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Abstract: Grayscale image processing is a key research area in the field of computer vision and image
analysis, where image quality and visualization effects may be seriously damaged by high-density salt
and pepper noise. A traditional median filter for noise removal may result in poor detail reservation
performance under strong noise and the judgment performance of different noise characteristics
has strong dependence and rather weak robustness. In order to reduce the effects of high-density
salt and pepper noise on image quality when processing high-noise grayscale images, an improved
two-dimensional maximum Shannon entropy median filter (TSETMF) is proposed for the adaptive
selection of a threshold to enhance the filter performance while stably and effectively retaining the
details of the images. The framework of the proposed improved TSETMF algorithm is designed
in detail. The noise in images is filtered by means of automatically partitioning a window size,
the threshold value of which is adaptively calculated using two-dimensional maximum Shannon
entropy. The theoretical model is verified and analyzed through comparative experiments using
three kinds of classical grayscale images. The experimental results demonstrate that the proposed
improved TSETMF algorithm exhibits better processing performance than that of the traditional
filter, with a higher suppression of high-density noise and denoising stability. This stronger ability
while processing high-density noise is demonstrated by a higher peak signal-to-noise ratio (PSNR) of
24.97 dB with a 95% noise density located in the classical Lena grayscale image. The better denoising
stability, with a noise density from 5% to 95%, is demonstrated by the minor decline in the PSNR of
approximately 10.78% relative to a PSNR of 23.10 dB located in the classical Cameraman grayscale
image. Furthermore, it can be advanced to promote higher noise filtering and stability for processing
high-density salt and pepper noise in grayscale images.

Keywords: image denoising; adaptive filters; filtering theory; image filtering; high-noise grayscale image

1. Introduction

A grayscale image is a significant representation of image information, containing
black, white, and different shades of gray, which can be extensively applied in typical fields,
such as medical imaging [1], computer vision [2], and image processing [3]. However,
because of changes in environmental parameters and equipment accuracy, the actual image
obtained always contains noise [4,5] when processed from a grayscale image, including
Gaussian noise [6,7], salt and pepper noise [8], and other noise. Salt and pepper noise,
as a common type of image impulse noise, can be utilized to simulate imaging sensor or
signal transmission errors, resulting in isolated bright spots or dark spots in images [9].
Thus, salt and pepper noise may reduce imaging definition and visualization effects and
affect the accuracy of image segmentation, edge detection, and object identification [10].
Therefore, for the sake of guaranteeing the restoration of the original details of an image
and eliminating discontinuities, it is crucial to reduce the effects of noise associated with
grayscale images.
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At present, some methods are being used to denoise grayscale images. For instance,
median filtering [11,12], deep learning [13,14], wavelet filtering [15,16], and mean filter-
ing [17,18] are used. These methods can lower the noise effects to improve the grayscale
image quality. Median filtering is commonly utilized to effectively remove salt and pepper
noise. This can be accomplished by choosing an intermediate value to replace the gray
pixel’s value ranked inside a window [19]. For instance, Sree et al. employed a modified
self-adaptive median filter to improve image quality, exhibiting superiority in terms of time
complexity [20]. Toh et al. adopted a self-adaptive fuzzy switch median filter to restrain
the salt and pepper noise, with a relatively fair filtering result [21]. However, assuming
that high-density noise exists in a grayscale image, it is difficult to judge whether a pixel is
noise by ranking median values. This may generate a poor denoising effect in the case of
processing high-noise grayscale images [22].

For the sake of more effectively denoising high-density-noise images, a recursion
method can be used to improve the median filter, which increases the number of non-noise
pixel values in non-marginal areas to reduce the effects of noise on images [23]. However,
the recursion median filter may result in replacing some normal pixel values, regardless
of the damaged pixels. As a result, a threshold value can be introduced to judge the noise
whose traditional selection and comparison may cause an erroneous judgment. Differences
in neighboring pixels mean that calculations that are compared with the threshold value
can enhance the denoising effects to some degree. In order to more precisely judge whether
a pixel has been damaged in a high-density-noise grayscale image, the threshold value of
the median filter can be optimized to improve the denoising effects. For example, Gupta
et al. adopted a double-threshold method based on averages to detect noise, which had a
higher noise detection ability and greater denoising efficiency [24]. Kuma et al., employed a
dual-threshold median filter to detect and remove highly damaged images by individually
calculating the median and threshold values [25]. Goyal et al., used rank mean values to
calculate dual-threshold values and enhance the image denoising accuracy [26]. These
filter algorithms can realize a relatively reasonable improvement for median filter threshold
values; whereas, the threshold values can be mainly selected according to experience, which
has a strong impact on noise detection performance. In a noise probability density function,
it may result in a non-smooth approximation decreasing the image noise. Furthermore, it is
insufficient and unreliable for the removal of stochastic noises.

With regard to denoising for noise distribution, it is effective to utilize maximum en-
tropy theory to better realize denoising in high-density-noise grayscale images. Maximum
entropy theory, maximizing entropy under preset constraint conditions, can acquire the
most probable observed value distribution function from a statistical system [27]. Thus, it
can be utilized to assess the smooth approximation degree of a probability density function
with minimal deviation and maximize the Shannon entropy to estimate the data probability
distributions between noise and non-noise [28]. Correspondingly, two-dimensional maxi-
mum Shannon entropy, representative of the randomness of the variable, can be adopted
to explore the information of an image from the relationships between pixels. Thus, an
optimal threshold can be automatically calculated using a coupled two-dimensional gray
histogram with maximum entropy [29]. Two-dimensional maximum Shannon entropy can
be applied in image segmentation [30,31], signal processing [32], and other areas that still
lack applications in image denoising, especially in high-density-noise grayscale images.

Consequently, to achieve effective denoising for high-density grayscale images, a
unique denoising approach to improve the median filter is proposed using two-dimensional
maximum Shannon entropy for the adaptive selection of a threshold, taking advantage
of image spatial characteristics to enhance the noise detection efficiency and denoising
accuracy. Based on the two-dimensional maximum Shannon entropy of an input grayscale
image, a threshold value can be calculated and a window size can be selected to replace a
median value. By suppressing the effects of noise in a larger area, a detailed image can be
reserved to accomplish the denoising of salt and pepper noise more efficiently and stably.
In the future, by advancing a two-dimensional maximum Shannon entropy partitioning
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algorithm for denoising, the issue of high-density salt and pepper noise in grayscale images
can be addressed.

2. Two-Dimensional Maximum Shannon Entropy

In order to conduct the digital processing of an image, it is conventional to adopt a two-
dimensional matrix to represent the grayscale image [33,34]. This can effectively reflect the
gray-level distributions of images [35,36], resulting in successful denoising. The location of
noise should be determined before denoising occurs as the resulting threshold selection can
directly influence the discriminating effects of noise [37,38]. In a single threshold system, a
pixel value less or greater than the preset one can be regarded as noise [39]. The ranges of
the pixel values used to identify a noise point can often be large, resulting in an increase in
error detection. However, a self-adaptive dual-threshold system, with a relatively minor
noise recognition range, may decrease the probability of error detection [24]. However,
during the processing of high-density noise in a grayscale image, it is also unstable and
difficult to handle. Hence, in order to address the poor denoising issue, it is necessary to
select a better threshold value to fit with the automatic window changes.

To improve the noise detection effects during selections, a threshold value can be
obtained using the gray levels of an image [40,41], which can be expressed by a gray-level
histogram formed using a two-dimensional matrix [42,43]. The selection of a gray threshold
may be achieved by using the valley value between two peaks in the two-dimensional
histogram [44,45]. Because a common gray-level histogram cannot accurately represent
the randomness of noise, the processing effects of the complex images may be limited. By
contrast, two-dimensional maximum Shannon entropy can more accurately represent the
randomness of noise by employing more image information. In addition, the gray level
and noise distributions of image pixels also present randomness; thus, a Shannon threshold
can be selected using a two-dimensional gray histogram.

In view of the Shannon threshold value method being widely used in signal pro-
cessing [46,47], two-dimensional maximum Shannon entropy can be utilized to select an
optimal threshold value by calculating the two-dimensional gray-level histogram of the
image coupled with maximum entropy theory [48]. As a result, it can be used to obtain
better image processing effects, especially for noise images. Also, a multi-dimensional
histogram constructed using a grayscale image and other characteristics can be optimized,
including neighborhood gradient and neighborhood variance.

For a grayscale image, the information entropy H using Shannon can be defined
as follows [49]:

H = −
L

∑
i=1

pi ln pi (1)

where L is the gray-level number for inputting an image and p is the discrete distribution
probability.

In a two-dimensional gray-level histogram, the threshold point (s, t) is a division point
for segmenting the image foreground and background, where s represents a threshold
value using the image’s gray values to segment the image and t represents a threshold
value using the average gray values in the neighborhood to segment the image. Therefore,
for a threshold point (s, t), two posterior probabilities, P0(s, t) and P1(s, t), of the target
foreground and background can be expressed as:

P0(s, t) =
s
∑

i=0

t
∑

j=0
pij

P1(s, t) =
L−1
∑

i=s+1

L−1
∑

j=t+1
pij

(2)

where P0(s, t) represents the posterior probabilities of the image pixel gray values and the
neighborhood average gray values are less than or equal to the threshold values s and t,
respectively. Also, P1(s, t) represents the posterior probabilities of the image pixel gray
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values and the neighborhood average gray values are greater than the threshold values s
and t, respectively.

For a threshold point (s, t) in a two-dimensional image, the Shannon entropy H of
the target foreground and background on a two-dimensional gray-level histogram can be
represented as: 

H0(s, t) = −
s
∑

i=0

t
∑

j=0

pij
P0(s,t) ln

pij
P0(s,t)

H1(s, t) = −
L−1
∑

i=s+1

L−1
∑

j=t+1

pij
P1(s,t) ln

pij
P1(s,t) .

(3)

Hence, the criterion function threshold value T of two-dimensional maximum Shannon
entropy can be defined as:

T = arg max
0<t<L−1

|H0(s, t) + H1(s, t)|2. (4)

Here, a threshold value T can be acquired using two-dimensional maximum Shannon
entropy to address the poor denoising of high-density salt and pepper noise. Compared
with the entropy threshold method and the gray-level histogram threshold method, two-
dimensional maximum Shannon entropy can express the image randomness and noise
distribution more strongly to process complex high-density-noise images. Thus, it can
automatically calculate the best threshold value and combine the median filter to realize self-
adaptive denoising. Correspondingly, it may be more effective to enhance noise detection,
denoising efficiency, and precision.

3. Improved TSETMF Algorithm

In order to address the balance between protecting the image detail and eliminating
noise, a median filter can be improved using two-dimensional maximum Shannon entropy
to realize the adaptive threshold. Under the calculated threshold, noise judgments can be
achieved by using different-sized windows. A median can be replaced in a 5 × 5 window
to fit the noise level for increasing the filtering effects. Hence, the proposed improved
TSETMF algorithm may achieve denoising while protecting the image detail as well.

3.1. Improved Self-Adaptive Median Filter

A median filter is a common image denoising method [50] used to eliminate isolated
noise by utilizing the median of each pixel value in the neighborhood area to replace the
targeted pixel point. This may allow the neighborhood pixel values to be more appropriate
and also enable the image detail and marginal information to be retained. Salt and pepper
noise can be denoised using the median filter to acquire a satisfactory filtering effect and
image edge feature [51,52].

After median filtering occurs, the image pixel value f (x, y) at the coordinates (x, y) can
be expressed as:

f (x, y) = median(l(x + i, y + j)) (5)

where l(x + i, y + j) is the neighborhood pixel values relative to the centered pixel point (x,
y) and median() represents the median selection of the neighborhood pixel values.

During the denoising process, a two-dimensional 3 × 3 window can be employed
to filter the image. Compared with the sizes of the pixel values within a certain range, a
median can be selected as the new center pixel. However, the same local window size can
result in conflicts between the protection of the image detail and noise elimination [53]; thus,
a modified filtering method can be applied, such as the weighted median filter [54,55] or
self-adaptive median filter [56]. As the weighted median filter can conduct fuzzy processing
of an image, it may lose some of the image detail during the filtering of high-density noise.
However, the self-adaptive median filter can select a window size that fits different noise
levels, thus achieving denoising coupled with image detail protection. Moreover, the major
density of salt and pepper noise can be filtered by the self-adaptive median filter to acquire
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clearer images [57]. Thus, the self-adaptive median filter can be utilized to change the
window size according to the pixel values for different areas.

In Figure 1, denoising principle comparisons for the improved self-adaptive median
filter are presented to demonstrate the effects of this more effective filtering method. Fig-
ure 1c,d represent the processing step of central pixel value ranking and replacement by
adopting the self-adaptive median filter and the improved self-adaptive median filter,
respectively. The improved self-adaptive median filter can be compared to the original
filter to demonstrate the denoising advantage. In the self-adaptive median filtering algo-
rithm, the processed pixel will be not employed in the following ranking, guaranteeing
the independence and stability of the filtering process; however, when the noise density
becomes higher, the ranked median value may be turned into a noise value. This may
result in poor denoising effects, as seen in Figure 1a,b. During the partial area processing
shown in Figure 1b, pixels 0 and 255 may be regarded as noise. In a 5 × 5 window, the
pending pixel value in a random area is 255 and, then, the ranked pixel values are 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 127, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, and 255.
Thus, the replaced central pixel value is still 255 when adopting the middle value, as seen
in Figure 1c. The replaced pixel is still the noise, which may also lead to poor denoising
effects. This may be interpreted by the effects of the larger-density salt and pepper noise
that turn the ranked pixel values into noise values. Moreover, each ranked and replaced
central pixel value can be realized based on the original noise image and will be not applied
in the next processing step.
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Figure 1. Denoising principle comparisons for the improved self-adaptive median filter. (a) A self-
adaptive median filtering image after processing 95% salt and pepper noise. (b) Partially enlarged
details. (c) Gray values of self-adaptive median filtering image. (d) Gray values of improved median
filtering image using recursion method and self-adaptive window. The white central value, 255, as
the original value, represents the pending processing pixel point. The blue section represents the
processed pixel points. The red section represents unprocessed pixel points.

For the sake of addressing this problem, the self-adaptive median filter can be im-
proved by utilizing the recursion method combined with a self-adaptive window. The basic
principle adopts the recursion concept to filter an image. After selecting an appropriate
filtering window, the median value can be regarded as the new current pixel value by
comparing the current pixel value with the neighboring pixel values. At this stage, this new
current pixel value, as the input of the next pixel, can proceed with the recursion operations
until the filtering process has finished. Thus, this improved self-adaptive median filter
may retain and deliver non-noise pixel values more effectively. Median replacement can be
conducted using the improved self-adaptive median filter, whose central value represents
the pending pixel value 255, as seen in Figure 1d. At this stage, after ranking the pixel
values in a 5 × 5 window, the ranked pixel values are 0, 0, 0, 0, 0, 0, 120, 120, 122, 122, 124,
125, 126, 127, 127, 127, 128, 129, 255, 255, 255, 255, 255, 255, and 255. By adopting the middle
value, the replaced central pixel value is 126, which may then participate in the subsequent
ranking and replacement. By adopting the recursion method, the improved self-adaptive
median filter window can possess larger non-noise pixel values and, thus, turn the ranked
middle values into mostly non-noise pixel values. This approach can also be utilized to
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demonstrate the effectiveness of the denoising effects by taking advantage of the improved
self-adaptive median filter.

Compared with the traditional self-adaptive median filter, the improved self-adaptive
median filter, adopting the recursion method and self-adaptive window, can conduct noise
judgment using different filtering windows and its ranked values include the previous
pixel values after performing the median replacement. This may greatly reduce the adverse
effects of high-density noise. Assuming that the signal and noise values are flipped, the
accuracy of noise judgment and median replacement can be ensured to output the excellent
high-noise removal effects by means of the improved self-adaptive median filter.

3.2. TSETMF Concept

The concept of the improved TSETMF algorithm can be stated as follows. After a
grayscale noise image with matrix M × N is input, the initial filter window size can be set
as 3 × 3. Firstly, taking the center of the initial filter window to coincide with the first 3 × 3
region center, window B can be expressed as:

B =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (6)

where the gray levels of nine pixels can be shown as a11, a12, a13, a21, a22, a23, a31, a32, and
a33 and parameter aij represents the element at row i and column j in the 3 × 3 window.

Afterwards, a threshold value TK (K represents the threshold value numbers: K = 0,
1, 2, 3, . . .) can be set. At this stage, if the pixel values at aij differ from one another, the
window pixel probability P11 = P12 = . . . Pij . . . = P33 = 1/9 (L = 9). Assuming that the
threshold values s, t can be used to realize segmentations, foreground probability P0 and
background probability P1 can be obtained. The threshold values can be expressed as:

s, t ∈
(
aij, s < t

)
. (7)

The Shannon entropy H0 and H1 of the target and background gray-level distributions
can be individually calculated as:

H0 = −
s
∑

i=0

t
∑

j=0

pij
P0

ln
pij
P0

H1 = −
L−1
∑

i=s+1

L−1
∑

j=t+1

pij
P1

ln
pij
P1

.
(8)

Taking the image’s gray-level distributions and the amount of information between
different gray levels into account, the threshold value TK can be defined based on the
entropy difference calculation in the two-dimensional maximum Shannon entropy, i.e.,

Tk = arg min
0<t<L−1

|H0 − H1|2. (9)

Then, the sum of the pixel difference D1 between the filtering window’s central values
and neighboring areas can be calculated as:

D1 = sum
∣∣aij − a22

∣∣. (10)

Correspondingly, the average value D of the pixel difference can be expressed as:

D =
D1

9
. (11)



Appl. Sci. 2024, 14, 635 7 of 21

Then, the average value D is taken and compared with the entropy threshold TK. If
D > TK, it may be regarded as noise. Conversely, it may be regarded as non-noise. By
updating each function value, the next pixel point can be calculated.

In addition, if a noise point has been identified in a 3 × 3 window, the filter window
can be adjusted to 5 × 5. Each function value can be updated using the pixel values in the
current filter window. Correspondingly, the gray values in the new window area can be
regarded as bij (i, j = 1, 2, 3, 4, 5). Assuming that D < TK, this pixel value can be viewed as a
normal, undamaged pixel value; otherwise, the median value is employed to replace it and
the filtering process is conducted. By updating each value, the next pixel will be addressed
until all pixels in the targeted image have been processed completely.

It should be noted that when making noise judgments, 3 × 3 and 5 × 5 windows may
be used when processing. They also may be utilized to conduct the median replacement
for a low-density-noise grayscale image. However, along with an increase in high-density
noise, the probability of non-noise pixel points decreases, which may result in poor image
denoising effects. Hence, in the proposed improved TSETMF algorithm, median filter pixel
replacement is conducted using the 5 × 5 window.

In the proposed TSETMF algorithm, a 3 × 3 window can be used first to conduct noise
judgment. If the central value of the window is judged as non-noise, it is not utilized in the
subsequent filtering process with minor computational effort. On the contrary, the window
size cannot be adjusted to fit the noise levels in different areas. This can result in inflexible
denoising effects when processing the noise in different areas. In high-density-noise areas
in particular, the smaller window is unable to adequately identify the noise; thus, the
accuracy of the median replacement may be limited. However, adopting the 5 × 5 window
can improve the filtering effects with relatively minor computational effort, which can also
avoid the problem of misjudging details as noise. In addition, the larger window may
promote the accuracy of the median replacement; however, the filtering effects present a
modest improvement with the increase in the window size and, correspondingly, more
computational effort is required. Consequently, in view of the filtering effects and efficiency,
two filtering windows, 3 × 3 and 5 × 5, can be adopted to achieve better denoising for
high-density-noise grayscale images.

3.3. TSETMF Process

According to the above-mentioned design concept, the design process of the improved
TSETMF algorithm can be described as follows. Figure 2 shows a flow chart of the proposed
TSETMF algorithm.

The relevant steps of the improved median filter using two-dimensional maximum
Shannon entropy for use with high-noise grayscale images are as follows:

Step 1: Input a noise image N = (N(m, n)), composed by pixel N(m, n);
Step 2: Acquire the gray-level histogram and judge the contrast ratio;
Step 3: Filter, including five substeps;
Substep 3.1: Set a filter window to 3 × 3. A threshold value T can be calculated

using the two-dimensional maximum Shannon entropy threshold value method, where the
entropy threshold TK = T, T = arg min

0<t<L−1
|H0(s, t)− H1(s, t)|2, and the initial K value is 0,

K = K + 1 (K represents the number of threshold values T);
Substep 3.2: Calculate the sum of the pixel difference D1 = sum|aij − a22|. If D1/9 < TK,

a22 is non-noise, move the filter window to the next pixel point and return to Substep 3.1;
Substep 3.3: Otherwise, carry out the next step;
Substep 3.4: Adjust the filter window to 5 × 5, update the entropy threshold TK, K = K

+ 1, and calculate D2 = sum|bij − b33|. If D2/25 < TK, b33 is non-noise and, therefore, the
filter window can be moved to the next pixel point. Return to Substep 3.1;

Substep 3.5: Otherwise, replace b33 by utilizing the median and, then, reserve and
deliver the replaced value to conduct the next filtering step based on the recursion method.
Move the filter window to the next pixel point and return to Substep 3.1;

Step 4: The filter window traverses the whole image and finishes filtering;
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Step 5: The denoised image is outputted.
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Figure 2. Flow chart of the proposed TSETMF algorithm process.

By analyzing the framework of the improved TSETMF, the two-dimensional maximum
Shannon entropy of the inputted image can be calculated to reflect the abundant information
degree in different zones of the image. Based on the computation results of the two-
dimensional maximum Shannon entropy, it can be confirmed that the threshold values fit
with the local areas of the image. Afterward, the image can be divided into different-sized
windows according to the comparisons between the calculated threshold value and the
pixel difference mean value. Here, 3 × 3 and 5 × 5 windows can be selected to judge the
noise and, then, a median replacement can be conducted using the 5 × 5 window. The
replaced value can be reserved and delivered using the recursion method for application
in the next filtering process calculations. Therefore, the improved TSETMF can more
effectively fit the noise level in different zones, thus enhancing the filtering effects of
high-density-noise images.

Furthermore, it should be pointed out that window size selection may affect the noise
judgment accuracy and median replacement effect of the algorithm. As for noise judgment,
the image’s local details may be judged as noise by mistake in a 3 × 3 window; thus, a
5 × 5 window can be selected to identify noise and non-noise values more accurately when
considering more image information. As for median replacement, the ranked median
values are likely to remain as noise in a 3 × 3 window; thus, a 5 × 5 window can be selected
to conduct ranking and median replacement to increase the non-noise probability while
processing high-density salt and pepper noise. Additionally, the computational effort may
increase if a larger window size is selected. As a result, better denoising effects can be
realized by adopting the appropriate window size to filter high-density salt and pepper
noise in the improved TSETMF algorithm.



Appl. Sci. 2024, 14, 635 9 of 21

Compared with the traditional median filter, the proposed TSETMF algorithm can
process the features in different areas by adjusting the adaptive filtering window and it
can reduce the features that are misjudged as noise by comparing neighborhood pixel
differences. Additionally, high-density noise can be reduced by utilizing two-dimensional
maximum Shannon entropy threshold values coupled with the recursion method.

4. Experimental Results and Discussion

In order to verify the reasonability of the proposed improved TSETMF algorithm,
classical grayscale images in three different scenarios were used as samples in contrast
experiments. Three filtering methods relevant to high-density denoising were used to
compare with the proposed improved TSETMF, including the pixel-density-based trimmed
median filter (PDBTMF) [58], modified decision-based median filter (MDBMF) [59], and
adaptive dual-threshold median filter (ADTMF) [25]. Additionally, two assessment meth-
ods, including the peak signal-to-noise ratio and the structural similarity index measure
(SSIM), were employed to carry out the experimental comparison analysis and discussion.

4.1. Assessment Methods

To assess the performance of different image denoising methods, PSNR and SSIM
indexes can be utilized to effectively evaluate denoising algorithms. The indexes consider
the overall quantification and perception of image quality.

4.1.1. PSNR

Peak signal-to-noise ratio can be used to assess the distortion degree of the original
image after processing. In other words, a larger PSNR represents better image quality and
a larger ratio of signal and noise shows that the signal can be more easily extracted. The
computational formula of PSNR can be expressed as:

PSNR = 10 × log10

 N × MAXI
2

N
∑

i=1

(
Iorig(i)− Icomp(i)

)2

 (12)

where MAX2
I represents the maximum pixel value, Iorig is the pixel value in the original

image, Icomp is the pixel value in the handled image, and N is the pixel quantity.

4.1.2. SSIM

The structural similarity index measure is an evaluation index used to compare the
structural similarity between two images. By calculating the index SSIM, a difference
between the output image and the undistorted image can be quantified to evaluate the
quality of image recovery. That is, a larger SSIM represents better image quality, which
can illustrate the minor differences between the output image and the undistorted image.
By comparing the brightness, contrast ratio, and structure of two images, SSIM can be
used to quantify the levels of similarity [60]. The computational formula of SSIM can be
expressed as:

SSIM(x, y) = l(x, y)αc(x, y)βs(x, y)γ (13)

where l(x, y) represents the brightness, c(x, y) represents the contrast ratio, s(x, y) represents
the structure, x is the original image, and y is the denoised image.

The structural factor accounts for the majority of the calculation. When α = β = γ = 1
and c3 = c2/2, the computational formula of SSIM can also be expressed as:

SSIM(x, y) =

(
2µxµy + C1

)(
2σxσy + C2

)(
µx2 + µy2 + C1

)(
σx2 + σy2 + C2

) (14)
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where µ is the corresponding mean value, C is a denominator adjustment parameter and
σ2 is the corresponding variance.

4.2. Results and Discussion

In order to assess the advantages of the proposed TSETMF denoising algorithm to
improve the grayscale image quality, three kinds of standard images were selected as the
denoising objects to conduct contrast verifications in MATLAB, including Lena (256 × 256 pix-
els) [61], Cameraman (504 × 505 pixels) [62], and COVID (1070 × 1200 pixels) [63]. Lena
and Cameraman are the classical images for grayscale image processing and COVID is the
grayscale micrograph. By adding different densities of salt and pepper noise, the ability of
four filter algorithms to address different high-density-noise grayscale images was examined.
The density was continuously increased from 5% to 95% in increments of 5%.

4.2.1. Contrastive Denoising with 95% High-Density Noise

To visually illustrate the contrastive denoising effects, salt and pepper noise at a
density of 95% was artificially added to exhibit the contrastive denoising effects. This
was added using the code noisy_img = imnoise(img, ‘salt & pepper’, 0.95) in MATLAB
R2016b. As illustrated in Figures 3–5, the denoising of the Lena, Cameraman, and COVID
images was conducted using the PDBTMF, MDBMF, and ADTMF algorithms and the
results compared with the proposed improved TSETMF algorithm with 95% high-density
noise. Figures 3a, 4a and 5a present the original Lena, Cameraman, and COVID images
without noise, respectively. Figures 3b, 4b and 5b present the same images with 95% density
noise, respectively. These were the input images for the denoising experiments using the
various algorithms. Figure 3c–e, Figures 4c–e and 5c–e present the denoising effects of
the PDBTMF, MDBMF, and ADTMF algorithms on the images, respectively. Figures 3f, 4f
and 5f present the denoising effects of the proposed improved TSETMF algorithm on the
three images, respectively. It should be noted that the PDBTMF algorithm removes noise
by comparing the numerical relationships between the current pixel and the neighboring
pixels [64]. The MDBMF algorithm is a non-linear salt and pepper filter able to maintain
the signal edges [65].
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Figures 3–5 demonstrate that the PDBTMF, MDBMF, and ADTMF algorithms indi-
vidually present a dramatic decline in denoising effects. For instance, the processing of
the Lena image with 95% high-density salt and pepper noise displayed relatively distinct
differences in the effects. Figure 3e shows the poor denoising effect achieved using ADTMF;
however, the filter properties of PDBTMF with a significant amount of noise shown in
Figure 3c are superior to ADTMF. Although the filter properties of MDBFM provide better
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denoising effects, some noise still exists, as shown in Figure 3d. By comparison, the pro-
posed improved TSETMF algorithm exhibits little observable noise and a high degree of
image smoothing and the denoising effects of this algorithm are superior to the other three.
In general, the proposed improved TSETMF algorithm exhibits a relatively good filtering
effect under high-density salt and pepper noise.

4.2.2. Contrastive Denoising with Continuous Increase in Noise Density

To visually illustrate the contrastive denoising effects achieved using the different
algorithms, a continuous artificial increase in the noise density from 5% to 95% in increments
of 5% was carried out to exhibit the denoising effects. The three classical algorithms with
the parameters of PSNR and SSIM were utilized to evaluate the ability of the proposed
improved TSETMF algorithm to process the first classical image, Lena. Table S1 represents
PSNR comparison data from different algorithms processing Lena with increasing noise
density. Figure 6 presents a change map of the PSNR with continuously increasing noise
density according to the different algorithms’ processing of Lena. As can be seen from
Figure 6, the PSNR values of the PDBTMF algorithm when processing the Lena image begin
to slowly decline after around 20% noise density and the decline accelerates rapidly after
70% noise density. The PSNR values of the MDBMF algorithm begin to slowly decline after
around 20% noise density and, then, the decline accelerates after 50% noise density. The
stability of MDBMF’s processing effects is a little worse than that of PDBTMF. Although
the PSNR values of the ADTMF algorithm show a relatively smooth declining tendency,
the processing of the salt and pepper noise in the Lena image is poor. Compared with
the other three filtering algorithms, the PSNR values of the proposed improved TSETMF
algorithm at a 95% high-noise density reach 24.97 dB, which is much higher than that of
PDBTMF at 10.63 dB, MDBMF at 18.11 dB, and ADTMF at 6.17 dB. In summary, the PSNR
values of the proposed improved TSETMF algorithm always stabilize at around 25 dB
and decline slowly with increasing noise density. This demonstrates that the proposed
improved TSETMF algorithm can effectively enhance denoising stability when processing
different noise densities.
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In addition, Table S2 represents SSIM comparison data from different algorithms
processing Lena with increasing noise density. Figure 7 presents the change map of the SSIM
with continuously increasing noise density for the different algorithms processing Lena.
For low-density noise, the PDBTMF algorithm exhibits relatively stable SSIM; however, it
drops rapidly after around 40% noise density. The MDBMF algorithm obtains relatively
higher SSIM but drops rapidly after around 60% noise density. The ADTMF algorithm
possesses the highest SSIM under around 20% noise density. In summary, the SSIM values
of the proposed improved TSETMF algorithm always stabilize above 0.81 with continuously
increasing noise density. This demonstrates that the proposed improved TSETMF algorithm
can effectively maintain the quality of the processed image at different noise densities,
especially for high-density salt and pepper noise. It should be noted that the required
running time of the proposed TSETMF algorithm is basically around 3.7 s, which is much
faster than of the ADTMF algorithm. Differing from the other algorithms, although the
proposed TSETMF algorithm has a relatively larger running time than that of the PDBTMF
and MDBMF algorithms, it exhibits relatively stable states with increasing noise density,
especially for high-density noise. Hence, this also demonstrates that the proposed TSETMF
algorithm is insensitive to variable noise density.
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To calculate the values of PSNR and SSIM, parameter variance is adopted. For the
noise density calculations of the image, local variance in different areas, such as the noise
index, can be utilized to analyze the grayscale image. Calculating the pixel value variance
in each area can obtain the noise level in different areas. That is, a higher variance usually
exhibits relatively stronger noise density. As a result, the noise levels of the whole grayscale
image can be calculated to acquire the values of PSNR and SSIM for further comparison of
the denoising effects of the algorithms.

In order to verify the advantages in image detail reservation ability using the proposed
TSETMF algorithm, a partial Lena image with the addition of 95% salt and pepper noise was
utilized to perform denoising, as illustrated in Figure 8. By employing two-dimensional
maximum Shannon entropy coupled with pixel difference mean, an image detail can be
judged to determine whether it is noise. The filtering processes for a local area in Figure 8b
are presented in Figure 8c–e. Pixel 255 in Row 1 and Column 5 in Figure 8c is judged as
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the image detail; however, the central pixel in Row 3 and Column 3 is judged as the noise.
The central pixel value is then changed to 127 in Figure 8d. After gradual processing of all
pixel values in the red area, the replacement results are exhibited in Figure 8e. As can be
seen from the filtering of the partial Lena image shown in Figure 8f, the proposed TSETMF
algorithm can clearly achieve a better filtering effect by retaining the image details when
denoising high-density-noise images.
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Figure 8. Experimental verification of image detail reservation ability using the proposed TSETMF
algorithm. (a) Original Lena image. (b) Partial Lena image with the addition of 95% salt and pepper
noise. (c) Pixel point inside (b), processed using the proposed TSETMF. (d) Replacement result of
central pixel value inside (c). (e) Replacement results of pixel values in the red area after gradual
processing. (f) The filtering effect of partial Lena image using the proposed TSETMF.

In terms of visual effects, the denoising of the Lena image using the proposed TSETMF
algorithm with various added salt and pepper noise densities of 30%, 50%, 70%, and 90%
is shown in Figure 9. The results demonstrate that the quality of each denoised image in-
creases remarkably and there are minor influences regardless of the changes in noise density.
This may be interpreted using the high-efficiency noise judgment and recursion method,
where highly efficient noise judgment can be accomplished using the two-dimensional
maximum Shannon entropy threshold values. By utilizing the recursion method to achieve
median replacement, filtering can be conducted by the processed adjacent pixels. This
can induce the effects of the noise on an image immensely. The experiments indicated
that the proposed TSETMF possesses strong robustness and is highly efficient in reducing
high-density salt and pepper noise.

By utilizing the three classical algorithms, the PSNR and SSIM parameters were
utilized to evaluate the abilities of the proposed improved TSETMF algorithm while pro-
cessing the second classical image, Cameraman. Table S3 represents PSNR comparison data
from different algorithms processing Cameraman with increasing noise density. Figure 10
presents the change map of PSNR with continuously increasing noise density for different
algorithms processing Cameraman. Figure 10 shows that when the noise density varies
from 5% to 95% in Cameraman, the PSNR values of the PDBTMF, MDBMF, and ADTMF
algorithms decline steeply from 33.95 dB to 9.64 dB, from 34.81 dB to 15.02 dB, and from
22.96 dB to 5.77 dB, respectively. However, the decrease in the PSNR values of the proposed
improved TSETMF algorithm is relatively minor, from 23.1 dB to 20.61 dB, with a mere
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10.78% decline ratio. This can directly demonstrate that the proposed improved TSETMF
algorithm has the most stable ability to process high-density noise. In other words, it
works independently of noise density effects to accomplish the high-quality denoising of
grayscale images.
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Figure 9. Denoising effects of the TSETMF algorithm on the Lena image with the addition of different
salt and pepper noise densities: (a) 30%, (b) 50%, (c) 70%, and (d) 90%.
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In addition, Table S4 represents SSIM comparison data from different algorithms
processing Cameraman with increasing noise density. Figure 11 presents a change map
of SSIM with continuously increasing noise density for different algorithms processing
Cameraman. The PDBTMF algorithm exhibits relatively stable SSIM at low-density noise;
however, it drops rapidly after around 50% noise density. The PDBTMF algorithm exhibits a
more stable SSIM at noise densities of less than 70%. At lower noise densities not exceeding
25%, the ADTMF algorithm performs relatively well. However, the proposed improved
TSETMF algorithm can achieve a higher and more stable SSIM above 0.71 at arbitrary noise
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densities. This finding also further demonstrates that the proposed algorithm can process
the Cameraman image with good high-density-noise denoising effects and excellent stable
image quality.
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By utilizing the three classical algorithms, the PSNR and SSIM parameters were
utilized to evaluate the abilities of the proposed improved TSETMF algorithm when pro-
cessing the third classical image, COVID. Table S5 represents PSNR comparison data from
different algorithms processing COVID with increasing noise density. Figure 12 presents a
change map of PSNR with continuously increasing noise density for different algorithms
processing COVID. As can be seen in Figure 12, the PSNR values of the PDBTMF, MDBMF,
and ADTMF algorithms when processing the COVID image decreased by approximately
20 dB. Correspondingly, the larger negative slopes show that the three algorithms cannot
handle the high-density salt and pepper noise of the COVID image. However, the decrease
in the PSNR values of the proposed improved TSETMF algorithm is relatively minor, from
26.22 dB to 24.78 dB, with a mere 5.49% decline ratio. In particular, as the high-density noise
varied from 5% to 95%, the proposed improved TSETMF algorithm exhibited the most
stable denoising properties. In other words, this TSETMF algorithm works independently
of the effects of noise density and achieves the most accurate and effective processing of
the high-density salt and pepper noise in the COVID image.

Table S6 represents SSIM comparison data from different algorithms processing
COVID with increasing noise density. Figure 13 presents a change map of the SSIM
with continuously increasing noise density for different algorithms processing COVID. The
SSIM values of the PDBTMF algorithm express a declining tendency with increasing noise
density but are inferior at higher-density noise. At the same time, the SSIM values of the
PDBTMF algorithm decline sharply when the noise density is larger than 50%. However,
the proposed improved TSETMF algorithm achieves a more stable SSIM above 0.51 at
arbitrary noise densities. It should be illustrated that the SSIM is located at a relatively
lower level; however, this TSETMF algorithm exhibits the most stable processing effects in
terms of the denoising of high-density salt and pepper noise in the COVID image.
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By comparing the processing effects of the three standard images of Lena, Cameraman,
and COVID presented in Figures 6, 10 and 12, the PSNR values of the PDBTMF algorithm
and the MDBMF algorithm can be used to show that they have relatively better denoising
effects. This is due to the specially designed filter’s ability to process salt and pepper
noise; whereas, it is not applicable to Gaussian noise or other noise. By contrast, the
proposed improved TSETMF algorithm and the ADTMF algorithm can be utilized to
address different types of noise. As can be observed from Figures 7, 11 and 13, it is obvious
that the SSIM values obtained by the proposed improved TSETMF algorithm were the
highest for Lena, followed by Cameraman and COVID, respectively. Additionally, with
increasing pixel quantities, the level of similarity between the denoised image and the
original image exhibited a minor decline; however, stability was basically maintained.
Thus, the processing of more kinds of grayscale images should be conducted to explore
the applicability of the proposed TSETMF algorithm and further improve the denoising
performance and higher densities.
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Furthermore, the minor descending PSNR values achieved by the proposed improved
TSETMF algorithm demonstrate its better robustness and filtered image quality at higher-
density noise levels. Also, the minor descending SSIM values achieved by TSETMF indicate
that the algorithm has excellent denoising ability in the processing of higher-noise grayscale
images. Moreover, this method can provide a unique approach to addressing denoising
issues. Further, it can be advanced to promote high-noise filtering and stability when
processing high-density salt and pepper noise in grayscale images.

Prospectively speaking, salt and pepper noise can be produced by transmission,
analog-to-digital conversion, and data acquisition errors. In particular, the processing
of high-density salt and pepper noise is often required for medical images, for instance,
magnetic resonance images [66] and X-ray images [67]. By preliminarily analyzing the
processing results for medical brain magnetic resonance images, the ability of the proposed
TSETMF algorithm to produce relatively stable and excellent noise reduction effects may
be demonstrated. This would also demonstrate the algorithm’s strong robustness in terms
of denoising high-density-noise grayscale images.

5. Conclusions

The denoising issues associated with grayscale images have become a significant
area of research in the field of digital image processing. For the processing of high-noise
grayscale images in particular, the denoising effects can become worse with increasing
noise density. In this paper, an improved median filter algorithm, TSETMF, is proposed
that utilizes two-dimensional maximum Shannon entropy to achieve the adaptive selection
of thresholds to enhance the ability to process high-density noise and achieve denoising
stability. The noise in images can be filtered by automatically partitioning a window size,
the threshold value of which is adaptively calculated using two-dimensional maximum
Shannon entropy. Three comparative experiments were conducted to verify the rationality
of the TSETMF model and show its relative superiority in denoising. The experimental
results demonstrated that the proposed TSETMF algorithm exhibited better processing
performance with superior high-density noise suppression and denoising stability. The
proposed TSETMF exhibited a stronger ability to process high-density noise, which was
demonstrated by a higher PSNR value of 24.97 dB at a 95% noise density for the classical
Lena grayscale image. The proposed TSETMF also exhibited better denoising stability when
the noise density increased from 5% to 95%, which was demonstrated by the minor decline
in the PSNR value of approximately 10.78% relative to the PSNR of 23.10 dB for the classical
Cameraman grayscale image. The TSETMF algorithm is independent of the effects of noise
density and achieved more accurate and effective results when processing the high-density
salt and pepper noise in the COVID image. Therefore, it is clear that the proposed TSETMF
can also maintain good filtering effects with excellent denoising robustness for processing
high-density noise in grayscale images. This method could provide a unique approach to
addressing denoising issues. Additionally, the processing of more grayscale image types
should be carried out to explore the applicability of the proposed TSETMF algorithm and
further improve its denoising performance and stability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app14020635/s1, Table S1: PSNR comparison data from different
algorithms processing Lena with increasing noise density. Table S2: SSIM comparison data from
different algorithms processing Lena with increasing noise density. Table S3: PSNR comparison
data from different algorithms processing Cameraman with increasing noise density. Table S4: SSIM
comparison data from different algorithms processing Cameraman with increasing noise density.
Table S5: PSNR comparison data from different algorithms processing COVID with increasing noise
density. Table S6: SSIM comparison data from different algorithms processing COVID with increasing
noise density.
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