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Abstract: Determining the classification of motor competence is an essential aspect of physical
activity that must be carried out during school years. The objective is to evaluate motor competence
in schoolchildren using smart bands, generate percentiles of the evaluation metrics, and classify
motor performance through machine learning with hyperparameter optimization. A cross-sectional
descriptive study was carried out on 764 schoolchildren (451 males and 313 females) aged 6 to
17 years. Five state schools in the city of Arequipa, Peru were evaluated. Weight, height, and waist
circumference were assessed, and body mass index (BMI) was calculated. The tests evaluated in the
schoolchildren measured walking and running for 6 minutes. These tests were carried out using
smart bands, capturing cadence, number of steps, calories consumed, speed, stride, and heart rate.
As a result, the percentiles were created through the LMS method [L (asymmetry: lambda), M
(median: mu), and S (coefficient of variation: sigma)]. The cut-off points considered were <P25 (below
average), p25 to p75 (average), and >p75 (above average). For classification, the machine-learning
algorithms random forest, decision tree, support vector machine, naive Bayes, logistic regression,
k-nearest neighbor, neural network, gradient boosting, XGBboost, LightGBM, and CatBoost were
used, and the hyperparameters of the models were optimized using the RandomizedSearchCV
technique. In conclusion, it was possible to classify motor competence with the tests carried out on
schoolchildren, significantly improving the accuracy of the machine-learning algorithms through the
selected hyperparameters, with the gradient boosting classifier being the best result at 0.95 accuracy
and in the ROC-AUC curves with a 0.98. The reference values proposed in this study can be used
to classify the walking motor competence of schoolchildren. Finally, the mobile software product
built based on the proposed model was validated using the prototype of the Software Quality
Systemic Model (SQSM) based on three specific categories: functionality, reliability, and usability,
obtaining 77.09%. The results obtained can be used in educational centers to achieve the suggested
recommendations for physical activity in schoolchildren.

Keywords: machine learning; classification; motor competence; schoolchildren; wearable; hyperparameters

1. Introduction
1.1. Background

Machine-learning classification is training a computer model to recognize and catego-
rize data based on specific characteristics. It is typically classified as supervised, unsuper-
vised, semi-supervised, or reinforced [1]. In supervised classification, the model is trained
using labeled data to identify patterns and predict new data [2]. This technique has many
applications, including healthcare, education, and technology. One such application is
using smart bands in schoolchildren to monitor their physical activity and health status [3].

Physical activity, such as motor competence, is crucial for developing children and ado-
lescents, as it promotes overall health and well-being. Unfortunately, sedentary lifestyles
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and lack of physical activity have become increasingly common among school students.
Smart bands have emerged as a tool to combat this problem and measure physical activity
levels in students [4].

Smart bands are wearable devices that can monitor a person’s vital health statistics,
including heart rate, using a combination of sensors and machine-learning algorithms [3].
In the context of schoolchildren, smart bands can be used to track their physical activity
levels, sleep patterns, and overall health status. Machine-learning classification can be used
to analyze the data collected with smart bands and identify patterns that can help improve
the health and well-being of schoolchildren [1].

The importance of machine-learning classification for schoolchildren lies in its ability
to provide personalized and adaptive learning experiences. By analyzing data collected
from smart bands, machine-learning algorithms can create profiles for individual students
and design learning paths tailored to their specific needs and abilities [5,6]. Additionally,
machine-learning classification can identify students at risk for health issues and provide
early interventions to prevent or mitigate these issues [7]. Overall, the use of machine-
learning classification with smart bands in school children has the potential to improve
their physical and mental health and academic performance significantly. Machine-learning
algorithms can be optimized by tuning with hyperparameters, obtaining better results [8].

This research aims to explore the use of smart bands and the application of machine
learning to promote physical activity and motor competence in educational centers and
analyze the potential benefits of this approach. We will examine how smart bands measure
levels of motor competence, how machine learning with hyperparameter optimization is
used, and the benefits of using them in educational centers. In doing so, we hope to shed
light on the potential of these technologies to improve levels of motor competence among
students and ultimately contribute to improved health and academic outcomes.

1.2. Related Work

Smart bands are wearable devices that have become increasingly popular for tracking
and monitoring various physical and health activities, including motor competence. The
main works in this regard are presented.

The work of Kounoudes, Kapitsaki, and Katakis [1] indicates that smart bands and
wearable fitness devices can measure physical activity levels through various sensors and
tracking mechanisms. One of the most common ways smart bands can measure physical
activity levels is by monitoring the number of steps the user takes throughout the day.
Pedometer readings are commonly used to describe physical activity levels in adults, and
fitness trackers like Fitbit record the number of steps the user takes each day. Additionally,
VO2max measurements are often used to determine whether the user has increased or
decreased fitness level, and variations in VO2max are used as an indicator of overall health.
Garmin activity data include VO2max measurements, which can help determine fitness
levels. Daily step counts can show people’s habits and lifestyle as well as their risk of
mortality that may occur to them.

Amor and James [2] suggest that activity monitoring (AM) is a well-established
method for assessing an individual’s physical activity. The swift emergence of smartwatch
technology provides the capability to monitor activity and seamlessly engage with other
healthcare systems. Al-Janabi and Hamza [3] propose an intelligent data analysis model
to find optimal patterns in human activities based on biometric characteristics obtained
from smartwatches and smartphones. The forward and backward rule-based pattern finder
generates the optimal patterns that help humans organize their activities. The results show
that good patterns are generated for human activities. In addition, Weiss, Yoneda, and
Hayajneh [5] suggest that wearable devices include sensors that provide a platform to
implement and deploy motion-based mobile behavioral biometrics using the smartwatch
accelerometer by basically investigating the physical activity of walking. Therefore, they
used different sensors to evaluate physical activity better. The results show that motion-
based biometrics using smartwatches yield good results for the activities assessed.
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Ali et al. [7] concentrated on introducing innovative techniques for identifying and
recording physical activities using machine-learning methods and wearable sensors. Ev-
eryday physical activities tend to be unstructured or unplanned, with specific activities or
actions (such as sitting or standing) occurring more frequently than others (such as walking
or going up and down stairs). Existing activity classification systems have not explored
the impact of such class imbalances on the effectiveness of machine-learning classifiers.
Therefore, the study’s primary aim was to examine the influence of class imbalance on
the performance of machine-learning classifiers and to identify which classifiers are more
sensitive to class imbalance than others. The research utilized motion sensor data from
30 participants recorded during the performance of various activities of daily living.

Wang, Lizardo, and Hachen [9] demonstrate that social, psychological, and environ-
mental characteristics are related to physical activity among students by using Fitbit devices
to collect data on daily movement activities, number of calories, and heart rate, among other
measurements from a sample of 692 students, taking four indicators; they showed that
there is a strong relationship between the growth of group and individual physical activity.

According to Sabry et al. [10], the application of machine learning to promote physical
activity includes fall detection, seizure detection, vital sign monitoring and prediction, and
activity recognition. Machine-learning techniques are also being explored for health moni-
toring, elder care, and fitness tracking. Additionally, machine-learning techniques have
been used to link physical activity to obesity by examining the relationship between physi-
cal activity and weight status in a large-scale dataset. The study found that the weighted
SVM algorithm with a penalized approach offered the best classification performance,
followed by ADA(RF).

Zhou et al. [11] indicate that machine learning can also automate and personalize
physical activity promotion programs by tracking people’s activity patterns and developing
therapy and exercise plans to reduce obesity. Additionally, machine-learning methods
predict exercise relapse and improve physical activity interventions by identifying unlikely
individuals to adhere to a physical exercise regimen.

Creaser et al. [12] note that smart bands and machine learning can promote the health,
well-being, or understanding of children or adolescents in schools. However, more research
is needed to explore their full impact. Wearables can also be used beyond encouraging
physical activity, such as studying and teaching health concepts. However, research in-
dicates when and how wearable devices with the most frequently used functions can be
used in schools. It suggests that they are acceptable instruments in the school environment
to monitor students’ physical activity levels or educate them about the importance of
physical activity.

Site, Nurmi, and Lohan [13] reviewed machine-learning algorithms to analyze eHealth
data collected from wearable devices, emphasizing the significant potential for enhancing
healthcare quality and customer satisfaction through machine learning (ML). The ML
algorithms were applied to both time and frequency domain healthcare data derived from
wearable devices and sensors. The authors explored how ML techniques can effectively
process and analyze health sensor data, noting that accelerometers, gyroscopes, ECG
(electrocardiogram), EEG (electroencephalogram) monitors, and blood glucose sensors are
the primary sources of eHealth data. The study delved into various aspects, including
types of features and methods for feature extraction and ML algorithms commonly used
in eHealth data analysis. Notably, the authors concluded that, among the ML algorithms
studied in the literature, neural network (NN) algorithms and support vector machines
(SVMs) had demonstrated the most promising performance for analyzing healthcare data.

Himi et al. [14] introduce a predictive system named “MedAi“, which is based on a
smartwatch and employs machine-learning algorithms to predict multiple diseases. The
system consists of three main components: a “Sense O’Clock“ smartwatch prototype
equipped with eleven sensors to gather body statistics, a machine-learning model for
analyzing the collected data and making predictions, and a mobile application to display
the prediction results. The researchers obtained a dataset of body statistics from patients at
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a local hospital. Several machine-learning algorithms were utilized in the study, including
support vector machine (SVM), support vector regression (SVR), k-nearest neighbor (KNN),
extreme gradient boost (XGBoost), long short-term memory (LSTM), and random forest
(RF). The goal was to identify the most effective algorithm. The experimental results
on the dataset revealed that the random forest (RF) algorithm outperformed the other
machine-learning algorithms tested.

Machine-learning algorithms commonly rely on a set of hyperparameters, the values
of which need to be chosen thoughtfully, and these choices often have a substantial impact
on the algorithm’s performance [15]. Hyperparameters are settings that are not directly
learned from the dataset but especially impact model performance. The most used search
strategies are grid search, manual search, and random search [14]. Several works are related
to optimization with hyperparameters, such as the one developed by Yagin et al. [16],
who used neural networks with hyperparameter optimization to predict obesity based
on physical activity. Rivera, Avilés, and Castillo-Castaneda [17] classified the physical
activity indicator using machine learning, and after feature, importance selection, and
hyperparameter were tuned. There are also works regarding health in general with the
optimization of hyperparameters [18].

2. Materials and Methods
2.1. Methodology

Machine-learning classification with smart bands in schoolchildren involves several
steps, including data collection and analysis. Smart bands are equipped with sensors that
collect data on physiological parameters, such as heart rate and physical activity levels.
The data are then analyzed to identify patterns and trends that can be used to develop
machine-learning models for classification.

Feature selection and preprocessing are crucial steps in the machine-learning classi-
fication process. Feature selection involves identifying the most relevant features from
the data that will be used to train the model. Preprocessing involves cleaning and trans-
forming the data to ensure they are suitable for analysis. These steps aim to provide the
machine-learning model access to high-quality data that will enable accurate classification.

The machine-learning model is trained and tested once the data have been collected,
analyzed, and preprocessed. Supervised machine-learning techniques are commonly
used for classification tasks, where the model is trained on labeled data. The model’s
performance is evaluated using accuracy, precision, f1-score, and recall metrics. The goal is
to develop a model that can accurately classify schoolchildren based on their physiological
parameters, which can be used to monitor their health and well-being.

The methodology used was CRISP-DM [19]. It comprises six phases: business under-
standing, data understanding, data preparation, modeling, evaluation, and deployment.

2.1.1. Business Understanding

This initial phase will identify the problem caused by traditional methods of evaluating
motor competence in educational centers, and a solution will be projected to resolve the
present issue. In this phase, there are different activities for understanding the business,
each of which will be described below.

1. Determination of objectives: The main goal focuses on exploring the use of smart
bands and the application of machine learning optimized to promote physical activity
and motor competence in schoolchildren and analyzing the potential benefits of
this approach.

2. Evaluation of the situation: A descriptive cross-sectional study was conducted on
764 schoolchildren (451 males and 313 females) aged 6 to 17. The sample selection
was non-probabilistic by convenience. Five state schools in the city of Arequipa, Peru,
were evaluated. The schoolchildren attended physical education classes twice a week.
Permission was requested from each school’s administration to conduct the study in
both schools. Then, parents were informed about the objective of the project. Parents
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who agreed to participate in the study signed the informed consent form to authorize
their children’s participation.

3. Determination of the goal of machine learning: At this stage, the determination will
be made to apply a correct supervised machine-learning technique to determine the
best algorithm that finds the best accuracy, precision, f1-score, and recall in students’
motor competence classification. A classifier is a function f that takes as input a set of
features x ∈ X, where X is the feature space, and outputs a class label y ∈ {1, . . ., C},
where C is the class space.

2.1.2. Data Understanding

Anthropometric measurements and the utilization of the smart band followed the
recommendations outlined by the local ethics committee (UCSM-096-2022) and adhered
to the principles of the Declaration of Helsinki (World Medical Association) concerning
ethical standards for human research.

1. Collection of initial data: Anthropometric measurements were conducted on-site
at each school. The evaluation team comprised professional physical education
teachers and research assistants. Weight and height were measured using Ross
and Marfell Jones’s standardized method. To determine body weight (kg), a BC
730 (Tanita Corporation) electronic scale was used, with a scale from 0 to 150 kg.
Standing height was measured using a portable stadiometer (Seca 216, Seca Gmbh
and Co., Hamburg, Germany), accurate within 0.1 mm. Waist circumference (WC)
was measured using a tape measure (Seca) to the nearest 1 mm. The body mass index
(BMI) was calculated by dividing the kilograms of weight by the square of the height
in meters: BMI = weight (kg)/height2 (m).
According to the BMI Z-score, patients were classified as underweight/normal weight
with Z-scores between −2 and +0.99, overweight from 1 to 1.99, obese from 2 to 2.99,
and very obese ≥3 [20]. To categorize abdominal adiposity (WC) by age and sex, the
suggestions described by Fernández et al. [21] were used. It was categorized into two
groups (without risk < p75 and with risk > p75).
The motor competence tests that were evaluated were the quantification of the number
of steps during school recess, and the 6-minute walk test was performed using a smart
band (Huawei band 7) with an AMOLED screen of 194 × 368 and with 1.47 inches.
This smart band has been used in other similar research [22]. The smart band was
placed on the wrist of each student’s hand, and its use was explained.

2. Describe and explore the data: The Kolmogorov–Smirnov test verified the dataset’s
normality. Descriptive statistics (mean, standard deviation, min, and max) were
calculated. Table 1 shows the description of the data of the schoolchildren.

Table 1. Description of schoolchildren’s data.

Age Weight Height Waist BMI Cadence Steps Speed Stride

mean 12.48 47.57 1.49 71.93 20.74 59.58 910.64 2.99 79.73
std 2.75 16.18 0.16 11.37 4.27 34.46 504.13 1.93 10.35
min 6 18.00 1.140 50.00 11.71 10.00 126.00 0.310 53.00
25% 10 34.00 1.370 63.00 17.66 30.00 499.00 1.315 72.50
50% 13 48.00 1.520 70.50 20.30 53.00 833.00 2.570 78.00
75% 15 58.10 1.630 78.50 23.35 82.50 1241.50 4.365 86.00
max 17 107.70 1.810 114.60 39.95 163.00 2189.00 9.760 111.00

t-test was used to calculate differences between both sexes in independent samples. Differences between BMI
and waist values were determined via one-way ANOVA and Tukey’s specificity test. In all cases, p < 0.05
was significant.

2.1.3. Data Preparation

In this phase, the data are selected according to the most critical attributes to train and
test the algorithms that will be chosen for the study.
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1. Data selection: Through data selection, it became feasible to identify and emphasize
those fields that would provide valuable contributions to the analysis of physical
activity for motor skill tests. Each data record has the following attributes within the
database:

a. Anthropometric data: age (years), weight (kg), height (m), sitting height (cm),
and waist circumference (cm).

b. Average pace: the time the person can walk a kilometer; they are a number in
minutes and seconds format.

c. Average cadence: these are the steps per minute you can do; they are raw
numbers.

d. Steps: these are all the steps the person has taken during the activity; they are
raw numbers.

e. Calories: the calories the person has burned during the activity; they are num-
bers without formats.

f. Average speed: the average speed at which the person has moved during
the activity in kilometers/hour; it is in number format with decimals without
arrangements.

g. Average stride: it is the average distance taken by each step; they are numbers
without formats.

h. Heart rate: these are the beats per minute the heart has given during the activity;
they are numbers without formats.

i. Maximum heart rate: this is the maximum number of beats per minute the
individual has given in the activity; they are numbers without formats.

2. Data cleaning: Data cleaning tasks allowed us to discover correct and sometimes elim-
inate erroneous data records or outliers and convert and standardize the data types
necessary for processing in machine-learning algorithms. The Jupyter dashboard [23]
was used with the Python 3 programming language, with its Pandas library; it is a
rapid, robust, adaptable, and user-friendly open-source tool for data analysis and
manipulation. The Seaborn library was used with its boxplot function to visualize the
classes, as shown in Figure 1, where the high class has the highest proportion for both
sexes. Points outside a boxplot are visual indicators of values that may be unusual or
outliers compared to the rest of the data in the set.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 18 
 

  
Figure 1. Types of motor competence according to the tests the male and female schoolchildren 
carried out. 

2.1.4. Modeling  
When conducting a detailed analysis of the data source, it was determined that the 

classification output resulting from the motor competence tests is labeled as high, normal, 
and low. For this reason, the decision was made that the most appropriate type of predic-
tion would be classification. 

To do this, a comparison of popular supervised machine-learning techniques for a 
classification model will be conducted. According to the literature, the most used algo-
rithms and optimizers are: 
1. Decision tree: A non-parametric supervised technique that constructs a classification 

model as a tree structure, applicable for classification and regression tasks [24]. 
2. Random forest: It generates a set of decision trees by employing random resampling 

on the training set. [25]. 
3. Support vector machine: Creates effective boundaries to separate datasets by solving 

a constrained quadratic optimization problem [26]. 
4. Naive Bayes: It is a probabilistic classifier based on Bayes’ theorem, assuming strong 

independence within attributes of an instance [27]. 
5. Logistic regression: This type of regression analysis is used to predict the outcome of 

a categorical variable based on the independent or predictor variables [28]. While 
commonly recognized as a classifier, logistic regression can also be employed as a 
regressor to predict numeric values. Its adaptability allows it to address classification 
and regression problems, depending on the nature of the data and the analysis ob-
jectives [28]. 

6. Neuronal network: Most current neural network applications are concerned with 
pattern recognition problems. Artificial neural networks consist of assemblies of per-
ceptrons designed for multi-layer feedforward networks [29]. 

7. K-nearest neighbors: It seeks to predict outputs by computing the distance between 
the test data and training points, subsequently selecting the K number of points clos-
est to the test data [30]. 

8. Gradient boosted: This ensemble learning technique builds and combines several 
weak learning models to form a more robust model. The main idea is to correct the 
errors of the previous model by iteratively adding soft models. It focuses on fitting 
the residuals of the previous model using a gradient-based approach [31]. 

9. XGBoost: short for “eXtreme Gradient Boosting,” is a specific implementation of gra-
dient boosting. It was developed to be fast and efficient in terms of resource usage. It 
includes regularization, missing value handling, and a custom cost function [32]. 

10. LightGBM: Gradient boosting machines build sequential decision trees, with each 
tree constructed based on the errors of the preceding tree. In the end, predictions are 
made by summing the contributions of all these trees. 

Figure 1. Types of motor competence according to the tests the male and female schoolchildren
carried out.



Appl. Sci. 2024, 14, 707 7 of 17

2.1.4. Modeling

When conducting a detailed analysis of the data source, it was determined that the
classification output resulting from the motor competence tests is labeled as high, normal,
and low. For this reason, the decision was made that the most appropriate type of prediction
would be classification.

To do this, a comparison of popular supervised machine-learning techniques for a
classification model will be conducted. According to the literature, the most used algorithms
and optimizers are:

1. Decision tree: A non-parametric supervised technique that constructs a classification
model as a tree structure, applicable for classification and regression tasks [24].

2. Random forest: It generates a set of decision trees by employing random resampling
on the training set [25].

3. Support vector machine: Creates effective boundaries to separate datasets by solving
a constrained quadratic optimization problem [26].

4. Naive Bayes: It is a probabilistic classifier based on Bayes’ theorem, assuming strong
independence within attributes of an instance [27].

5. Logistic regression: This type of regression analysis is used to predict the outcome
of a categorical variable based on the independent or predictor variables [28]. While
commonly recognized as a classifier, logistic regression can also be employed as a
regressor to predict numeric values. Its adaptability allows it to address classification
and regression problems, depending on the nature of the data and the analysis
objectives [28].

6. Neuronal network: Most current neural network applications are concerned with
pattern recognition problems. Artificial neural networks consist of assemblies of
perceptrons designed for multi-layer feedforward networks [29].

7. K-nearest neighbors: It seeks to predict outputs by computing the distance between
the test data and training points, subsequently selecting the K number of points closest
to the test data [30].

8. Gradient boosted: This ensemble learning technique builds and combines several
weak learning models to form a more robust model. The main idea is to correct the
errors of the previous model by iteratively adding soft models. It focuses on fitting
the residuals of the previous model using a gradient-based approach [31].

9. XGBoost: short for “eXtreme Gradient Boosting”, is a specific implementation of
gradient boosting. It was developed to be fast and efficient in terms of resource usage.
It includes regularization, missing value handling, and a custom cost function [32].

10. LightGBM: Gradient boosting machines build sequential decision trees, with each
tree constructed based on the errors of the preceding tree. In the end, predictions are
made by summing the contributions of all these trees.

11. CatBoost: CatBoost stands for “Category” and “Boost”; it handles categorical, numeric,
and text features. The CatBoost algorithm employs a symmetric tree or an oblivious
tree structure [33].

Anaconda Navigator Software 2.5.1 was used with its Jupyter Notebook 6.5.2 with
the Python 3 programming language and its Scikit-learn optimization library to compare
supervised machine-learning techniques for classification.

With careful preparation of the input data, it will be imported in a specific CSV format,
representing it as a table with the attributes selected in the “Data selection” section. Figure 2
shows the modeling developed to classify motor competence data, using information
generated by smart bands. This encompasses data processing, modeling, comparisons
with machine-learning algorithms, and achieving classification with optimization using
hyperparameters in the study.
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Figure 2. Modeling of data from the proposed study.

The percentiles were constructed using the LMS method [34]. The curves L represent
skewness (lambda), M represents the median (mu), and S represents the coefficient of
variation (sigma). The LMS method uses the Box–Cox transformation to fit the data
distribution to a normal distribution by minimizing the effects of skewness.

For this purpose, the P25, P50, and P75 percentiles of males (Table 2) and females
(Table 3) were created about the motor competence metrics: cadence (Figure 3), steps
(Figure 4), speed (Figure 5), and stride (Figure 6) for schoolchildren males and females.

Table 2. Percentiles of motor competence metrics of schoolchildren males.

Metrics Age

Cadence 6–7 8–9 10–11 12–13 14–15 16–17

L 0.94 −0.22 0.22 0.33 0.85 1.52
M 28 96 60 63 49 29
S 0.72 0.42 0.46 0.50 0.55 0.53
P25 20 55 44 38.5 29 21
P50 28 96 60 63 49 29
P75 65.5 120 88 86.8 68 44

Steps
L 1.33 −0.16 0.42 0.30 0.67 1.09
M 455 1437 884 1000 732 496
S 0.70 0.42 0.48 0.45 0.54 0.55
P25 299 772 628 690 470 309
P50 455 1437 884 1000 732 496
P75 796 1747 1179 1299 1097 726

Velocity
L 0.85 0.19 0.80 0.33 0.93 1.85
M 1.62 4.69 3.08 3.15 2.28 1.16
S 0.70 0.47 0.53 0.52 0.63 0.61
P25 1.11 2.73 2.10 1.84 1.17 0.90
P50 1.62 4.69 3.08 3.15 2.28 1.16
P75 3.48 6.00 4.30 4.51 3.69 1.92

Stride
L −0.02 0.65 0.91 0.41 0.27 0.66
M 88 82 80 82 76 71
S 0.14 0.12 0.12 0.12 0.106 0.12
P25 74.5 76 74 76 71 66
P50 88 82 80 82 76 71
P75 97.5 90 86 87 83 78

Legend: P: percentile, L: (skewness, lambda), M: (median, mu), S: (coefficient of variation, sigma).
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Table 3. Percentiles of motor competence metrics of schoolchildren females.

Metrics Age

Cadence 6–7 8–9 10–11 12–13 14–15 16–17

L −0.06 −0.41 0.25 0.41 1.04 1.48
M 75 94 69 60 36 29
S 0.52 0.34 0.47 0.49 0.67 0.53
P25 40 68.75 33 35 20 20
P50 75 94 69 60 36 29
P75 108 111.3 89 84 60.5 44

Steps
L 0.21 −0.24 0.58 0.54 0.99 1.29
M 941 1391 802 784 613 529
S 0.52 0.37 0.57 0.49 0.61 0.52
P25 615 989 462 578 426 359
P50 941 1391 802 784 613 529
P75 1584 1608 1233 1226 937 762

Velocity
L −0.06 −0.29 0.79 7.97 1.11 1.84
M 3.91 4.75 2.91 3.04 1.58 1.27
S 0.52 0.36 0.62 5.50 0.74 0.62
P25 2.15 3.33 1.52 1.77 0.94 0.92
P50 3.91 4.75 2.91 3.04 1.58 1.27
P75 5.41 5.69 4.16 4.26 3.09 1.78

Stride
L −2.97 1.47 1.11 0.79 0.27 0.57
M 84 82 78 77 76 71
S 0.24 0.10 0.11 0.11 0.09 0.12
P25 81 79 75 73 72 65.5
P50 84 82 78 77 76 71
P75 89.5 86.3 86.5 86 81.5 77.5

Legend: P: percentile, L: (skewness, lambda), M: (median, mu), S: (coefficient of variation, sigma).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 18 
 

  
Figure 3. Distribution of percentiles for the cadence in schoolchildren in both sexes. 

  
Figure 4. Distribution of percentiles for the number of steps in schoolchildren in both sexes. 

  
Figure 5. Distribution of percentiles for the velocity in schoolchildren in both sexes. 

  
Figure 6. Distribution of percentiles for the stride in schoolchildren in both sexes. 

3. Evaluation and Results 
For the Anaconda Navigator platform with Jupyter Notebook, different machine-

learning techniques used in further research were modeled [35], which were decision tree, 
support vector machine, random forest, naive Bayes, logistic regression, k-nearest neigh-
bors, neuronal network, gradient boosted, and smart bands. Of the data to model, 80% 
was used for training and 20% for testing. 

Figure 3. Distribution of percentiles for the cadence in schoolchildren in both sexes.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 18 
 

  
Figure 3. Distribution of percentiles for the cadence in schoolchildren in both sexes. 

  
Figure 4. Distribution of percentiles for the number of steps in schoolchildren in both sexes. 

  
Figure 5. Distribution of percentiles for the velocity in schoolchildren in both sexes. 

  
Figure 6. Distribution of percentiles for the stride in schoolchildren in both sexes. 

3. Evaluation and Results 
For the Anaconda Navigator platform with Jupyter Notebook, different machine-

learning techniques used in further research were modeled [35], which were decision tree, 
support vector machine, random forest, naive Bayes, logistic regression, k-nearest neigh-
bors, neuronal network, gradient boosted, and smart bands. Of the data to model, 80% 
was used for training and 20% for testing. 

Figure 4. Distribution of percentiles for the number of steps in schoolchildren in both sexes.



Appl. Sci. 2024, 14, 707 10 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 18 
 

  
Figure 3. Distribution of percentiles for the cadence in schoolchildren in both sexes. 

  
Figure 4. Distribution of percentiles for the number of steps in schoolchildren in both sexes. 

  
Figure 5. Distribution of percentiles for the velocity in schoolchildren in both sexes. 

  
Figure 6. Distribution of percentiles for the stride in schoolchildren in both sexes. 

3. Evaluation and Results 
For the Anaconda Navigator platform with Jupyter Notebook, different machine-

learning techniques used in further research were modeled [35], which were decision tree, 
support vector machine, random forest, naive Bayes, logistic regression, k-nearest neigh-
bors, neuronal network, gradient boosted, and smart bands. Of the data to model, 80% 
was used for training and 20% for testing. 

Figure 5. Distribution of percentiles for the velocity in schoolchildren in both sexes.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 18 
 

  
Figure 3. Distribution of percentiles for the cadence in schoolchildren in both sexes. 

  
Figure 4. Distribution of percentiles for the number of steps in schoolchildren in both sexes. 

  
Figure 5. Distribution of percentiles for the velocity in schoolchildren in both sexes. 

  
Figure 6. Distribution of percentiles for the stride in schoolchildren in both sexes. 

3. Evaluation and Results 
For the Anaconda Navigator platform with Jupyter Notebook, different machine-

learning techniques used in further research were modeled [35], which were decision tree, 
support vector machine, random forest, naive Bayes, logistic regression, k-nearest neigh-
bors, neuronal network, gradient boosted, and smart bands. Of the data to model, 80% 
was used for training and 20% for testing. 

Figure 6. Distribution of percentiles for the stride in schoolchildren in both sexes.

3. Evaluation and Results

For the Anaconda Navigator platform with Jupyter Notebook, different machine-
learning techniques used in further research were modeled [35], which were decision
tree, support vector machine, random forest, naive Bayes, logistic regression, k-nearest
neighbors, neuronal network, gradient boosted, and smart bands. Of the data to model,
80% was used for training and 20% for testing.

Jupyter Notebook is a widely used tool in the machine-learning community, where
you can import a set of libraries, train a dataset classification classifier, and evaluate the
model by just using a few lines of code in Python with its library Scikit-learn.

Likewise, the optimization of hyperparameters with the Scikit-learn optimization
library was used. Hyperparameters are parameters that are not directly learned by the
learning algorithm. The basic hyperparameter tuning models are manual search, grid
search, and random search. Random search was used for training since it allows us to find
equal or better models in computing time.

The configuration used for the hyperparameters in the case of gradient boosted was
the loss function to optimize with the “log_loss” option, the criterion with the process to
measure the quality of a division with the “friedman_mse” option, the “learning_rate” with
0.1, “max_depth”: 3, “min_samples_leaf”: 1, “min_samples_split”: 2, “n_estimators”: 100,
“random_state”: none, “subsample”: 1.0, “tol”: 0.0001, “validation_fraction”: 0.1, and with
the other default parameters.

Next, the tests were carried out, and the results of the modeling that was executed for
the different techniques that were previously chosen were obtained using the CSV file as
input data and made up of the motor competence variables.

To evaluate the model [36], accuracy in Equation (1), recall in Equation (2), precision in
Equation (3), and the f1-score in Equation (4) were used. For many classes Ci, fpi represents
false positive, tpi true positive, fni false negative, and tni true negative.

Accuracy =
tpi + tni

tpi + tni+ f pi + f ni
(1)

Recall =
∑l

i=1
tpi

tpi+ f ni

l
(2)
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Precision =
∑l

i=1
tpi

tpi+ f pi

l
(3)

F1 − score = 2 × (Precision)× (Recall)
(Precision) + (Recall)

(4)

Tables 4 and 5 compare the classical and optimized machine-learning techniques
results with selected hyperparameters and the accuracy, f1-score, recall, and precision
metrics for both schoolchildren males and females.

Table 4. Comparison of results of supervised machine-learning techniques in males.

Algorithm DT SVM RF NB LR KNN MLP GB XGB LGBM CB

Accuracy 0.88 0.69 0.92 0.74 0.78 0.81 0.68 0.93 0.92 0.94 0.93
Accuracy optimized
hyperparameter 0.87 0.82 0.92 0.75 0.79 0.85 0.70 0.95 0.91 0.94 0.93

f1-score 0.87 0.74 0.93 0.77 0.82 0.88 0.72 0.92 0.91 0.93 0.92
Recall 0.86 0.67 0.94 0.73 0.84 0.88 0.67 0.92 0.90 0.94 0.92
Precision 0.88 0.82 0.92 0.82 0.80 0.88 0.77 0.92 0.92 0.92 0.92

Legend: DT: decision tree, SVM: support vector machine, RF: random forest, NB: naïve Bayes, LR: Logistic
Regression; KNN: k-nearest neighbors, MLP: multilayer perceptron, GB: gradientboosted, XGB: extreme gradient
boosting, LGBM: light gradient boosting machine, CB: CatBoost.

Table 5. Comparison of results of supervised machine-learning techniques in females.

Algorithm DT SVM RF NB LR KNN MLP GB XGB LGBM CB

Accuracy 0.86 0.68 0.88 0.71 0.78 0.72 0.72 0.84 0.87 0.88 0.90
Accuracy optimized
hyperparameter 0.86 0.80 0.87 0.72 0.83 0.81 0.74 0.89 0.84 0.88 0.88

f1-score 0.91 0.68 0.92 0.76 0.89 0.88 0.82 0.93 0.92 0.90 0.93
Recall 0.97 0.61 0.94 0.69 0.94 0.92 0.86 0.92 0.86 0.91 0.94
Precision 0.86 0.76 0.89 0.83 0.85 0.82 0.78 0.94 0.94 0.89 0.92

Legend: DT: decision tree, SVM: support vector machine, RF: random forest, NB: naïve Bayes, LR: Logistic
Regression; KNN: k-nearest neighbors, MLP: multilayer perceptron, GB: gradient boosted, XGB: extreme gradient
boosting, LGBM: light gradient boosting machine, CB: CatBoost.

In the results of the previous tables, it can be identified that, for the classification
techniques, those that gave the best results concerning accuracy for the case of males
and females were gradient boosting, whose values were the highest, indicating a better
adjustment to the estimated prediction with a value of 0.95. For the f1-score metrics, the
algorithms gave similar values of 0.92 between males and females. In the case of recall, it
was 0.92. The confusion matrix of the gradient boosting machine-learning algorithm with
the highest score found is shown in Figure 7.
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Figures 8 and 9 show a graph of the ROC-AUC curves of gradient boosting for males
and females.
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Observing the results of the ROC curves, in the case of male schoolchildren, the “Low”
class shows an intense elevation towards the upper left corner of the graph and has a high
area under the curve (AUC) of 0.98; this indicates that the model has a high sensitivity
to detect the “Low” classification of motor competence. The false positive rate is low,
suggesting the model does not misidentify many schoolchildren with the “Low” motor
competence classification.

In the case of the female schoolchildren, the “High” class shows an intense elevation
towards the upper left corner of the graph and has a high area under the curve (AUC) of
0.98; this indicates that the model has a high sensitivity to detect the classification “High”
motor competence. The false positive rate is low, suggesting the model does not misidentify
many schoolchildren with the “High” motor competence classification. On the other hand,
the dark blue dotted line refers to the fact that the test has been bad, which is not the case
of the study.

Deployment

A mobile app was developed in Android Studio using the Flutter framework. The
code structure was organized by the best mobile application development practices and
following the design pattern recommended by Flutter, which is the model–view–controller
(MVC) design pattern. Firebase real-time database was used for storage.
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The primary interfaces are shown in Figure 10, where you have the login screen and
the options menu.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 18 
 

  
Figure 10. Initial interfaces of the mobile app. 

  
Figure 11. Calculation interfaces and use of AI to generate the value of your motor competence 
within the percentiles. 

The process was evaluated through the prototype of the Software Quality Systemic 
Model (SQSM). This model is planned based on six standardized international quality 

Figure 10. Initial interfaces of the mobile app.

Figure 11 shows the interface that allows entering the data corresponding to the
student; the body mass index (BMI) will be able to be calculated automatically. Additionally,
table is provided to identify the student’s BMI classification. Likewise, the interface that
allows entering the data captured with the smart band, such as speed, cadence, stride,
and steps of the schoolchildren, is shown. It contains an Artificial Intelligence function
that allows you to locate your position within the percentiles generated from the sample
of schoolchildren.

The process was evaluated through the prototype of the Software Quality Systemic
Model (SQSM). This model is planned based on six standardized international quality
characteristics through a set of characteristic categories and metrics, which measure and
evaluate the software quality of a product; this model is made into an instrument for
measuring great value covering essential aspects of software quality.

It was carried out in the selected educational centers to evaluate the application’s func-
tionalities. The information collected meets expectations as it explains the population’s needs.

Once the various interviewees were integrated, we proceeded with the evaluation
method based on the Systemic Quality Model, which includes 11 categories. We have
selected three specific classes related to the software: functionality, reliability, and usability
because these apply to the case study. Table 6 shows a detailed description of each category
with the interviews.

Considering the levels of satisfaction achieved in the categories of functionality, re-
liability, and usability, by calculating the arithmetic mean, it is observed that the degree
of satisfaction of the application for the specialists of the educational centers is 77.09%.
By contrasting this result with the quality level, it is evident that the application meets
significant standards.
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Table 6. Categories and characteristics according to the prototype of Software Quality Systemic
Model (SQSM).

Characteristics Subcharacteristics Metrics Percentage of
Compliance Quality Level

Functionality (FUN) FUN. 1 Fit for purpose 20 84.00% Satisfied
FUN. 2 Accuracy 6 86.67% Satisfied
FUN. 3 Interoperability 4 86.67% Satisfied
FUN. 4 Security 3 53.33% Does not satisfy
Subtotal 33 81.88% Satisfied

Usability (USA) USA.1 Ease of Compression 5 90.00% Satisfied
USA. 2 Learning Capacity 8 92.00% Satisfied
USA. 3 Graphical Interface 4 95.00% Satisfied
USA. 4 Operability 3 52.00% Does not satisfy
Subtotal 20 82.73% Satisfied

Reliability (RIA) RIA. 1 Maturity 5 60.00% Does not satisfy
RIA. 2 Fault tolerance 4 90.00% Satisfied
RIA. 3 Recovery 2 50.00% Does not satisfy
Subtotal 11 69.09% Does not satisfy

Total 64 77.09% Satisfied

4. Discussion

The study’s objective was to classify the motor competence of schoolchildren per-
formed in a school using smart bands according to age range and sex, using machine-
learning techniques optimized with hyperparameters acceptably for the classification
indicated through the passing results in the tests carried out.

The results of the study have shown that according to the motor competence tests
carried out, step cadence values obtained range from 96 to 29 steps in both sexes and the
number of steps ranges from 1437 to 455, with speed from 4.75 to 1.16 and the stride from
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88 to 71. Furthermore, it was verified that the measurements obtained decreased rapidly
with age, being more pronounced in females than in males.

In this context, the cut-off points suggested in other recent research [37] were taken as a
basis, where the study proposed percentiles of the number of steps in a day. The percentiles
indicate <p25 below average, p25 to p75 average, and >p75 above average. In essence,
percentiles, regardless of the method used, can be applied to establish improvement goals,
especially for schoolchildren below the 25th percentile [38]. For example, the schoolchildren
in this study classified below the p25th percentile in the tests performed showed higher
BMI values.

Precisely, these results coincide with those found in [4], when it states that the measure-
ments obtained decrease rapidly with age. This information could help promote strategies
for developing physical activity in schoolchildren in educational centers to improve their
performance. However, a limitation found in the study was the need for a broader set of
tests to be performed.

Furthermore, the results of the study have shown that using machine-learning tech-
niques such as those evaluated by Himi et al. [14,39], then optimized with hyperparameters
like work carried out by Yadav et al. [38] and Yang et al. [40], they achieve reasonable
classifications for schoolchildren according to their motor competence. It can also be seen
that the naïve Bayes algorithm obtains the lowest results [41,42].

It was determined that the most suitable supervised machine-learning technique
would be the gradient-boosted model, which has obtained the best accuracy of 0.95 with an
f-score of 0.93, recall of 0.92, and precision of 0.94, which was used in works such as [43,44].
This has been corroborated by the ROC-AUC curves, where the “Low” classes for males
and “High” for females show a substantial elevation towards the upper left corner of the
graph and have a high area under the curve of 0.98; this indicates that the model has a high
sensitivity to detect motor competence classification.

This study represents a significant contribution with the use of wearable devices for
data capture and classification using machine-learning algorithms optimized with hyper-
parameters for motor competence in schoolchildren that can support people interested in
finding more precise ways to evaluate motor competence with the support of technology.

5. Conclusions

In conclusion, smart bands have shown great potential to improve the motor com-
petence of schoolchildren through machine learning and hyperparameters. The gradient-
boosted algorithm is a good model for classifying schoolchildren. Motor competence is
a crucial aspect of the development of children and adolescents, and smart bands can
facilitate this process by providing personalized feedback. By harnessing the power of
technology, smart bands can help children develop essential motor skills, leading to bet-
ter physical health and overall well-being. As more research is conducted in this field,
we expect to see more advancements in smart band technology, which will undoubtedly
positively impact child development.

Finally, the mobile software product built based on the proposed model was validated
using the prototype of the Software Quality Systemic Model (SQSM) based on three specific
categories: functionality, reliability, and usability, obtaining 77.09%

Expanding the determining attributes for classifying motor competence in schoolchil-
dren is recommended in future work. Additionally, constructing the application of other
classification algorithms is essential to compare results and assess efficiency, as well as deep
learning. Different approaches, such as transfer learning, can be used to adapt domain data
to train at high fidelity.
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