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Abstract: Standard convolution sliding along a fixed direction in common convolutional neural
networks (CNNs) is inconsistent with the direction of aerial targets, making it difficult to effectively
extract features with high-aspect-ratio and arbitrary directional targets. To this end, We have fully
considered the dynamic adaptability of remote sensing (RS) detectors in feature extraction and
the balance of sample gradients during training and designed a plug-and-play dynamic rotation
convolution with an adaptive alignment function. Specifically, we design dynamic convolutions in
the backbone network that can be closely coupled with the spatial features of aerial targets. We design
a network that can capture the rotation angle of aerial targets and dynamically adjust the spatial
sampling position of the convolution to reduce the difference between the convolution and the target
in directional space. In order to improve the stability of the network, a gradient adaptive equalization
loss function is designed during training. The loss function we designed strengthens the gradient of
high-quality samples, dynamically balancing the gradients of samples of different qualities to achieve
stable training of the network. Sufficient experiments were conducted on the DOTA, HRSC-2016,
and UCAS-AOD datasets to demonstrate the effectiveness of the proposed method and to achieve an
effective balance between complexity and accuracy.

Keywords: remote sensing detection; convolutional neural network; dynamic network; rotational
convolution

1. Introduction

Aerial object detection is used to automatically identify objects on surfaces or in air,
such as buildings, roads, vehicles, etc. Its main purpose is to analyze aerial image data
and to use them for resource management, environmental monitoring, urban planning,
military reconnaissance, disaster management, etc. With the development of deep learning
and GPU performance, the application of convolutional neural networks in RS detection is
becoming increasingly widespread.

The object detection framework is usually divided into one-stage [1–3] and two-
stage [4–6] detectors. A one-stage detector utilizes a horizontal anchor box to generate
candidate regions and then performs regression and classification operations to pinpoint
the target accurately. SPP-Net [7] uses a spatial pyramid pooling strategy to generate fixed-
size features without being affected by image scale. SSD [8] achieves end-to-end object
detection by simultaneously predicting the position and category of targets on different
levels of feature maps. However, these methods can lead to misalignment and background
interference between the target and candidate regions. In order to solve the problem,
a two-stage detector achieves alignment between the target and the candidate region
through multiple fine refinements of the candidate regions. All candidate boxes generated
by RPN (including positive samples and the background) would perform nonmaximum
suppression to remove highly repetitive boxes, resulting in the final set of proposal boxes.
The Roi transformer [2] improves the accuracy of target localization by finely adjusting
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the internal features of candidate boxes, thereby eliminating background interference.
Yang [1] designed a new multi-category rotation detector, SCRNet, for small, dense, and
rotating objects, which integrates multi-layer features into anchor sampling to improve
sensitivity for detecting small targets. However, such techniques often necessitate intricate
calculations to eliminate redundant and overlapping candidate boxes, posing challenges
in portability across distinct detectors and leading to increased inference times, rendering
them unsuitable for embedded platforms with limited computational capabilities.

The parameters and structure of these static networks mentioned above are fixed
during inference and are not suitable for aerial targets with high aspect ratios and arbitrary
directional orientations. At present, research on RS object detection has undergone a
transformation from static networks to dynamic networks. Specifically, the structure
or parameters of dynamic networks can adapt to different inputs and have significant
advantages in accuracy, computational efficiency, and adaptability. CAT [9] is a recursive
neural network model that adaptively calculates time, allowing the model to dynamically
adjust the calculation time when processing sequence data to more effectively adapt to
inputs of different step sizes. However, in some cases, the generalization ability of this
method may be limited for different tasks, especially on test data with significant differences
from the train data. Shazeer [10] proposed a neural network structure called the Sparsely-
Gated Mixture-of-Experts layer (MoE), which can support a large model scale and achieve
efficient training and inference through effective gating mechanisms. However, the model
structure is relatively complex, occupying a large amount of storage space, and the training
and inference time would increase.

In summary, the previous dynamic network had high computational complexity,
making it difficult to deploy and apply to various detectors. Specifically, aerial targets such
as planes and ships often have a high aspect ratio and are arranged in multiple directions.
Existing standard convolution structures slide horizontally, which can lead to angular
differences with aerial targets. In samples with high aspect ratios, the majority of preset
boxes that meet the IoU threshold fail to fully encompass the target, and the angle between
these preset boxes and the ground truth boxes is significant. The angle difference between
low-quality samples and truth labels is significant, resulting in significant gradients during
the training process. However, high-quality samples with high cover and ground truth
boxes have smaller gradients, which contribute less to training losses. In general, low-
quality samples with a higher proportion contribute more to the loss, while high-quality
samples with a lower proportion contribute less to the loss, resulting in unstable training.

We design an adaptive rotating target detector with sample dynamic adjustment,
which achieves plug-and-play and high-precision detection without increasing computa-
tional complexity. In the backbone network, an angle estimator that matches the target
orientation is constructed. The spatial sampling position of the convolution kernel is
rotated, and a plug-and-play dynamic convolution layer is designed to ensure that the
convolution operator for feature extraction aligns with the target in the spatial direction.
The loss function we designed amplifies the gradient of samples with high IoU values and
low regression gradients, improving the contribution of high-quality samples to regression
loss. By dynamically adjusting the gradients generated by the samples during the training,
we ensure efficient and stable training of the model. Our contributions are as follows:

(1) We systematically analyze the problem of feature misalignment and imbalanced
gradients caused by different quality samples during the training process of the
current RS detector.

(2) In the feature extraction stage, we design a plug-and-play rotating dynamic convolu-
tion that can adaptively align the convolution with the target direction based on the
spatial distribution of the target.

(3) In training, we design a gradient adaptive equalization loss function to optimize the
contribution of gradients from different samples to regression loss and improve the
training stability.
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The organizational structure is as follows: In Section 2, rotating object detection and
dynamic networks are introduced. Section 3 proposes two innovative designs, namely
dynamic convolution aligned with the target direction and gradient adaptive equalization
loss function for sample balancing. Section 4 conducted a series of comparison and ablation
experiments on three public datasets to demonstrate the effectiveness of our method.
Section 5 summarizes and analyzes the proposed methods.

2. Related Work

In this section, we first review the main work on rotating object detection and then
introduce relevant research on dynamic networks. It is worth noting that most of these
tasks require large-scale adjustments to the network structure, making it difficult to apply.

A. Rotating object detection

The detector [11] based on rotating boxes effectively solves the problem of severe
background interference and repeated detection boxes in the field of aerial targets. For
rotating target detectors, the current research mainly focuses on three aspects: rotation
feature extraction, rotation box generation, and loss function optimization.

Rotation feature extraction: at present, most rotation target detectors use ResNet as
the backbone network to extract the angle feature through the design of the improved
convolution module. Azimi [12] designed a cascaded network that generates rotational
features in the backbone network through feature pyramid networks and multi-scale
convolution kernels. This makes target direction detection more robust, but it can lead to a
complex model structure. Ran [13] designed a lightweight rotation detector and added an
enhanced channel attention (ECA) module in each layer to strengthen the representation
ability of the model and to improve the detection performance. However, the features
of small targets are easily lost during downsampling. RODFormer [14] uses a structured
transformer to collect features of different resolutions, which is convenient for detecting
targets densely distributed from multiple angles in aerial images.

Rotation box generation: Ding [2] designed a rotation region of interest learner (RRoI
Learner) module that adds a small amount of computation to apply spatial transformation
to RoIs and generates rotation boxes to solve the problem of misalignment between hori-
zontal boxes and targets. However, this method ignores angle deviation and is prone to
missing targets with large aspect ratios. Xu [3] generated a rotation box by sliding four
vertices on the horizontal box. This rotation box generation method has a small angle
deviation, but it also has the problem of inaccurate boundary box regression and slow
inference speed. When the object is in a 3D environment, the quaternion [15] can be used to
rotate the target. The quaternion cannot be applied to 2D environments, so we use matrices
for rotation transformation.

Regression loss function optimization: GWD [16] uses the Gaussian Wasserstein dis-
tance instead of the nondifferentiable rotation IoU to optimize the regression loss function,
align model training with measurement standards, and solve the problem of a discontinu-
ous rotation angle range. Yang [17] proposed an approximate SkewIoU loss based on the
Gaussian product, which solves the problem of gradient explosion or vanishment during
the training of rotation detectors.

However, the designed models are often too complex and difficult to transplant to
different detectors. The variable rotation convolution kernel proposed in this paper serves
as a plugin module, which is more convenient to embed into the detector and improves the
model’s detection performance for rotating targets.

B. Dynamic network

A network that adjusts its structure or parameters based on different models during
inference is called dynamic network [18,19], which is an emerging topic in deep learning.
Compared to static network, a dynamic network improves the inference efficiency and
compatibility of the model. From the perspective of data processing and training parameter
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optimization, the dynamic network is mainly divided into two categories: spatial dynamic
networks and sample dynamic networks.

Spatial dynamic networks focus on areas with the highest correlation with the target
and perform spatial adaptive inference on these areas, while areas with little correlation
with the target can be ignored. Yang [20] proposed a resolution adaptive network (RANet),
which contains multiple deep subnets with different weights. The samples are first identi-
fied from the subnet with the smallest weight. If the results meet the conditions, the sample
exits the network early. Otherwise, the samples are input to a subnet with higher weights
for identification, achieving a balance between accuracy and computational complexity and
reducing spatial redundancy. Ming [21] proposed a sparse label assignment strategy (SLA)
that selects high-quality sparse anchors based on the fixed IoU, dynamically balancing the
inconsistency of classification and regression during training.

Sample dynamic networks can be subdivided into dynamic architecture and dynamic
parameters based on different data processing methods. The dynamic architecture dynami-
cally adjusts the network structure based on different input samples, effectively reducing
redundant calculations. BranchyNet [22] has an additional branch classifier that allows
test samples to exit the network early through these classifiers. SkipNet [23] is a residual
network with gating units that selectively skip unnecessary convolution layers during
inference, significantly reducing the inference time of the model. When the input data
are fixed, the network parameters can be adjusted to improve the feature extraction effect,
which will lead to a small increase in computational costs. Su [24] proposed pixel-adaptive
convolution (PAC), which multiplies filter weights with convolution kernels with spatial
variations to address the limitations of the content adaptation layer. The proposed method
with dynamic parameter specificity improves the feature extraction ability of the backbone
by transforming the sampling positions of the convolutional kernel. The detection effect on
rotating targets is particularly significant.

3. Method

Unlike previous work, we systematically analyzed the impact of multi-directional
targets on RS detectors during feature extraction and training. Instead of devising a
complex network architecture, it is imperative to craft an adaptive feature extractor that
aligns and rotates effectively. Then, the rotation direction of the convolution kernel is
dynamically adjusted to adaptively align with the target orientation. The gradients of the
model are further simultaneously optimized during training to avoid gradient imbalance
caused by large gradient sample data. The overall structure is shown in Figure 1. In
particular, the features extracted from the backbone network are input into the dynamic
convolution module (DCM), where efficient aggregation of features is achieved through
convolutional operations and average pooling. Two activation function branches were
designed in DCM to predict the angle and weight of convolution rotation. The spatial
sampling of the convolution kernel’s rotation direction is determined by both rotation
angle and weight, utilizing a rotated convolution kernel for multi-directional feature
extraction. Then, the feature pyramid network constructs classifiers and regressors based
on the multi-directional features. We design a gradient adaptive equalization loss function
during training to balance samples with different gradient contributions and to improve
training efficiency.
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Figure 1. The framework we propose consists of three parts: Dynamic Convolutional Module (DCM),
Feature Pyramid, and Classification Detection Head. Firstly, the target angle is predicted using DCM
and the convolutional kernel is rotated. Then, the extracted rotational features are input into the
feature set pyramid to fuse multi-scale information. Finally, a gradient adaptive equalization loss
function is used to perform equalization on the network.

3.1. Dynamic Convolution

As shown in Figure 2, we rotate the convolution to make the network more suitable
for arbitrary directional RS object detection.

Figure 2. Firstly, to address the issue of feature errors in RS detection, we dynamically rotated
the convolution to effectively extract features from multi-directional targets. Secondly, in order to
solve the problem of imbalanced gradients in high-quality positive samples, a gradient adaptive
equalization loss function was designed.
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Spatial angle prediction: A feature with the size [Cin, H, W] is input into the DCM
module, firstly, through the calculation of 3 × 3 convolution kernels W3×3, followed by
ReLU activation relu(·) and average pooling ave(·) to achieve efficient aggregation of the
feature. The formula is expressed as follows:

x′ = ave(relu(W3×3 ∗ x)) (1)

Then, the feature is input into two branches separately. The first branch consists
of a linear layer and a softsign activation function. The range interval of the softsign
activation function is [−1, 1], and the curve is smooth, used to predict the rotation angle
θ = [θ1, θ2, · · · , θn]. The linear layer deviation is set to False to avoid angle errors. The
formula is as follows:

θ = so f tsign(x′) (2)

where θ represents the angle of the predicted rotating target, and x′ is the feature of the
rotating target extracted from the backbone network. The purpose of Formula (2) is to
output the rotated target features extracted by the network as parameters to the softsign
activation function and to calculate the angle of the rotated target. This angle serves as a
parameter for rotational convolution, ultimately aligning the convolution with the remote
sensing target in the spatial direction. so f tsign(·) can be expressed as follows:

so f tsign(x) =
x

1 + |x| (3)

The second branch consists of a linear layer with bias and a sigmoid activation function.
The range interval of the sigmoid activation function is [0, 1], which is used to predict the
combination weight λ = [λ1, λ2, · · · , λn], and the formula is as follows:

λ = sigmoid(x′) (4)

where λ is a set of weight vectors corresponding to θ. By weighted summation, the final
prediction of the rotation target angle is made. sigmoid(·) can be expressed as follows:

sigmoid(x) =
1

1 + exp(−x)
(5)

Due to the possibility of multiple targets being in the same image, considering spatial
richness, spatial angle prediction is used to calculate a set of angles and a set of weights
and to match the best rotational convolution kernel for different targets through weighted
summation. The rotation angle θ and multi-angle weighting factor λ obtained in the spatial
angle prediction section are used as parameters and input into the second part of DCM to
generate a rotation convolution kernel.

Dynamic rotation convolution: If standard convolution is used for the feature extrac-
tion of multi-directional targets, the features shown in Figure 3a would be obtained. It can
be seen that there is an angle between the convolution and the target, which can lead to an
offset between the extracted features and the target, resulting in a large amount of invalid
information in the features.

DCM has n convolutions kernels W = (W1, W2, · · ·, Wn), each with a shape of
[Cin, Cout, k, k], and Cin and Cout representing the number of input and output channels.
The size of the convolution kernel is k × k. Firstly, a single rotational convolution kernel W ′

is calculated, taking θi and Wi as parameters and using the Rotate(·) function:

W ′
i = Rotate(Wi, θi), i = 1, 2, . . . , n (6)

As shown in Figure 3b, each convolution kernel Wi is rotated clockwise by an angle of
θi, and each convolution kernel is added according to the weight λi to obtain a spatially
aligned rotated convolution kernel W ′ with the target. Then, the rotational convolution
kernel is used to extract features from the target, as shown in Figure 3c. By comparing
the feature extraction methods of standard convolution and rotational convolution, it is
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evident that our approach accounts for the directional characteristics of the target, making
it more suitable for the extraction of arbitrary directional aerial target features.

Figure 3. (a) Standard convolution for feature extraction (b) DCM predicts the rotation angle of
convolution (c) Rotational convolution for feature extraction. DCM Predicts multiple angle branches
with different weights. Weighted sum of these angle branches to predict the rotation angle of
multi-directional remote sensing targets.

The rotation convolution kernel W ′ and feature perform convolution operations to
extract rotation features. In order to establish the correlation between feature channels,
the rotational features of each part are summed according to their weights to calculate the
aligned rotational feature with the target:

y = λ1
(
W ′

1 ∗ x
)
+ λ2

(
W ′

2 ∗ x
)
+ · · ·+ λn

(
W ′

n ∗ x
)

(7)

Formula (7) has multiple convolution operations. According to the distribution law of
convolution, it can be written as follows:

y =
(
λ1W ′

1 + λ2W ′
2 + · · ·+ λnW ′

n
)
∗ x (8)

Formula (8) indicates that the rotation weight of the combination is first calculated,
and then, convolution operation is performed with feature x. Compared to the standard
convolution, the newly added computational complexity of the convolution operation
can be ignored. Moreover, through dynamic rotation convolution, the network is more
sensitive to the angle features of aerial targets.

3.2. Gradient Adaptive Equalization Loss

Aerial targets often have the characteristics of a high aspect ratio, multi-directionality,
and a dense layout. Most mainstream networks have horizontal detection boxes. If directly
applied to aerial targets, the detection boxes will contain a large amount of background
information, and invalid background information would lead to a decrease in detection
accuracy. These mainstream networks adopt a multi-task learning mode, which trains both
classification and regression tasks simultaneously. The loss function is defined as follows:

L = Lcls(k, u) + λLreg(p, v) (9)

where lcls and lreg represent the loss functions for classification and regression, and k and
p represent the corresponding predicted values. u and v are the corresponding labels. λ
is a hyperparameter that adjusts the regression loss weight in multi-task learning. The
regression loss function usually uses a smooth L1, defined as follows:
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Lsmooth(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

(10)

The partial derivative of Formula (10) is calculated to obtain the gradient function of
the smooth L1:

∂Lsmooth
∂x

=

{
x if |x| < 1
±1 otherwise

(11)

RS object detection focuses on the accuracy of the regression box. If the weight of
the λ is directly increased, it will make the abnormal samples with large gradients and
severe background interference in the regression loss more sensitive, which is unfavorable
for training. From Formula (11), it can be seen that for the parts with larger gradients,
the calculated losses are also larger, which leads to the model paying more attention to
abnormal samples. In comparison to abnormal samples, some high-quality samples in
aerial targets possess smaller gradients during training, leading to insufficient contributions
to the losses. The smooth-L1 loss function did not adequately train this portion of high-
quality samples. As shown in Figure 2, a gradient adaptive equalization loss function was
designed to improve the stability of the RS detection network.

Therefore, we design the gradient adaptive equalization loss function Lgae and first
provide the definition of its gradient function:

∂Lgae

∂x
=

{
a ln(b|x|+ 1) if |x| < 1
c otherwise

(12)

If the upper limit of the gradient is not set, training will pay more attention to some
abnormal samples with large gradients, while ignoring high-quality samples, which will
cause uneven training. Therefore, the upper limit of the gradient c is set. In order to ensure
the continuity of the gradient, the relationship between the equilibrium parameters a, b,
and c is as follows:

aln(b + 1) = c (13)

From Figure 4a, it can be seen that compared to the smooth L1 gradient function, Lgae
amplifies the value of the small gradient, indicating that the network pays more attention
to the regression loss of high-quality samples during training. Moreover, as the equilibrium
parameter a increases, the small gradient value also increases without affecting the large
gradient value part. Finally, the weight of the high-quality samples in training are increased,
the gradient function is integrated, and the loss function Lgae is obtained:

Lgae(x) =
{ a

b (b|x|+ 1) ln(b|x|+ 1)− a|x| if |x| < 1
c|x| otherwise

(14)

In this experiment, a = 0.5 and c = 1.5.
Lgae performs gradient amplification on high-quality samples, thereby increasing

the contribution of high-quality samples to regression losses and promoting network
equalization training.

To ensure the balance of sample categories, the classification loss function Focal Loss
is selected, defined as follows:

Lcls(k, u) =
{

− log(k) if u = 1
− log(1 − k) otherwise

(15)

The overall loss function is as follows:

L = Lcls(k, u) + λLgae(x) (16)

Among them, hyperparameter λ = 0.5.
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In this way, DCM performs dynamic rotation operations on convolution, improving
the fitting ability between convolution and the target and enhancing the model’s ability to
extract directional features. A gradient adaptive equalization loss function is proposed to
balance the loss gradient of high-quality samples during training, making model training
more efficient.

(a) (b)

Figure 4. (a) The relationship between regression values and gradients. (b) The relationship between
regression values and losses; the smaller the regression value, the smaller the difference between the
predicted results of the model and the true labels, which usually occurs on high-quality samples.

4. Experiment
4.1. Datasets

HRSC2016 [25] is a publicly available RS ship dataset, which features densely arranged
and diverse directions of docked ships, with complex image backgrounds. The texture
of the ship is similar to that of the shore, and there are significant differences in the scale
of multiple targets in one image. This dataset consists of 1061 images, with a resolution
ranging from 300 × 300 to 1500 × 900. For the detection accuracy of HRSC2016, we used
the average precision (AP) as the evaluation standard, which is consistent with PASCAL
VOC 2012.

UCAS-AOD [26] is a aerial image dataset used for detecting two types of targets: cars
and airplanes. Among them, the plane dataset has 600 images including 3210 airplanes, and
the automotive dataset has 310 images including 2819 vehicles. All images were carefully
selected, and the targets are densely arranged with significant directional differences. We
randomly divided it into training set, validation set, and testing set, with a distribution
ratio of 6:2:2.

DOTA [27] is a public large-scale rotating object detection dataset that includes
2806 aerial and satellite images, as well as 188,282 annotation boxes. The image reso-
lution span is large, ranging from 800 × 800 to 4000 × 4000. These images mainly come
from Google Earth, a dataset with 15 categories, and the targets in the images are densely
arranged, with diverse directions and some targets obstructed, reflecting real-world scenes.

4.2. Evaluation

In RS object detection tasks, we commonly use precision P to represent the proportion
of correctly predicted true-positive samples to the total number of predicted positive
samples. The recall rate R represents the proportion of the correctly predicted positive
samples to the actual number of positive samples.

P =
TP

TP + FP
(17)
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R =
TP

TP + FN
(18)

Among them, FP represents predicting negative class errors as positive class numbers,
and FN represents predicting positive class errors as negative class numbers. However,
accuracy and recall are mutually exclusive metrics, as achieving high levels of one often
results in suboptimal performance for the other. In order to comprehensively evaluate
the performance of the model, this paper selects mean average precision (mAP) as the
measurement standard for RS object detection. The mathematical meaning of average
accuracy AP is the area of the P-R curve, as follows:

AP =
∫ 1

0
P(R)dR (19)

When the detection object has J categories, mAP is defined as follows:

mAP =
1
J

J

∑
i=1

APi (20)

The complexity of the algorithm is measured by the number of parameters (Params)
and the number of floating-point operations (FLOPs). The Params formula is as follows:

Params = Cout × (kw × kh × Cin + 1) (21)

Among them, Cout represents the number of output channels, Cin represents the number of
input channels, and kw × kh represents the size of the convolution.

4.3. Parameter Settings

For fair comparison with other methods, all experiments were implemented on Py-
Torch. The environment was Ubuntu 18.04, Python 3.8, and Python 1.7.0. We chose to
pre-train the ResNet101 [28] model on ImageNet as the backbone network for RS object
detection. All experiments were conducted using NVIDIA Titan X GPU, limited by the
number of GPUs. The batch size was set to 8, and the epochs for model training were 400.
The initial learning rate was 0.02, and the network was trained by the Adam optimizer. The
initial momentum and weight attenuation were set to 0.9 and 5 × 10−4, respectively. In
order to eliminate the impact of randomness, each group of experiments was conducted
three times and the average was taken to obtain accurate experimental data.

4.4. Ablation Studies
4.4.1. Evaluate Different Modules

To verify the improvement in dynamic convolution and gradient adaptive equalization
loss functions in RS object detection performance, we conducted ablation experiments on
the HRSC-2016 and UCAS-ADO datasets. Table 1 lists the experimental results of this
model on the HRSC-2016 dataset. The mAP of the baseline model is only 84.35%, which
is because ordinary convolutions slide horizontally along the axis, making it difficult to
model high-aspect-ratio and multi-directional targets. When DCM modules were added
to the backbone network, mAP increased by 4.34%. This indicates that the dynamic
rotation convolution proposed in this paper is more sensitive to the direction of aerial
targets, improving the network’s ability to extract directional features. After using the loss
function GAE, mAP improved by 2.88%. This suggests inadequate training of high-quality
samples in aerial targets. By optimizing the loss function and enhancing the gradients
in this segment, the training performance of the model can be improved. When both
DCM and GAE are added to the network model, mAP increases by 5.79% and reaches
a maximum value of 90.14% This indicates that the dynamic convolution and gradient
adaptive equalization loss functions could enhance the network’s ability to model the
target spatial direction while maintaining training stability, thereby significantly improving
detection performance.
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Table 1. Effects of different modules on the HRSC-2016.

With DCM With GAE mAP (%)

% % 84.35

! % 88.69

% ! 87.23

! ! 90.14

DCM: the dynamic convolution module; GAE: the gradient adaptive equalization loss function.

We achieved similar experimental results on the UCAS-ADO dataset. Table 2 com-
pares individual modules and proves that the superposition of two modules has the most
significant improvement effect on the network. In feature extraction, DCM improves the
model’s ability to extract direction features. During training, GAE balanced the sample
gradient and increased the contribution of high-quality samples to the loss. There is no
conflict between the DCM and gradient adaptive equalization loss function, and when
used simultaneously, the mAP reaches 90.52%.

Table 2. Effects of different modules on the UCAS-AOD.

With DCM With GAE mAP (%)

% % 86.79

! % 88.14

% ! 87.43

! ! 90.52

4.4.2. Evaluate DCM

To further validate the effectiveness of the proposed DCM, Table 3 validated the impact
of convolution number n on network performance on the HRSC-2016 dataset. n = 0 is the
baseline model without the addition of DCM, and as the number of convolution kernels
increases, mAP also continuously increases. When n = 1, it indicates that only one rotation
convolution kernel is added, which increases mAP by 1.14% compared to the baseline
model. This indicates that the rotation convolution can better extract the features of rotating
targets. When n = 4, mAP reaches its maximum value of 90.41%, indicating that using
multiple rotation convolution weighted summation is more effective. As the value of n
continues to increase, mAP actually decreases. This indicates that when DCM has four
rotation angle branches, dynamic rotation convolution has extracted enough directional
feature information. The rotational characteristics of the target are limited, and increasing
the value of n does not enhance the model’s performance. Nevertheless, the number of
parameters (Params) will continue to grow, thereby increasing the model’s complexity and
potentially impeding training.

Table 3. The impact of quantity n on network performance.

n Number mAP (%) Params (M)

0 84.32 73.24

1 87.24 74.38

2 88.46 78.42

4 90.41 79.57

8 88.66 96.52
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4.4.3. Evaluate GAE

To verify the effectiveness of GAE, we investigated the improvement in parameter a
on model performance on the HRSC-2016 dataset.

From Table 4, it can be seen that selecting the gradient adaptive equalization loss
function has a higher mAP than the baseline model with a loss function of smooth L1.
When a = 0.5, we improved by 1.02% compared to the baseline model, and as the value of a
decreased, mAP gradually increased. When a = 0.2, the mAP with the best performance of
90.41% was achieved, and compared to the baseline mode, the mAP improved by 6.06%.
This indicates that the loss function we designed balances the weights of high-quality
samples during the training process, improving the training effect. But, as the value of a
continues to decrease, when a = 0.1, mAP actually decreases. This indicates that an a value
too small during the training will disrupt the balance weight of high-quality samples again.

Table 4. Impact of parameter a on model performance.

Settings mAP (%)

smooth-L1 84.35

a = 0.1 87.85

a = 0.2 90.41

a = 0.3 88.64

a = 0.4 88.59

a = 0.5 85.37

a = 0.8 84.02

a = 1.5 79.82

4.5. Comparative Experiment
4.5.1. Experiment on DOTA

Our method was compared with other recent methods on DOTA. As shown in Table 5,
for some categories such as plane (PL), baseball diamond (BD), bridge (BR), ground track
field (GTF), soccer ball field (SBF), roundabout (RA), and helicopter (HC), our detection
results were the best, with AP values of 90.23%, 86.71%, 61.24%, 84.65%, 69.89%, 81.37%,
and 71.48% respectively. By synthesizing 15 categories, the mAP of this paper reached
79.6%, which is the highest among all methods.

Table 5. Comparison of the mAP of different methods in the DOTA dataset and the AP of each category.

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Single-stage:

DRN [4] 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70

R3Det [29] 88.76 83.09 50.91 67.27 76.23 80.39 86.72 90.78 84.68 83.24 61.98 61.35 66.91 70.63 53.94 73.79

FFA3 [30] 88.80 74.40 48.90 57.90 63.60 75.90 79.60 90.80 80.30 82.90 54.30 60.00 66.90 66.80 42.50 68.90

GGHL [31] 89.74 85.63 44.50 77.48 76.72 80.45 86.16 90.83 88.18 86.25 67.07 69.40 73.38 68.45 70.15 76.95

DAL [6] 88.68 76.55 45.08 66.80 67.00 76.76 79.74 90.84 79.54 78.45 57.71 62.27 69.05 73.14 60.11 71.44

RIDet-O [32] 88.94 78.45 46.87 72.63 77.63 80.68 88.18 90.55 81.33 83.61 64.85 63.72 73.09 73.13 56.87 74.70

CADNet [33] 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.9 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90
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Table 5. Cont.

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Two-stage:

ICN [12] 81.36 74.30 47.70 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23 68.16

RRPN [34] 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.84 53.08 51.94 53.58 61.01

SCRDet [1] 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.52 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

A2RMNet [35] 89.84 83.39 60.06 73.46 79.25 73.07 87.88 90.90 87.02 87.35 60.74 69.05 79.88 79.74 65.17 78.45

FAOD [36] 90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 65.42 74.17 69.69 64.86 73.28

FR-Est [37] 89.63 81.17 50.44 70.19 73.52 77.98 86.44 90.82 84.13 83.56 60.64 66.59 70.59 66.72 60.55 74.20

CenterMap [38] 88.88 81.24 53.15 60.65 78.62 66.55 78.10 88.83 77.80 83.61 49.36 66.19 72.10 72.36 58.70 71.74

Ours 90.23 86.71 61.24 84.65 70.09 80.54 88.01 90.45 87.46 76.89 69.89 81.37 78.91 68.89 71.48 79.38

Each abbreviation is represented as:

Full
Name plane baseball

diamond bridge
ground

track
field

small
vehicle

large
vehicle ship tennis

court

basket-
ball

court

storage
tank

soccer-
ball
field

round-
about harbor

swim-
ming
pool

heli-
copter –

This method aligns the rotation convolution with the target, enabling more accurate
detection of targets with rotation angles. These results indicate that the key to achieving
precise detection of aerial targets is to construct an adaptive feature extractor for rotating
targets and design feature filters that can characterize the direction of the target. At the
same time, in the training set stage of the network, the model training efficiency is improved
by optimizing the gradient imbalance problem. These two modules work together to ensure
maximum improvement in network performance.

Figure 5 shows the detection performance of this method on the DOAT dataset, with
the first row of images containing a large number of small targets of different categories
and densely arranged. Our method can clearly detect every target, which proves that
the dynamic rotation convolution proposed has good adaptability to direction, making
the extracted features closely fit small targets, thereby improving the network’s detection
ability for small targets. The ships, docks, and other targets in the second row of images
are distributed in multiple directions, and this method can also accurately detect each
target direction. This suggests that the DCM module employed in this study enhances the
network’s ability to model target directional features, enabling the accurate detection of
multiple targets with distinct directional disparities.

4.5.2. Experiment on HRSC-2016

We compared this method with other methods on the HRC-2016 dataset. From Table 6,
it can be seen that compared to other methods, our method achieves 1.11% and 0.81% higher
AP values than R3Det and AR2Det and is superior to the other one-stage and two-stage
detectors in the table. For targets with high aspect ratios and significant scale differences in
aerial targets, the detection performance of this method is better.

Figure 6 shows the detection results of our method on the HRSC-2016 dataset. The
first row of images contains a large number of targets with significant scale differences. Our
method can accurately detect ships of various scales. The ship in the second row of images
has the characteristics of a high aspect ratio and a dense multi-directional layout, and the
detection box can better fit the target. This indicates that DCM optimizes the convolution
feature extraction method and is more suitable for multi-directional aerial targets.
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Figure 5. Visualize the results of this method on DOTA.

Table 6. Comparison of different single-stage and two-stage methods on the HRSC-2016 dataset.

Methods Backbone Size mAP (%)

Two-stage:

R2CNN [39] Res101 800 × 800 73.1

R2PN [40] VGG16 - 79.6

AOPG [41] Res50 800 × 800 80.6

RoI-Trans [2] Res101 512 × 800 86.2

Single-stage:

R3Det [1] Res101 800 × 800 89.3

RRD [42] VGG16 384 × 384 84.3

OPLD [43] Res101 800 × 800 88.4

AR2Det [44] Res101 512 × 512 89.6

SDet [45] Res101 800 × 800 89.2

ours Res101 800 × 800 90.41

4.5.3. Experiment on UCAS-AOD

As shown in Table 7, comparing different methods on the UCAS-AOD dataset, our
method was the best, with an mAP of 90.52%.

Table 7. Comparison with multiple methods on UCAS-AOD.

Methods Car Airplane mAP (%)

R-RetinaNet [46] 84.65 85.46 78.19

R2PN [40] 76.74 88.66 78.63

RoI-Trans [2] 88.02 90.02 89.02

S2ANet [47] 89.56 90.42 89.99

RIDet-O [32] 88.88 90.35 89.62

ours 86.64 94.28 90.52
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Figure 7 shows the detection results of this method on the UCAS-AOD dataset. In
the first row of images, the vehicle is obstructed by trees and buildings. This network is
sensitive to the features of the target spatial direction, so it can detect partially occluded
targets by predicting the direction and width of vehicles. The airplane in the second row of
images exhibits characteristics with different directions and a dense layout. We ensured the
accuracy of model detection through balanced loss training.

Figure 6. The detection effect of this method on HRSC-2016.

Figure 7. The detection effect of this method on the UCAS-AOD. The yellow box represents detec-
tion results.

Table 8 compares the inference time and mAP values of different models. Our pro-
posed method has a significant improvement in model size compared to Faster RCNN
and SSD, with significantly reduced Params and FLOPs of 133.9M and 65.1G, respectively.
Running on 11th Gen Intel (R) Core (TM) i7 with hardware conditions, our fps reached a
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maximum value of 8 and mAP also reached a maximum of 86.8%. Table 8 demonstrates
that our method has improved accuracy and inference time compared to other models.

Table 8. Comparing the inference time of different models.

Methods Params (M) FLOPs (G) fps mAP (%)

Faster RCNN [48] 361.1 100.5 1 83.2

SSD [8] 190.6 212.6 3 81.7

CenterNet [49] 124.0 62.3 4 84.3

ours 133.9 65.1 8 86.8

5. Conclusions

We systematically analyzed the problem of feature misalignment and imbalanced
sample training in the current model for RS detection. To begin, in the backbone network,
we devised an adaptive rotation convolution that aligns with the spatial direction of the
target. The convolution kernels dynamically rotate based on the orientation of the aerial
target. Different branches were designed to enable the network to efficiently capture the
directional features of multiple targets in the image. The designed DCM module can
be plug-and-play ported to any backbone network with convolution layers. Secondly,
an adaptive equalization loss function was designed during the training to improve the
contribution of high-quality samples and to ensure the stability of sample training. The
effectiveness of the method has been proven on three common datasets: DOTA, HRSC-2016,
and UCAS-AOD.
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