated by
ResNet SoftGAN and their Inception Score: 8.55 ± 0.05.

Figure 5. Inception Scores of different models in CIFAR-10 dataset. The horizontal axis represents the
number of iterations, and the vertical axis represents Inception Scores. The higher the score, the better
the quality of the generated image.
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Table 4. Inception Scores of GAN-based models with the same architecture configurations on CIFAR-
10 [30]. Here, ± refers to the standard deviation returned by the Inception Score calculator.

Method Score

WGAN-GP (small CNN) (the Inception Score result of WGAN-GP is reported in [18]) [14] 2.98 ± 0.11
CT-GAN (small CNN) [18] 5.12 ± 0.12
ALI (the Inception Score result of ALI is reported in [32]) [33] 5.34 ± 0.05
BEGAN [34] 5.62
DCGAN (the Inception Score result of DCGAN is reported in [44]) [2] 6.16 ± 0.07
Improved GAN [35] 6.86 ± 0.06
PeerGAN [36] 7.45
DFM [32] 7.72 ± 0.13
WGAN-GP (ResNet) [14] 7.86 ± 0.07
CT-GAN (ResNet) [18] 8.12 ± 0.12
SNGAN [23] 8.22 ± 0.05
MGAN [37] 8.33 ± 0.10
CR-GAN (ResNet) [38] 8.40
DCD (ResNet) [39] 8.54

SoftGAN (small CNN) 6.46 ± 0.42
SoftGAN (ResNet) 8.55 ± 0.05

We also trained the ResNet SoftGAN model on the 128×128 LSUN bedroom dataset [31]
which contains 3,033,041 images of bedroom. The generated samples are shown in Figure 6.
Qualitatively speaking, it is also competitive with other methods for this dataset.

Figure 6. Samples of size 128 × 128 generated by SoftGAN ResNet model in LSUN bedroom
dataset [31].

6.2. Divergence Evolution between Real and Generated Distributions

As mentioned before, we employ the Earth Mover’s Distance (EMD for short) to
measure the divergence between the distributions of real data and generated data, as well
as to quantify the value of β after scaling. So, the value of the EMD is used as an indicator
to check whether the updating direction of the generator is correct. It is also used to
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achieve the dynamic borderline softening mechanism proposed in this paper. In practice,
the computation of the EMD is based on the batch sampling, so the approximated EMD
does not converge to 0 due to the variance in the data (as shown in Figure 7). As the
training progresses, the EMD between Pg and Pd decreases rapidly. This indicates that
the principle of maximum expected entropy HD(x) dominates the learning process and
enables supp(Pg) ≈ supp(Pd), as deduced in Proposition 3. Then, due to the adjustment of
β, the Pg alters continuously within the support of Pd and gradually approaches the real
distribution. At this stage, the principle of maximum concept coverage µD(x) dominates
the learning process, so the EMD between Pd and Pg does not change much, but the quality
of the generated samples is gradually improved.

Figure 7. The change in the Earth Mover’s Distance (EMD) during the training process with cor-
responding generated samples (LSUN bedroom dataset [31]). The horizontal axis represents the
number of iterations of the training, and the vertical axis represents the Earth Mover’s Distance
calculated using a batch of samples. The images below are the images generated from the same noise
for every 10,000th iteration. The pictures are best viewed magnified on screen.

6.3. Mode Discovery and Mode Coverage

In this experiment, we would like to study how our approach behaves for the mode
collapse problem. To achieve this, we train three GAN models: DCGAN [2], WGAN-
GP [14] and our SoftGAN. We use the Geometry Score [13] to assess the mode discovery
and mode coverage abilities of different models. This approach allows us to compare the
topology of the underlying manifolds for point clouds in a stochastic manner, providing us
with a visual way to detect the mode collapse and a score, which allows us to compare the
quality of various trained models. The lower the score is, the more modes are covered by
the generated images. If the value of the Geometry Score does not decrease or even rises as
the training progresses, the model may suffer from the mode collapse problem. Following
the parameter settings of the original works, we train each model for 100,000 iterations
and generate 1000 samples every 100 iterations to evaluate the Geometry Score using
the parameter γ = 1

1000 . Since the Geometry Score is calculated with only 1000 samples,
the results are fluctuating. So, we smooth the result using the tool in Tensorboard (a suite
of visualization tools to make it easier to understand, debug and optimize the machine
learning workflow) with the smoothing parameter equal to 0.6 and then report the obtained
results in Figure 8. It can be seen from the figure that the SoftGAN shows an advantage
in mode coverage at the beginning of training. Compared with those of WGAN-GP and
DCGAN, the Geometry Score of our method rapidly decreases to a lower value and is
almost at a relatively lower level compared to the other two.
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Figure 8. Comparison of different methods with Geometry Score in the CIFAR-10 dataset [30].
The horizontal axis represents the number of training iterations, and the vertical axis represents the
Geometry Scores of different models. Samples used to calculate scores are generated using DCGAN,
WGAN-GP and SoftGAN. Mode collapse can be measured using the Geometry Score. The translucent
curves are the results of the real calculation, because only 1000 samples are involved in the calculation,
so the results are dithered, and the deep color curves are the smoothed result. The lower the score,
the more diverse modes the generated images covered.

6.4. Category Coverage on Complex Dataset

To assess the mode coverage capability of a generative model for datasets containing a
limited number of categories, we can examine the diversity of generated samples within
each category. However, this qualitative observation makes it challenging to compare
among different models. In the case of datasets with numerous categories, the problem be-
comes more straightforward. If a generative model asserts a stronger mode exploration ca-
pability, it should generate samples that encompass a broader range of categories compared
to other models. And just a classifier is enough to qualitatively measure this distinction.

We opt to utilize ImageNet [41] as the benchmark dataset. ImageNet is an extensive
collection of visual data, comprising 1,281,167 training images and 50,000 validation images
across 1000 object classes. Over time, it has emerged as the go-to dataset to evaluate
and compare image classification algorithms. The dataset’s substantial sample size and
diverse range of categories present significant challenges for high-resolution (≥256) and
unconditional image generation tasks. We select it as our benchmark for two key reasons:

• Its vast and varied categories suit our objective of measuring diversity.
• There exist readily available, pretrained classifiers that enable us to assess the category

coverage of the generated samples.

For this experiment, we adopt StyleGAN2 [21,22] as our baseline model. The gen-
erator architecture consists of a mapping network, which comprises two fully connected
layers, and a synthesis network that progressively expands from a resolution of 4× 4 to
256× 256. In contrast, the discriminator employs a convolutional neural network with
skip connections, progressively reducing the resolution from 256× 256 to 4× 4. You can
find more detailed network information and parameter quantities in Table 5. Except for
the dynamic borderline softening mechanism in our SoftGAN, the remaining training
parameters of StyleGAN2 and ours are identical, including the batch size (32) and the opti-
mizer (Adam [29]), as well as the usage of style loss, path length regularization and lazy
R1 regularization.
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Table 5. The architectural design of the generator and discriminator utilized in SoftGAN and
StyleGAN2 for the ImageNet [41] generation task.

Generator Output Shape Parameters Discriminator Output Shape Parameters

mapping.fc0 [32, 512] 262,656 b256.fromrgb [32, 64, 256, 256] 256
mapping.fc1 [32, 512] 262,656 b256.skip [32, 128, 128, 128] 8192
synthesis.b4.conv1 [32, 512, 4, 4] 2,622,465 b256.conv0 [32, 64, 256, 256] 36,928
synthesis.b4.torgb [32, 3, 4, 4] 264,195 b256.conv1 [32, 128, 128, 128] 73,856
synthesis.b4:0 [32, 512, 4, 4] 8192 b128.skip [32, 256, 64, 64] 32,768
synthesis.b8.conv0 [32, 512, 8, 8] 2,622,465 b128.conv0 [32, 128, 128, 128] 147,584
synthesis.b8.conv1 [32, 512, 8, 8] 2,622,465 b128.conv1 [32, 256, 64, 64] 295,168
synthesis.b8.torgb [32, 3, 8, 8] 264,195 b64.skip [32, 512, 32, 32] 131,072
synthesis.b16.conv0 [32, 512, 16, 16] 2,622,465 b64.conv0 [32, 256, 64, 64] 590,080
synthesis.b16.conv1 [32, 512, 16, 16] 2,622,465 b64.conv1 [32, 512, 32, 32] 1,180,160
synthesis.b16.torgb [32, 3, 16, 16] 264,195 b32.skip [32, 512, 16, 16] 262,144
synthesis.b32.conv0 [32, 512, 32, 32] 2,622,465 b32.conv0 [32, 512, 32, 32] 2,359,808
synthesis.b32.conv1 [32, 512, 32, 32] 2,622,465 b32.conv1 [32, 512, 16, 16] 2,359,808
synthesis.b32.torgb [32, 3, 32, 32] 264,195 b16.skip [32, 512, 8, 8] 262,144
synthesis.b64.conv0 [32, 256, 64, 64] 1,442,561 b16.conv0 [32, 512, 16, 16] 2,359,808
synthesis.b64.conv1 [32, 256, 64, 64] 721,409 b16.conv1 [32, 512, 8, 8] 2,359,808
synthesis.b64.torgb [32, 3, 64, 64] 132,099 b8.skip [32, 512, 4, 4] 262,144
synthesis.b128.conv0 [32, 128, 128, 128] 426,369 b8.conv0 [32, 512, 8, 8] 2,359,808
synthesis.b128.conv1 [32, 128, 128, 128] 213,249 b8.conv1 [32, 512, 4, 4] 2,359,808
synthesis.b128.torgb [32, 3, 128, 128] 66,051 b4.conv [32, 512, 4, 4] 2,364,416
synthesis.b256.conv0 [32, 64, 256, 256] 139,457 b4.fc [32, 512] 4,194,816
synthesis.b256.conv1 [32, 64, 256, 256] 69,761 b4.out [32, 1] 513
synthesis.b256.torgb [32, 3, 256, 256] 33,027

Total: 23,191,522 24,001,089

We completed 50 epochs training for both models. Subsequently, BEit [40] was em-
ployed to categorize a set of 50,000 generated samples for each of the two models. The
outcomes of the classification endeavor have been depicted visually in Figure 9. To facilitate
comparative analysis, we not only present the classification results of the generated outputs
from StyleGAN2 and our SoftGAN but we also illustrate the labels and BEiT classification
results of real data. This demonstration serves to underscore the efficacy of the employed
classifier. Within each image, an assemblage of 1000 squares has been incorporated. These
squares function as a representation of the comparative statistical occurrence of individual
classes within the corpus of 50,000 samples. The squares colored in shades of blue denote
the inclusion of the respective category, with darker hues indicating higher frequencies.
Conversely, the presence of a red cross signifies the absence of the category. A noteworthy
observation emerges when comparing the categories covered by the SoftGAN to those
covered by StyleGAN2. Remarkably, the SoftGAN exhibits a noticeably superior coverage,
surpassing even the performance of random sampling on real data. To provide a quanti-
tative perspective, the StyleGAN2 encompasses 958 distinct ImageNet categories, with a
shortfall of 42 categories. In stark contrast, the SoftGAN only misses 4 categories.

Additionally, we assess the quantitative metric pertaining to the category distribution
within the real and generated samples:

pi =
ni
N

H = −
C

∑
i=1

I(pi ̸= 0)pi log pi

(11)

where N represents the sample size of 50,000, C denotes the total number of categories
(1000) and ni corresponds to the count of samples in the ith category. This approach eval-
uates the information entropy of the sample distribution, with larger values indicating
greater diversity. Notably, for random sampling of real samples, the information entropy
measures 6.89, suggesting a distribution close to uniform. In the case of generated samples,
StyleGAN2 yields an information entropy of 6.17, while the SoftGAN registers an informa-
tion entropy of 6.69. The comparison reveals that the SoftGAN generates samples with a
broader coverage and increased diversity in comparison to StyleGAN2.
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(a) (b)

(c) (d)

Figure 9. Visualization of classification results for ImageNet dataset [41]. In each subfigure,
1000 squares are displayed, each representing one of the 1000 categories present in ImageNet.
The coloration of these squares reflects the quantity of samples within each corresponding cate-
gory, with darker shades indicating a higher sample count. Furthermore, any categories that are
absent from the set are denoted by conspicuous red crosses. (a) Real labels of 50,000 images randomly
sampled from the shuffled dataset. The category coverage is 99.4%, and the entropy is 6.89. (b) Clas-
sification results of BEiT [40] for same images in (a). The top-1 accuracy is 94.36%, and the top-5
accuracy is 99.55%. (c) Classification results for 50,000 StyleGAN2 generated images. The category
coverage is 95.8%, and the entropy is 6.17. (d) Classification results for 50,000 SoftGAN-generated
images. The category coverage is 99.6%, and the entropy is 6.69.

Moreover, it is pertinent to underscore that in contrast to the random sampling of real
shuffled data, both StyleGAN2 and the SoftGAN exhibit non-uniformity in their randomly
generated outputs. A discernible discrepancy arises in the intensity of square coloring
across categories. Certain categories manifest a markedly darker hue, signifying a higher
sample count, compared to others. Evidently, these findings indicate a lack of impartiality
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in the outputs of the generators, even in scenarios involving stochastic noisy inputs. Our
conjecture is that this phenomenon could be intricately tied to the inherent sampling
domain of the generator. The exploration of this intriguing matter, however, lies beyond
the scope of the current study.

6.5. Architecture and Training Tricks in Combination with SoftGAN

The previous experiments have confirmed the benefits of the SoftGAN in terms of its
ability to explore modes within both simple and complex datasets. Apart from the mode
coverage, the quality of generated samples is also crucial in evaluating generative models.
Consequently, this section aims to quantitatively compare the variation in generation qual-
ity between the SoftGAN and other GANs using three datasets: CIFAR-10 [30], STL-10 [45]
and CelebA [46]. To assess the quality, we employ the widely recognized Fréchet Inception
Distance [47] (FID) as the metric. The FID measures the dissimilarity between the distri-
bution of generated images and the distribution of real images used for training. Unlike
pixel-based comparisons, the FID evaluates the mean and standard deviation of the output
from the intermediate layer of Inception v3 [48], which approximates the human perception
of image similarity. Over the years, the FID has become the standard metric for evaluating
GAN quality. As previously mentioned, our dynamic borderline softening mechanism is
completely independent of other generator architectures and training techniques used in
GANs. To demonstrate the versatility of our approach, we conducted experiments by inte-
grating it into other models. Specifically, we compared GAN models using three different
architecture combinations: linear generator + linear discriminator, ResNet generator + skip
discriminator and style generator + linear discriminator. The network architectures of the
various components are depicted in Figure 10, and the detailed FID comparison results are
presented in Table 6.

Table 6. FIDs (where lower values indicate better performance) are reported for three datasets across
various network architectures. The best performance achieved within each network architecture is
highlighted in bold.

Model FID
CIFAR-10 [30] STL-10 [45] CelebA [46]

Dropout-GAN [24] 88.6 36.36
DCGAN [2] 37.7
DCGAN+TTUR [47] 36.9
QSNGAN [49] 31.966 59.611 29.417
WGAN-GP [14] 29.3 55.1
SNGAN (linear G + linear D) 29.3 53.1
MGAN [37] 26.7
SoftGAN (linear G + linear D) 21.34 51.67 10.33

WGAN-GP+TTUR [47] 24.8
SNGAN (ResNet G + skip D) [23] 21.7 40.1
PeerGAN [36] 21.55 51.37 13.95
BigGAN [42] 14.73
AutoGAN [50] 12.42 31.01
SoftGAN (ResNet G + skip D) 12.50 30.87 6.65

StyleGAN2 [21] 11.07 5.06
LT-GAN [51] 9.80 31.35 16.84
SoftGAN (style G + linear D) 3.07 23.92 2.79

Now, we proceed to examine the experimental outcomes utilizing identical network ar-
chitectures and adversarial loss. Following 100 epochs of training, we present the FID scores
achieved by our SoftGAN model across the CIFAR-10 [30], STL-10 [45] and CelebA [46]
datasets. We exclusively incorporate models trained in a fully unsupervised manner to
ensure a fair comparison. In summary, our proposed model surpasses the baseline models
and achieves a state-of-the-art performance within the same architectural configurations.
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(a) (b) (c)

(d) (e)

Figure 10. Taking 64 × 64 resolution RGB image generation as an example, we provide a portrayal
of the network structures employed by the SoftGAN in Section 6.5. The generator configurations
encompass a linear convolutional design, a residual block-infused architecture and a style block-
oriented structure. Meanwhile, the discriminator setups encompass a linear convolutional framework
and a skip architecture enriched with residual blocks. Notably, both of these architectures seam-
lessly integrate with our dynamic borderline softening mechanism, requiring no modifications.
(a) Linear generator. (b) ResNet generator. (c) Style generator (synthetic subnetwork part). (d) Lin-
ear discriminator. (e) Skip discriminator.

Linear generator + linear discriminator: Our architecture closely adheres to the princi-
ples of DCGAN [2] for an optimal performance. To ensure effective adversarial learning,
we employ hinge loss, which aligns with the SNGAN framework [23]. Impressively, our
approach achieves a remarkable FID score of 21.34 on the CIFAR-10 [30] dataset, surpassing
other GAN models utilizing the same linear architecture. This includes single-discriminator
models, like DCGAN [2], WGAN-GP [14], QSNGAN [49] and SNGAN [23], as well as multi-
discriminator models, like Dropout-GAN [24] and MGAN [37]. However, the advantage of
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our approach on the STL-10 [45] dataset is not as pronounced. It appears that the learning
capacity of simple linear networks may be limited when dealing with complex datasets.
Despite this, the performance differences among all models are relatively small. Conversely,
when evaluating the CelebA [46] dataset, the superiority of the SoftGAN becomes evident
once again. Our SoftGAN, implemented within the linear network architecture, achieves
a comparable or even superior performance compared to other GAN models employing
more intricate networks, such as ResNet and style architectures.

ResNet generator + skip discriminator: When leveraging a more powerful learning-
capable network such as ResNet [19], our approach outperforms BigGAN [42] with a
notable margin, achieving an FID score of 12.50 on the CIFAR-10 dataset [30]. It stands as the
second-best model, surpassed only by AutoGAN [50] with an FID score of 12.42. Regarding
the adversarial loss employed in the SoftGAN, we adopt a loss function consistent with
WGAN-GP [14]. However, it is worth noting that the inclusion of self-attention layers and
the 8-fold increase in batch size in BigGAN impose substantial hardware and training time
requirements, surpassing those of our SoftGAN. Similarly, the optimal network architecture
search process in AutoGAN also extends its training time beyond that of the SoftGAN.
Consequently, the SoftGAN exhibits clear advantages in terms of hardware requirements
and training resource consumption while achieving a comparable generation quality. In
comparison to PeerGAN [36], a multi-discriminator model, its generation capability falls
significantly behind. The experimental results on STL-10 [45] and CelebA [46] datasets
echo those of CIFAR-10 [30], demonstrating the robust and competitive performance of the
SoftGAN across different datasets.

Style generator + linear discriminator: As the basis for our comparative analysis,
we adopt StyleGAN2 [20,21], widely recognized as the most powerful convolutional gen-
erative GAN model currently available. With the exception of the dynamic borderline
softening mechanism unique to our SoftGAN, the training parameters of StyleGAN2 and
our model remain identical. These parameters include the batch size (32) and the opti-
mizer (Adam [29]), as well as the incorporation of style loss, path length regularization
and lazy R1 regularization. Notably, our SoftGAN outperforms the current state-of-the-art
convolutional style-based GAN models across all three datasets. This achievement effec-
tively demonstrates the superiority of the dynamic borderline softening mechanism when
combined with the style network architecture.

7. Conclusions

We present the SoftGAN, an innovative method that tackles the challenges of training
instability and mode collapse in GANs by incorporating a dynamic borderline softening
mechanism. The core principles of this mechanism are based on optimizing the coverage
and expected entropy within fuzzy concept learning. In the SoftGAN, the discriminator
aims to learn a fuzzy concept of real data with a smooth transition between real and
generated data. During the initial training phase of the SoftGAN, the focus is on maximizing
the expected entropy of fuzzy concepts to guide the learning process due to the significant
disparity between the generated and real data. However, in the later stages of training,
the emphasis shifts to maximizing the concept coverage as the difference between the
two distributions diminishes. Our study highlights the effectiveness of the SoftGAN in
enhancing both the quality of generated outputs and the robustness across various network
architectures. Additionally, we provide empirical evidence showcasing the efficacy of our
approach in mitigating the mode collapse problem. Anticipating that our findings may
pave the way for an improved modeling performance on extensive image datasets, we also
advocate for the application of the dynamic borderline softening mechanism in conjunction
with other training techniques.
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