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Abstract: Optimizing the energy consumption of an MEC (Multi-Access Edge Computing) system is
a crucial challenge for operation cost reduction and environmental conservation. In this paper, we
address an MECS (MEC Server) sleep control problem that aims to reduce the energy consumption of
the system while providing users with a reasonable service delay by adjusting the number of active
MECSs according to the load imposed on the system. To tackle the problem, we identify two crucial
issues that influence the design of an effective sleep control technique and propose methods to address
each of these issues. The first issue is accurately predicting the system load. Changes in system load
are spatio-temporally correlated among MECSs. By leveraging such correlation information with
STGCN (Spatio-Temporal Graph Convolutional Network), we enhance the prediction accuracy of
task arrival rates for each MECS. The second issue is rapidly selecting MECSs to sleep when the load
distribution over an MEC system is given. The problem of choosing sleep MECS is a combinatorial
optimization problem with high time complexity. To address the issue, we employ a genetic algorithm
and quickly determine the optimal sleep MECS with the predicted load information for each MECS.
Through simulation studies, we verify that compared to the LSTM (Long Short-Term Memory)-based
method, our method increases the energy efficiency of an MEC system while providing a compatible
service delay.

Keywords: MEC energy saving; task arrival rate prediction; spatio-temporal correlation; graph neural
network; genetic algorithm

1. Introduction

The increasing prevalence of high-speed wireless networks, smart mobile devices, and
digital services has led to a connected and data-centric society, driving innovation and
economic growth across various industries. This digital transformation poses complex
challenges such as low-latency data processing, efficient bandwidth utilization, and im-
proved service quality. In response, Multi-Access Edge Computing (MEC) systems have
garnered significant attention. MEC systems deploy numerous low-capacity MEC servers
(MECSs) at the network edge, utilizing computing and storage resources for low-latency
services. This is crucial for applications such as autonomous vehicles, augmented reality,
real-time gaming, and healthcare. MEC systems efficiently manage network bandwidth
and reduce congestion by processing data at the edge before transmitting it to central data
centers. However, the benefit of an MEC system does not come without costs. With the
expansion of the service area in MEC systems, there is an associated increase in the required
number of MECSs. This escalation in the number of MECS contributes to a higher energy
consumption, resulting in an augmented operational expenditure for the MEC system. In
addition, networks and data centers are expected to account for 59.8% of the CO2 emissions
in the information and communications technology sector by 2030 [1]. Therefore, it is
essential to increase the energy efficiency of an MEC system to reduce the operational cost
and tackle the environmental conservation problem.

Appl. Sci. 2024, 14, 605. https://doi.org/10.3390/app14020605 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14020605
https://doi.org/10.3390/app14020605
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8976-6480
https://doi.org/10.3390/app14020605
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14020605?type=check_update&version=1


Appl. Sci. 2024, 14, 605 2 of 18

An MECS undertakes the reception, processing, and subsequent transmission of re-
sults for tasks offloaded from users. Consequently, the energy consumed within an MEC
system is categorized into the communication energy and computing energy of MECS. In
the task-offloading process, a user device incurs transmission power consumption. Given
the typically small size of service results, the downlink transmission power of an MECS
is often assumed to be negligible. However, if an MECS cannot handle a service for pro-
cessing the requested task, task migration to a cloud server or another MECS becomes
necessary, constituting a significant portion of the communication energy within an MECS.
To mitigate the energy impact of task migration, various service caching methods have
been proposed [2–4]. Given the potential minimization of communication energy using
appropriate service caching methods, this paper concentrates on addressing the computing
energy consumption issue. Since an MEC system involves complex interactions among
diverse elements, a multitude of approaches have been proposed to mitigate computing
energy consumption across various facets of MEC systems. For instance, the energy con-
sumed in an MEC system can be reduced via an optimal offloading decision [5], resource
management [6], network selection [7], and dynamic voltage and frequency scaling [8].
These methodologies presuppose the active mode for all MECSs within the system, over-
looking the temporal and spatial variations in tasks offloaded to each MECS. Generally,
the workload imposed on an MEC system is unevenly distributed across MECSs. Thus,
when the total system load is below the combined capacity of all MECSs, some MECSs
may remain lightly loaded or idle. However, an MECS consumes a substantial amount of
energy even in the idle state [9]. To address this, minimizing the total energy consumption
of an MEC system involves placing unnecessary MECSs into a sleep state. However, since
only active MECSs process loads in an MEC system, the service delay increases with the
number of MECSs in the sleep state. Consequently, determining the operation mode of
each MECS based on workload distribution becomes crucial for effectively reducing energy
consumption while maintaining a reasonable service quality.

Various MECS sleep control methods have been proposed to strike a delicate balance
between two conflicting performance metrics: the amount of energy consumed and the
service latency delivered by an MEC system. Threshold methods [10,11], commonly
employed in determining the operational mode of an MECS, involve transitioning an
MECS into sleep mode when its load falls below a predefined threshold. This approach,
wherein each MECS independently decides based on its own workload, is straightforward
to implement. However, the uneven distribution of the load across MECSs at each time step
prompts the exploration of comprehensive load distribution considerations to optimize
system-wide energy efficiency. Addressing this, cooperative sleep decision methods have
been proposed [9,12], where MECSs form clusters, exchange status information, and make
sleep decisions, considering the status of other MECSs in the same cluster. Despite the
potential enhancement in energy efficiency, such cooperative methods introduce additional
signaling overhead, and when MECS decisions differ, an iterative consensus process ensues,
potentially leading to delayed decision making. To tackle these challenges, deep learning
models have been used [13,14]. These approaches leverage the current load information
of MEC at a specific time point to predict the load of each MECS in the subsequent time
step. Subsequently, decisions are made regarding which MECS should sleep based on these
predictions. To forecast the MECS load, these techniques often model the MECS load as
a time-series sequence and predominantly employ the LSTM (Long Short Term Memory)
model as it is suitable for time-series data prediction. In this approach, the accuracy of the
determined set of sleep MECS based on predicted values depends on the precision of load
prediction for each MECS. Therefore, the optimization of the sleep MECS decision problem
can be reframed as a precise workload prediction problem.

However, since LSTM was originally developed for the prediction of Euclidean data,
its performance may degrade when applied to non-Euclidean data with graph structures
like MEC systems. Therefore, in this paper, we improve the previous method based on the
LSTM predictor in two major aspects. Firstly, we improve the accuracy of the predicted
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task arrival rate. The task arrival rate to an MECS varies in time and space. However,
LSTM exploits only the correlation in the time domain, neglecting the valuable correlation
information in the space domain. We enhance the accuracy of task arrival rate prediction
by using STGCN (Spatio-Temporal Graph Convolution Network) [15]. STGCN extends
the convolution operations commonly used in graph neural networks to both spatial and
temporal dimensions to effectively capture information between neighboring nodes and
detects temporal changes, providing enhanced capabilities in modeling spatio-temporal
data. Secondly, we reduce the prediction delay. Since LSTM has a recurrent architecture, it
processes inputs sequentially. Therefore, the methods based on LSTM are slow in producing
predicted values. On the contrary, since we use the STGCN model that can process inputs
in parallel, we can reduce the time needed to produce predicted values. We can summarize
our contributions as follows.

• We propose a framework for the MECS sleep decision by using STGCN. We define an
input graph for this framework and enhance the prediction accuracy for the workload
distribution in an MEC system by utilizing not only the workload correlations in
each MECS in the time domain, but also the relationships among MECSs in the
space domain.

• Despite the availability of the workload distribution information, determining the
operational modes of individual MECS poses a computationally challenging combi-
natorial optimization problem. To address this, we utilize a genetic algorithm (GA)
to fast compute the optimal operation mode for each MECS at the start of each time
slot, taking into account both energy consumption and service latency factors for all
MECSs in the system.

• Comprehensive simulation studies show that our approach is better than the conven-
tional LSTM-based method in terms of both energy efficiency and the time required
for determining sleep MECSs.

The organization of this paper is as follows. We present related works in Section 2. In
Section 3, we describe the system model and cast the sleep control problem. We describe
our MECS sleep decision method in Section 4. In Section 5, we verify the proposed method
by evaluating its performance via extensive simulation studies. We conclude the paper
with future research directions in Section 6.

2. Related Works
2.1. Preliminary: Graph Neural Networks

Graph neural network (GNN) is a term used to represent the artificial neural networks
designed to process data represented as graphs. The key tasks of GNN include node level
tasks, edge level tasks, and graph-level tasks. In the node level tasks, GNN learns the
features of individual graph nodes by considering their attributes and connectivity. The
learned features can be used for new node classification. For the edge level tasks, a GNN
embeds edge features and uses them to predict possible links and weights indicating the
strength of each connection in a graph. Graph-level tasks involve predicting or classifying
features of the entire graph. For example, it can be used to identify communities within the
entire social graph and create new protein molecules. In general, a computation module
in a GNN is composed of a message function, aggregation function, update function, and
readout function. Depending on the configuration of these functions in the computational
module, various GNNs can be built [16,17]. In [18], according to the primary objectives
and architectural differences of various GNNs, the authors categorize a set of GNNs into
RecGNN (Recurrent GNN), ConvGNN (Convolutional GNN), GAE (Graph AutoEncoder),
and STGNN (Spatial-Temporal GNN). RecGNNs aim to learn node representations via
recurrent structures, introducing the concept of message passing, where nodes exchange
information with neighboring nodes until reaching a stable state. This message passing idea
is adopted by ConvGNNs. ConvGNNs generalize the convolution from Euclidean data
space to non-Euclidean data space, providing a foundation for constructing other complex
GNNs. GAEs are an unsupervised learning model that encodes nodes or graphs into a
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latent vector space and generates new graphs using embedded graph information. STGNNs
focus on learning hidden patterns of graphs that change spatio-temporally, considering
the spatio-temporal correlations of graph information simultaneously. We summarize the
GNN categories in Table 1. For a further review of graph neural networks, we refer the
readers to [16–18] and the references therein.

Table 1. Categories of GNNs.

Category Main Goal Architectural Property

RecGNNs (Recurrent GNNs) Learn node representation Recurrent architecture and message passing

ConvGNNs (Convolutional GNNs) Node/graph classification Extend convolution to non-Euclidean data space

GAEs (Graph AutoEncoders) Node/graph encoding, graph generation Autoencoder using graph convolution

STGNNs (Spatial-Temporal GNNs) Learn latent spatio-temporal pattern in a graph Graph convolution, CNN, RNN

In this paper, we aim to predict the workload of each MECS by considering the
relationship among the MECSs both in the time domain and the space domain. An MEC
system consists of MECSs, which are deployed at the network edge. In an MEC system,
control messages are exchanged between geographically adjacent MECSs for the efficient
operation of the system. Therefore, by considering MECSs as nodes and the geographical
relationships between adjacent MECSs as links, the MEC system can be modeled as a
graph. Since an MECS serves tasks offloaded by users, the load of an MECS is determined
by the number of users and their task-offloading patterns within the MECS service area.
Additionally, the locations of users change over time, and the mobility of users is physically
constrained within a certain distance over a specified period. Consequently, changes in the
user set for each MECS over time impact the user set of neighboring MECSs, influencing
the load of each MECS based on the load of neighboring MECSs. In other words, the load
of each MECS is closely related with the load of its neighboring MECSs over time and
space. Due to its ability to consider spatio-temporal correlations among the related entities,
STGNN is being applied to various applications. For example, in [19], STGNN is used for
road traffic prediction by exploiting complex spatio-temporal correlation of traffic flow.
In [20], STGNN is used for skeleton-based human action cognition by making use of the
skeleton topology information. Motivated by these research trends and the characteristics
of the load distribution in an MEC system, we chose STGCN which belongs to the STGNN
category for predicting the load distribution in an MEC system. Specifically, we extract
node features by representing the spatio-temporal relationships among the loads of each
MECS by adopting STGCN. Then, by using the extracted node features, we predict the
load across each MECS. Subsequently, we utilize this information to determine the optimal
selection of MECSs to sleep by using a genetic algorithm.

2.2. Energy Saving in an MEC System

In line with the energy-saving objectives, studies pertaining to energy efficiency in
an MEC system can be classified into two primary groups. The first group is dedicated to
diminishing the energy consumption in end devices, while the second group is centered
around addressing the energy consumption within an MEC system. User devices have
the potential to conserve energy through the offloading of computing tasks to an MEC
system. However, the task-offloading process itself entails the consumption of transmission
power by the user device. Furthermore, task offloading can introduce an increase in task
completion delay since the processed results are delivered to the user device after the task
is sent to and processed within an MEC system. Consequently, various task-offloading
decision methods are proposed to minimize the energy consumption of a user device.
These methods take into account factors such as computing power, transmission power,
and task completion delay [21–23].

To minimize the energy consumption of an MEC system while providing a reason-
able quality of service to end users, various resource management methods have been
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proposed [24]. Load-balancing methods among MECSs are proposed in [25,26] to increase
the resource efficiency of an MEC system while reducing the system cost. The authors
in [27,28] propose optimal computation resource allocation methods to reduce the energy
consumption of an MECS while ensuring the service delay requirement in each MECS.
Content caching methods are proposed in [29,30] to accommodate the massive computa-
tion demands from users in an energy-efficient manner. Service placement schemes are
proposed to reduce both service completion time and energy consumption by placing the
services requested by users to their serving MECS [31,32].

However, these studies are primarily focused on designing the intended functionalities
in an energy-efficient manner. In other words, they assume all MECSs are always in an
active mode. However, servers consume a considerable amount of energy even in the idle
state. Therefore, if a majority of MECS are underloaded, a potential strategy for decreasing
the overall energy consumption of an MEC system is to activate only a subset of MECSs to
handle tasks while putting the remaining MECSs in a sleep state.

2.3. Sleep Control Methods

Various methods have been proposed to increase the energy efficiency of an MEC
system by controlling the working mode of the MECSs. These methods can be broadly cate-
gorized into distributed methods and centralized methods. Distributed methods use meta-
heuristic optimizations, a bio-inspired method, and game theory. Centralized methods use
the Lyapunov optimization framework, machine learning, and deep learning methods.

The authors in [33] use the particle swarm optimization (PSO) algorithm to control
the operation mode of MECSs. They formulate the MECS sleep control problem as a two-
dimensional optimization problem. Then, they propose a user connection matrix-based AP
sleeping method by using PSO. In the work presented in [12], a bio-inspired method for
controlling the sleep states of MECSs is proposed, drawing inspiration from the inter-cell
signaling mechanism. At the end of each time slot, each MECS engages in periodic load
information exchanges with its neighboring MECSs. Through a distributed process involv-
ing the comparison of relative load levels with those of neighboring MECSs, each MECS
autonomously determines its operational mode. In the study presented in [34], the authors
employ the minority game theory to decide the operational mode of an MECS. They tackle
the distributed computation offloading problem, taking into account the determination of
the MECS operation mode. The minority game is utilized to seek an equilibrium state that
optimally balances the latency of user tasks and the energy consumption within the MEC
system. In these distributed methods, each MECS iteratively determines its sleep mode
until the optimal sleep MECSs from the perspective of the MEC system is obtained. Since
the iterative process takes time until a consensus among MECSs are reached, distributed
methods are slow. In addition, these techniques result in an elevated signaling overhead
due to the necessity of control message exchanges among MECSs.

In centralized methods, each MECS or a central server determines the sleep MECSs
based on the service quality provided by the MEC system, and the amount of energy con-
sumed in the system in an on-demand manner. The Lyapunov optimization framework is
frequently employed to address optimization problems involving unknown future values in
the context of long-term average cost. It transforms the long-term average cost optimization
problem into a per-time-slot cost optimization problem, enabling the development of an
online algorithm that utilizes only currently available information. In [35], the problem of
minimizing long-term average delay under power consumption constraints is formulated.
The Lyapunov optimization framework is applied to solve the formulated problem by
optimizing the sleep and offloading decisions of MECSs. In [36], the problem of minimizing
long-term average total energy consumption under reliability constraints is established. An
online algorithm is devised using the Lyapunov optimization framework, placing MECSs
into a sleep state whenever possible. In [9], the authors formulate the energy optimization
problem under delay constraints. Leveraging the Lyapunov optimization framework, they
convert the long-term energy minimization problem into a per-time-slot problem and
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propose an online sleep control method under non-uniform traffic distribution in an MEC
system. Various machine learning and deep learning methodologies have been proposed
to address the MECS sleep control problem. In [13], an online MECS mode switching
algorithm is introduced, leveraging a linear regression method to predict user distribution
and service requests. By calculating the utility value of each MECS based on the predicted
values, MECSs are selected for sleep during the next time slot by comparing their utility
values with a predefined threshold. The authors in [14] present a method that optimizes
the number of active MECSs using a deep learning model. They employ the LSTM model
to predict the long-term workload and adjust the number of active MECSs in a heuristic
manner based on the predicted workloads. For the joint optimization of task latency and
energy consumption, the authors in [37] adopt a reinforcement learning approach. After
casting a joint optimization problem that minimizes the weighted sum of latency and
energy, they develop a solver for the formulated problem by integrating DDQN (Deep
Reinforcement Learning with Double Q-learning) with the multi-knapsack algorithm.

Centralized methods leverage existing state information of the MEC system to estimate
its future state and use the estimated state to control the mode of MECSs. Therefore, the
precision of the predicted state information becomes the major factor that influences the
performance. The Lyapunov optimization framework transforms the optimization problem
of long-term average cost into a per-time-slot cost optimization problem. In general, the
optimality gap caused by the problem modification is not marginal. To enhance the accuracy
of future state predictions, deep learning models such as LSTM are widely employed.
However, since LSTM was originally developed for the prediction of Euclidean data, its
performance may degrade when applied to non-Euclidean data with graph structures like
MEC systems. Therefore, in this paper, we enhance the previous method based on the
LSTM predictor in two major aspects. Firstly, we improve the accuracy of the predicted
task arrival rate. The task arrival rate to an MECS varies in time and space. However, the
previous methods that predict the task arrival rate for each MECS by using LSTM exploit
only the correlation in the time domain, neglecting the valuable correlation information in
the space domain. We enhance the accuracy of task arrival rate prediction by using STGCN.
STGCN extends the convolution operations commonly used in graph neural networks
to both spatial and temporal dimensions. This convolutional layer effectively captures
information between neighboring nodes and detects temporal changes, providing enhanced
capabilities in modeling spatio-temporal data. Secondly, we reduce the prediction delay.
LSTM has a recurrent architecture which processes the input sequentially. Therefore, the
methods based on LSTM are slow in producing the predicted values. On the contrary,
we use the STGCN model that can process inputs in parallel. Therefore, compared to the
methods based on LSTM, we can reduce the time needed to produce the predicted values.

For easy comparison of the techniques that have been proposed to control the sleep
mode of MECSs, we summarize their main feature by adding Table 2.

Table 2. Comparison of sleep control methods in an MEC system (PSO: Particle Swarm Optimization,
ICS: Inter-Cell Signaling, MG: Minority Game, LOF: Lyapunov Optimization Framework, LR: Linear
Regression, DDQN: Deep Reinforcement Learning with Double Q-Learning, and LSTM: Long Short
Time Memory).

Technique Control Operation Weakness Ref.

PSO AP selection Iterative Long decision time [33]

ICS Relative load level Iterative Long decision time [12]

MG Offload decision Iterative Long decision time [34]

LOF MECS working mode On-demand Optimality gap [9,35,36]

LR Load distribution prediction On-demand Optimality gap [13]

DDQN Cost (sum of delay and energy) On-demand Optimality gap [37]

LSTM Load distribution prediction On-demand Optimality gap [14]

Proposed Load distribution prediction On-demand Fast and near-optimal -
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3. System Model

In this paper, we consider an MEC system in a wireless network composed of a set
of base stations (BSs), a set of MECSs, and a remote controller. We assume that each BS
is located with an MECS. Henceforth, we will use MECS and BS interchangeably unless
stated otherwise. We divide the system time into a series of time slots with equal length ∆t
and consider a discrete time controller. Compared with a cloud server, an MECS is resource
constrained in terms of the computing power and the memory size. Therefore, an MECS
cannot host all the services that a cloud server has at the same time. Since the issue of
service caching in an MEC system is dealt in [2–4], in this paper, we focus on MECS sleep
control by assuming that an MECS contains the necessary services for processing tasks
offloaded to it. In other words, tasks offloaded to an MEC system is served not by a cloud
server but by an MECS.

We denote the set of MECSs in the system as M and the task processing capacity of an
MECS i as Fi. We also denote the service region of an MECS i as Si. If there is any overlap
between Si and Sj, MECS i and MECS j are neighboring MECSs. We denote the set of
neighboring MECSs of an MECS i as Mi. A user u offloads its task to the nearest MECS,
which is called the serving MECS of u. We denote the set of users in Si during a time slot t
as Ui(t). Each MECS has a task queue to accommodate the offloaded tasks. We denote the
task queue length of an MECS i at the beginning of a time slot t as Qi(t).

We introduce a control variable ai(t) that indicates the operation mode of an MECS i
during a time slot t. Specifically, when ai(t) = 0, an MECS i is in a sleep mode during a
time slot t. On the contrary, ai(t) = 1 represents the case where an MECS i is in an active
mode during a time slot t. We denote the number of tasks generated from the users in Si
during a time slot t as λ̂i(t). If ai(t) = 1, λ̂i(t)s are offloaded to their active serving MECS i.
However, if ai(t) = 0, they are offloaded to active neighbors of the MECS i. Therefore, if we
denote the number of tasks newly offloaded to an MECS i during a time slot t as λi(t), it is
zero if ai(t) = 0. In contrast, when ai(t) = 1, λi(t) becomes the sum of λ̂i(t) and the tasks
offloaded to i from the sleeping neighbors of the MECS i. In other words, if we denote the
amount of tasks offloaded to an active MECS i from its sleeping neighbor j during a time
slot t as λ̂j→i(t), λi(t) = λ̂i(t) + ∑j∈Mi

(1 − aj(t))λ̂j→i(t). Then, the dynamics of the task
queue in an MECS i is described as

Qi(t + 1) = max{0, Qi(t) + λi(t)− Fi}. (1)

Bounding the completion time for the tasks offloaded to an MEC system is crucial
for delivering a satisfactory service to users. Since we assume that each task is served
by an MECS once it is offloaded to an MEC system, the time spent to complete a task
in an MEC system is determined by the task queuing delay and the task service delay
in a serving MECS, which depends on the service scheduling policy, task size, and CPU
capacity. We assume that the task service delay is constant because modern servers use
dynamic frequency scaling. If we assume that each MECS processes tasks in a first-in,
first-out (FIFO) manner, the queuing delay is proportional to the queue length. As shown
in Equation (1), the change in the task queue length in an MECS i during a time slot t is
determined by the queue length at the beginning of the time slot t, the amount of new
tasks entering during the time slot t, and the service capacity of an MECS i. Among these
factors, λi(t) is unknown at the start of the time slot. Since λi(t) depends on ai(t), λ̂i(t),
and ∑j∈Mi

(1 − aj(t))λ̂j→i(t), we do not know the characteristics of the task arrival process
to each MECS. Therefore, we take a conservative approach to bound the queue length. In
other words, we aim to maintain Qi(t)s under Qth.

The energy consumed by an MECS depends on its load. According to [9], the energy
consumed by an MECS in an active state during a time slot t is given as

ei(t) = αPm + (1 − α)Pmρi(t), (2)



Appl. Sci. 2024, 14, 605 8 of 18

where Pm is the maximum power consumed when the load is the highest, α ∈ [0, 1] deter-
mines the fraction of power consumed when an MECS is idle, and ρi(t) is the utilization of
a MECS during a time slot t. Since the amount of tasks that an MECS can process during a
time slot is given as ηi(t) = min{Qi(t) + λi(t), ∆tFi}, the utilization of an MECS i during a
time slot t is given as

ρi(t) =
ηi(t)
∆tFi

. (3)

Therefore, the total energy consumed in an MEC system during a time slot is given as

E(t) = ∑
i∈M

ai(t)ei(t). (4)

Our goal is to find an optimal sleep control vector Ω(t) = {a1(t), . . . , a|M|(t)} at the
start of each time slot that minimizes the total energy consumption in an MEC system
while providing a reasonable service to the users. Thus, our MECS sleep control problem is
formulated as follows.

P1 : Ω∗(t) = arg min
Ω(t)

E(t)

s.t. Qi(t) < Qth, ∀t, ∀i ∈ M.

∑
j∈Mi

aj(t) ≥ 1, ∀t, ∀i ∈ M whose ai(t) = 0. (5)

The first constraint is that each MECS bounds its queue length. Wireless communication is
constrained mainly by the distance between a user and a BS. Thus, to offload a task from
a user to an MECS, the distance between them should be below a certain value. In this
paper, we assume that MECSs are provisioned so that each user is able to communicate
with an MECS located at a distance of two hops. Thus, the second constraint is that at least
one of the neighboring MECS of the sleeping MECS must be active. The problem (5) is a
combinatorial problem and is NP-hard in general. In addition, to solve the problem at the
start of each time slot, λi(t)(∀i ∈ M) should be given. However, λi(t) cannot be known at
the time when we need to determine Ω∗(t). Therefore, to resolve these issues, we adopt a
deep learning model STGCN to predict the task arrival rate for each MECS by considering
the spatio-temporal relationship among them. Given the set of predicted task arrival rates,
we employ a genetic algorithm to solve the problem (5) fast.

4. Deep Learning-Inspired Sleep Control Strategy

In Figure 1, we show the overall procedure of our MECS sleep control strategy. Our
MECS sleep control method is composed of two modules. In the first module, at the
beginning of each time slot t, a controller predicts {λ̂i(t + 1) : i ∈ M} by using the spatio-
temporal correlations among the recent past {{λ̂i(t)}, {λ̂i(t − 1)}, . . . , {λ̂i(t − h + 1)}},
where h is the length of the past task arrival rate history. We denote the predicted λ̂i(t) as
λ̃i(t). The second module uses the genetic algorithm to determine the MECS sleep control
vector Ω(t) by using λ̃i(t), Qi(t + 1), and Fi, for all i ∈ M. We explain the operation of
each module in the following subsections.

4.1. Task Arrival Rate Prediction

The amount of tasks offloaded to an MECS i is determined by the number of users in
Ui(t) and their service preferences. Since the distance that a user can move during a time
slot is limited, Ui(t + 1) is influenced mainly by Ui(t) and Uj(t)s, where j ∈ Mi. Therefore,
λ̂i(t + 1) is affected not only by {λ̂i(t), . . . , λ̂i(t − h + 1)} but also λ̂j(t). Consequently, to
increase the prediction accuracy, the spatio-temporal correlation among {λ̂i(t), . . . , λ̂i(t−h+1)}
and λ̂j(t) must be exploited. To make use of the spatio-temporal relationship, we model
an MEC system as a graph G = (V, E). The set of nodes V is the set of MECSs M. The
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elements of the edge set E are the links which reflect the adjacency between MECSs. In
other words, the element (i, j) in E is 1 if j ∈ Mi, otherwise it is zero.

Our goal is to predict the amount of tasks imposed on each MECS during the next
time slot. Thus, we use the history of the workload generated in each Si as a node feature.
We denote the node feature vector as x(t) = {λ̂i(t) : i ∈ M}. Therefore, our task arrival
prediction problem becomes a problem to find a mapping function fp such that

[λ̃1(t + 1), . . . , λ̃|M|(t + 1)] = fp(G; [x(t), . . . , x(t − h + 1)]), (6)

where h is the length of the task-load history.

Figure 1. Deep learning-inspired MECS sleep control framework.

Since an MEC system has a graph structure, we adopt a STGCN model to approximate
fp by capturing and exploiting the spatio-temporal dependency among λ̂i(t − a)s for all
i ∈ M and a ∈ {1, . . . , h − 1}.

As we can see in Figure 1, STGCN is composed of two consecutive ST-Conv blocks
and one output layer. The ST-Conv block is composed of a spatial Graph-Conv module
in between two temporal Gated-Conv modules (Figure 2). The Gated-Conv module is
composed of a 1-D convolution unit having a width Kt kernel followed by GLU (gated
linear unit). We denote the input to the k-th temporal Gated-Conv module in the l-th
ST-Conv block as vk,l = (vk,l(t), . . . , vk,l(t − h + 1) where k, l ∈ {1, 2}. Then, for each node
in G, the 1-D convolution unit performs temporal convolution on vk,l by exploring Kt
neighbors, which reduces the sequence length from h to h − Kt + 1. Two linear layers in
the GLU take the temporal features extracted by the 1-D convolution unit and produces
Pk,l and Qk,l , respectively. Then, GLU outputs ck,l by computing Pk,l ⊙ σ(Qk,l), where ⊙ is
the element-wise Hadamard product. Therefore, if we denote the temporal convolution
kernel for the k-th temporal Gated-Conv module in the l-th ST-Conv block as Γk,l and the
temporal gated convolution operator as ∗T , the temporal gated convolution is expressed as

ck,l = Γk,l ∗T vk,l = Pk,l ⊙ σ(Qk,l), (7)

where σ(·) is a sigmoid function.

Figure 2. ST-Conv block pipeline.

The spatial Graph-Conv module is designed based on a ChebNet [38], which is a
spectral-based GNN. The goal of the spatial Graph-Conv module is to derive the spatial
features from the temporal features extracted by the temporal Gated-Conv module. To
achieve the goal, the spatial Graph-Conv module performs graph convolution on ck,l . We
denote the graph convolution operator as ∗g and the graph convolution kernel used by the
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spatial Graph-Conv module in the l-th ST-Conv block as Θl(l ∈ {1, 2}). We also denote
the input size and the output size of the feature maps as Ci and Co, respectively. Since the
output of the first temporal Gated-Conv module is fed into the spatial Graph-Conv module,
the graph convolution on the input c1,l is given as

Θl ∗g c1,l =
Ci

∑
i=1

Θi,j(L)c1,l , 1 ≤ j ≤ Co, (8)

where Θi,j is the Chebychev coefficients and L is the normalized graph Laplacian.
Since the output of the spatial Graph-Conv module is fed into the second temporal

Gated-Conv module, the final output of the l-th ST-Conv block becomes

vl+1 = Γ2,l ∗T ReLU(Θl ∗g (Γ1,l ∗T v1,l)), (9)

where ReLU is the rectified linear units’ function. The output of the second ST-Conv module
is fed into the fully connected output layer. The output layer performs temporal convolution
on the comprehensive features obtained from two ST-Conv blocks and produces a one-step
prediction {λ̃i(t + 1) : ∀i ∈ M}.

To train the STGCN, the following L2 loss function is used.

L(λ̃|Wθ) = ∑
t
||λ̃(t + 1)− λ̂(t + 1)||2, (10)

where Wθ are all trainable parameters in the STGCN model.

4.2. MECS Sleep Control Vector Determination

After collecting {Qi(t), λ̃i(t), Fi : ∀i ∈ M} at the beginning of each time slot t, a
controller determines an MECS sleep control vector by using GA. To exploit GA, we define
a fitness function for a combination x ∈ Ω(t) as f (x) = −E(t) if x satisfies the queue
length constraint Qi(t) < Qth, ∀i ∈ M. When x violates the queue length constraint, we
set f (x) = −∞.

We create a population Xc by randomly selecting n combinations from the possible
combinations of Ω(t). Among the combinations in Xc, we find the best combination x∗c
as follows.

x∗c = argmaxx∈Xc f (x). (11)

To construct a crossover set Z1 from Xc, we create a temporary set Y by selecting
the best ⌊n/2⌋ combinations from Xc based on the fitness values of ∀x ∈ Xc. Then, we
randomly select two combinations x and y from Y and crossover them to make two children,
z1 and z2. Specifically, we randomly select an index k from [1, m], where m = |M| is
the number of MECSs in an MEC system. Then, we make a child combination z1 by
concatenating x[1 : k] and y[k + 1 : m], where x[1 : k] denotes the first k elements in x and
y[k+ 1 : m] represents the last m− k elements in y. We also make another child combination
z2 by concatenating y[1 : k] and x[k + 1 : m] and put both z1 and z2 into the crossover set Z1.
To construct a mutation set Z2, we mutate the children combination z1 and z2 as follows.
After randomly selecting an index k ∈ [1, m], we mutate za(a ∈ {1, 2}) by changing za[k]
from 0 to 1 or vice versa. Then, we add the mutated z1 and z2 into the mutation set Z2.

After repeating the crossover process and the mutation process ⌊n/2⌋ times, we find
the best combination x∗n in Xc ∪ Z1 ∪ Z2. If f (x∗c ) < f (x∗n), we replace x∗c with x∗n. We
construct a new population Pn by randomly choosing n combinations from Xc ∪ Z1 ∪ Z2
and replace Pc with Pn. We repeat the whole process ng times and output the final x∗c
as Ω∗(t). We summarize the MECS sleep decision algorithm in Algorithm 1.
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Algorithm 1 MECS Sleep Decision Algorithm

1: At the end of a time slot t:
2: Input: {Qi(t), λ̃i(t), Fi}, ∀i ∈ M.
3: Output: Optimal MECS sleep control vector x∗c .
4: Init: n, ng.
5: Construct Xc by randomly selecting n elements from Ω(t).
6: Get x∗c = argmaxx∈Xc f (x).
7: i = 0
8: while i ≤ ng do
9: Create Y by choosing the ⌊n/2⌋ elements in Xc with the highest fittness value.

10: Z1 = Z2 = ∅.
11: j = 0.
12: for j ≤ n do
13: Randomly select x and y from Y.
14: Make z1 and z2 by crossing over x and y.
15: Z1 = Z1 ∪ {z1, z2}
16: Mutate z1 and z2.
17: Z2 = Z2 ∪ {mutated z1, mutated z2}

Find x∗n = argmaxx∈Xc∪Z1∪Z2 f (x)
18: if f (x∗c ) < f (x∗n) then
19: x∗c = x∗n
20: Construct Xn by randomly selecting n elements from Xc ∪ Z1 ∪ Z2.
21: Replace Xc with Xn

22: Return x∗c .

5. Performance Evaluation

In this section, we verify the proposed method via simulation studies. We compare
the performance of our method with that of a conventional method using the LSTM model
as a task arrival rate predictor.

5.1. Simulation Environment Setup

We deploy nine MECSs uniformly across a grid with dimensions of 600 m by 600 m
(Figure 3). The service region of each MECS is configured as the surrounding four grids
with itself at the center. At the beginning of the simulation, we uniformly deploy 275 users
on the topology. Users move around over time according to a random mobility model. In
other words, at the start of each time slot, a user changes its moving direction from (0, 2π],
according to the Uniform distribution, and selects its speed from the Normal distribution
with a mean 15 m per time slot and a variance of 2.5 m per time slot. To maintain the
number of users in the topology, we assume that the top and bottom, as well as left and
right, of the system topology are connected. Therefore, for example, when a user moves to
the right and exits the topology, we add a new user to the left side of the topology.

Figure 3. Simulation topology.
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Users offload their tasks to the nearest MECS. Initially, we configure that each user
generates one task. After the initialization, we dynamically adjust the task generation rate
of each user to change the total load imposed on the system over time. If Qi(t) ≤ Qth
for all MECS i ∈ M at the start of each time slot t, we increase the task generation rate
of each user. The increase rate is randomly selected from {0.05, 0.10, 0.15, 0.20} for each
user. When the load imposed on the MEC system exceeds its capacity, the queue length
of at least one MECS exceeds Qth. Then, after randomly choosing the decrease rate from
{0.05, 0.10, 0.15, 0.20} for each user, we reduce the task generation rate of each user by the
chosen rate. As the task arrival rate decreases, the number of sleeping MECS increases.
However, in accordance with the second condition of the problem P1, at least three MECSs
must remain active to serve users in the MEC system. Therefore, after the reduction in
the task generation rate initiates, we consistently decrease the task arrival rate every time
slot. This continues until the active MECS count reaches three. At this point, we resume
increasing the user’s task generation rate by randomly selecting the increase rate from
{0.05, 0.10, 0.15, 0.20} for each user every time slot.

After conducting the data generation process over 50,000 time slots, we construct the
training dataset using task generation rates observed in the initial 35,000 time slots. The
subsequent 7500 time slots are designated as the validation dataset, and the final 7500
time slots are allocated for the test dataset. In each dataset, a data sample is defined as a
pair ([x(t), . . . , x(t − h + 1)], x(t + 1)), where x(t) = {λ̂i(t) : i ∈ M}. These datasets are
used to train the STGCN. After completing the training of STGCN, we generate x(t) for
1000 time slots via the same data generation process. We then evaluate the performance of
the proposed method by inputting them into the trained STGCN.

We set Pm = 20W, α = 0.5, and Fi = 75 tasks per time slot. We also set the maximum
queue length of each MECS (QM) to 75 and Qth = QM/2. We configure the length of the
task-load history as h = 12. For the genetic algorithm, we set n = |Xc| = 20 and ng = 20.
We use the publicly known values of the LSM model and STGCN model for configuring
their hyperparameters. Specifically, we use the hyperparameters in [39] to configure the
hyperparameters of the LSTM model and employ the hyperparameters in [40] to configure
the STGCN model. One hidden layer with 64 units is used for the LSTM model. Since one
LSTM model has 16,961 parameters and there are nine MECS, a total of 152,649 parameters
are used when the LSTM method is used. The STGCN model is composed of two ST-Conv
blocks and one output layer. The units in the first ST-Conv block is (64, 32, 64) and the units
in the second ST-Conv block is (64, 32, 128). The output layer has (256,128) units. Since
one STGCN model is used for all MECSs, the total parameters when STGCN is used is
193,246. For our simulation study, we use the Colab Pro with CUDA version 12.0. We use
Nvidia Tesla T4 GPU and 51 GB random access memory. When we run these models, we
use Python version 3.10.12, Tensorflow 2.14.0, and Pytorch 2.1.0.

5.2. Task Arrival Rate Prediction Accuracy

To quantitatively compare the accuracy of the task arrival rate prediction, we calculate
the mean absolute error (MAE) and the root mean square error (RMSE) and show the
results in Table 3. We observe that STGCN can predict the task arrival rate more accurately
than LSTM regardless of the location of an MECS in the topology. The difference stems
from the fact that, unlike LSTM, which independently considers the temporal correlation of
the task arrival rate at each MECS, STGCN comprehensively considers the spatio-temporal
relationships of the task arrival rates across all MECSs when predicting the task arrival rate.
For example, compared to the LSTM predictor, the STGCN predictor decreases MAE and
RMSE by 11.24% and 11.01%, respectively, when all MECSs are considered.

To further understand the prediction behavior, we inspect the distribution of the
prediction error (i.e., λ̂i(t)− λ̃i(t)) in Figure 4. In this figure, for ease of visual comparison,
we plot all subfigures with the same ranges for both the x-axis and y-axis. As we can see in
Figure 4, the prediction errors are more densely clustered around zero when using STGCN
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compared to LSTM. In addition, we observe that STGCN exhibits smaller variations in the
errors compared to LSTM.

We also examine the prediction delay. Since LSTM processes inputs sequentially, the
LSTM method takes an average of 450 ms to predict task arrival rates. On the contrary,
STGCN processes inputs in parallel by using graph convolutions. Therefore, the time
required to predict task arrival rates decreases to as small as 10 ms when STGCN is used.
This corresponds to a 93.33% reduction compared to the LSTM method.

Table 3. Comparison of task arrival rate prediction accuracy. MECS 3 is located at the side, MECS 4 is
located at the center, and MECS 8 is located at the vertex of the topology. Total represents the case
where all the MECSs are considered when calculating MAE and RMSE.

STGCN LSTM

MECS MAE RMSE MAE RMSE

3 2.94 3.85 3.26 4.23
4 2.30 2.98 2.54 3.27
8 3.50 4.45 3.90 5.04

Total 3.00 3.88 3.38 4.36

5.3. Performance of Sleep Control Vector Decision Method

We use GA to determine Ω(t). To focus on the influence of GA on the energy con-
sumption and the queue length, we use true task arrival rates (i.e., {λ̂i(t)}) instead of the
predicted task arrival rates (i.e., {λ̃i(t)}) when determining Ω(t) at the beginning of each
time slot. Given λ̂i(t)s, we compare the performance of GA and that of the exhaustive
search (ES) method. Since ES explores all possible instances in the solution space, Ω(t)
found by ES is globally optimal for the given input state.

We measure the difference between E(t) when ES is applied and that when GA is
used and draw the distribution of the difference in E(t) in Figure 5. The circles in the box
plot (Figure 5a) represent the outliers. We observe that the distribution of E(t) when GA
is applied is very similar to that of E(t) when ES is applied. Specifically, the Q-values in
the box plot are Q1 = −12.46, Q2 = −0.43, and Q3 = 0.50. In addition, we observe in
Figure 5b that the difference in E(t) is densely concentrated around zero. We also examine
the Q-values of E(t) when ES and GA were applied, respectively. When ES is used, it
is Q1 = 8.53, Q2 = 10.64, and Q3 = 12.54, but while GA is employed, it is Q1 = 8.61,
Q2 = 10.69, and Q3 = 12.70. Thus, the difference between Q-values obtained by GA and
those when ES is applied is marginal.

In Figure 6, we show the distribution of the differences between the average queue
length (i.e., Q̄(t) = 1

|M| ∑i∈M Qi(t)) when ES is applied and Q̄(t) when GA is utilized.
When compared to the ideal case where the error is zero, the median value (Q2) of Q̄(t)
is 0.54. When we inspect the histogram, the average difference in Q̄(t) is 0.87. To further
inspect the variance of Q̄(t), we examine the interquartile range (IQR), which is the differ-
ence between the 75th percentile and the 25th percentile. In the case of ES, the IQR for Q̄(t)
is 4.40, whereas with GA, the IQR is 3.91, resulting in a difference of 0.49 between them.
Considering that Qth = 37.5, such a difference can be regarded as very small.

We also compare ES and GA in terms of their run time. ES takes an average of 80 ms
to find Ω(t) while GA takes an average of 29 ms. By using GA, we reduce the time needed
to determine Ω(t) by 63.75%.

5.4. Combined Effect

To evaluate the combined effects of the task arrival rate prediction and the sleep control
vector determination, we compare the performance of the proposed method (STGCN-GA)
with that of the following two techniques. The first method denoted by True-ES is an ideal
method that determines Ω(t) via the exhaustive search by using the true task arrival rates
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{λ̂i(t)}. The second method uses GA to determine Ω(t) by exploiting the task arrival rate
predicted by the LSTM model. Henceforth, we denote the second method as LSTM-GA.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Comparison of task arrival rate error distributions. The term ‘Total’ represent the case where
all MECSs are considered. (a) LSTM, MECS 3, (b) STGCN, MECS 3, (c) LSTM, MECS 4, (d) STGCN,
MECS 4, (e) LSTM MECS 8, (f) STGCN, MECS 8, (g) LSTM, Total, and (h) STGCN, Total.
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(a) (b)

Figure 5. Distribution of the difference in E(t) between ES and GA. (a) Box plot; (b) Histogram.

(a) (b)

Figure 6. Distribution of the difference in Q̄(t) between ES and GA. (a) Box plot; (b) Histogram.

We denote the energy consumed at an MECS i during a time slot t when True-ES
is used as eTE

i (t). We also denote by eLG
i (t) the energy consumed at an MECS i during

a time slot t when LSTM-GA is used. We represent the energy consumed at an MECS
i by our method during a time slot t as eSG

i (t). In Figure 7, we show the box plots of
δe,LG

i (t) = eTE
i (t)− eLG

i (t) and δe,SG
i (t) = eTE

i (t)− eSG
i (t). To facilitate the comparison, the

ranges of the y-axis in all subfigures are shown to be the same. We observe that the energy
consumed by the proposed method is closer to the ideal value obtained by the True-ES
method than the energy consumed by LSTM-GA. Specifically, Q2 of δe,LG

i (∀i ∈ M) is −0.52
while Q2 of δe,SG

i (∀i ∈ M) becomes −0.28. In addition, the IQR of δe,LG
i (∀i ∈ M) is 14.10

and the IQR of δe,SG
i (∀i ∈ M) decreases to 12.74.

(a) (b)

Figure 7. Comparison of energy difference distributions for each MECS. (a) Box plots for δe,LG
i (t);

(b) Box plots for δe,SG
i (t).

To investigate the difference between the queue length generated by our method and
LSTM-GA and the ideal queue length generated by True-ES, we introduce the following
symbols. We denote the difference between Q̄(t) obtained by True-ES and that acquired by
our method as δ

q,SG
i (t). We also denote the difference between Q̄(t) obtained by True-ES

and Q̄(t) when LSTM-GA is used as δ
q,LG
i (t). Then, we show the distribution of δ

q,SG
i (t)
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and δ
q,LG
i (t) in Figure 8. We observe that δ

q,SG
i (t) is closer to zero than δ

q,LG
i (t), which

means that the proposed method makes the queue length more similar to the ideal Q̄(t)
obtained by Tru-ES compared to LSTM-GA. Specifically, the median of δ

q,LG
i (t) is 0.56

while the median of δ
q,SG
i (t) is 0.47, which corresponds to a 16.07% reduction. In addition,

the IQR of δ
q,LG
i (t) is 4.20 while the IQR of δ

q,SG
i (t) is 3.87. Thus, the proposed method

decreases the IQR of the queue length difference by 7.86%.

(a) (b)

Figure 8. Comparison of queue length difference distributions. (a) Box plots for δ
q,LG
i (t); (b) Box

plots for δ
q,SG
i (t).

To compare the time taken for sleep control, we examine the end-to-end inference time,
starting from predicting the task input rates to determining the sleep control vector. In
Figure 9, we show the distribution of the end-to-end inference time as the box plots. When
we inspect the Q-values, LSTM-GA obtains Q1 = 440 ms, Q2 = 449 ms, and Q3 = 463 ms.
The proposed method reduces the Q-values significantly. When our method is used,
Q1 = 18 ms, Q2 = 21 ms, and Q3 = 22 ms. In other words, compared to LSTM-GA, the
proposed method decreases the median end-to-end inference time from 449 ms to 21 ms,
which is a 95.32% reduction. With respect to the IQR, our method reduces the IQR of the
end-to-end inference time from 23 ms to 4 ms, which corresponds to an 82.16% decrease.

(a) (b)

Figure 9. End-to-end inference time distribution comparison. (a) LSTM-GA; (b) Proposed method.

6. Conclusions and Future Works

In this paper, we address the MECS sleep control problem in a multi-access edge
computing system. To increase the energy efficiency of an MEC system while bounding
the queue length of each MECS within a given value, we comprehensively exploit the
spatio-temporal correlation structure in the task arrival rate distribution among the MECSs
by using the STGCN model. By using only one STGCN model, we predict the task arrival
rate for each MECS at the same time. In addition, we reduce the time to find an optimal
sleep control vector given a system load state. We evaluate the performance of the proposed
method via extensive simulation studies. The results verify that compared to a conventional
method based on the LSTM model, the proposed method increases the energy efficiency of
a system and decreases the average queue length.
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As our future works, we will investigate methods to deal with the prediction error
involved in the task arrival rate prediction. Any predictor introduces error inevitably. We
will scrutinize the trend of errors that the STGCN predictor causes and analyze the tradeoff
between energy consumption and queue length according to the type of errors. Then, we
will study ways to improve the performance by controlling errors adaptively according to
the operation state of an MEC system.
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