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Abstract: The spatial resolution of an infrared focal plane polarization detection system is limited by
the structure of the detector, resulting in lower resolution than the actual array size. To overcome this
limitation and improve imaging resolution, we propose an infrared polarization super-resolution
reconstruction model based on sparse representation, optimized using Stokes vector images. This
model forms the basis for our method aimed at achieving super-resolution reconstruction of infrared
polarization images. In this method, we utilize the proposed model to initially reconstruct low-
resolution images in blocks. Subsequently, we perform a division by weight, followed by iterative back
projection to enhance details and achieve high-resolution reconstruction results. As a supplement, we
establish a near-real-time short-wave infrared time-sharing polarization system for data collection.
The dataset was acquired to gather prior knowledge of the over-complete basis set and to generate a
series of simulated focal plane images. Simulation experimental results demonstrate the superiority
of our method over several advanced methods in objective evaluation indexes, exhibiting strong
noise robustness in quantitative experiments. Finally, to validate the practical application of our
method, we establish a split-focal plane polarization short-wave infrared system for scene testing.
Experimental results confirm the effective processing of actual captured data by our method.

Keywords: infrared polarization; super-resolution reconstruction; sparse representation

1. Introduction

With advancements in infrared technology, infrared polarization imaging has found
growing applications in various domains, such as industrial inspection [1–3], medical
diagnosis [4–6], and astronomical remote sensing [7–9]. This technology facilitates the
augmentation of information acquired through infrared imaging and enables further explo-
ration of post-image processing algorithms. The infrared focal plane polarization detector
has garnered significant interest as the central component of infrared polarization imaging.
It consists of multiple groups of micro-linear polarization units and infrared detectors [10].
The micro-linear polarization units are arranged in an ordered structure on the surface
of the infrared detector, with each group containing four pixels. Each group records four
different necessary intensity response values [11]. However, this design structure decreases
the spatial resolution of the infrared focal plane polarization imaging system, resulting in a
significant impact on the measurement accuracy of polarization information. To address
the issue of limited sampling by the detector and the inability to obtain a full-resolution
polarization image, super-resolution reconstruction of the polarization image is necessary.
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This involves utilizing an effective reconstruction algorithm to enhance image details and
clarity, compensating for the loss of resolution caused by the system structure.

Super-resolution reconstruction techniques can be categorized based on their imple-
mentation methods into interpolation methods [12–16], reconstruction methods [17–19],
and learning methods [20–28]. The interpolation methods include bilinear and bicubic inter-
polation methods [12], which were the initial algorithms utilized for super-resolution tasks.
Subsequently, new algorithms were proposed, such as gradient-based interpolation [13],
Newton polynomial-based interpolation (NP) [14], Edge-Aware Residual Interpolation
(EARI) [15], and polarization image demosaicking using Polarization Channel Difference
Prior (PCDP) [16], which leverage image geometric information and channel correlation.
These interpolation techniques offer the advantage of quick reconstruction and effective
edge preservation. However, since the degradation information of the actual pixel is not
always accurately known, the models employed are not fixed.

The primary objective of super-resolution algorithms in reconstruction methods is
to reverse-engineer the imaging process of an image. This involves establishing an ob-
servation model that links the low-resolution image with the high-resolution image. To
solve the model, image-specific prior knowledge is introduced, either at a local or global
level. As an example, Chen et al. combined the 3D block-matching algorithm with the
concept of non-local filtering and introduced the Block-matching 3D Projectile On Convex
Sets (BPOCS) algorithm [17]. Zhang et al. proposed the Frequency domain Phase-based
Projection On Convex Sets (FPPOCS) algorithm, which combines the Wiener filter with the
phase spectrum features of high-resolution images [18]. Similarly, in our previous work, we
utilized principal component analysis and soft threshold denoising, using micro-scanning
to capture sub-pixel micro-displacement frame sequences without altering the optical sys-
tem’s structure. We proposed the Micro-scanning Polarization Projection On Convex Sets
(MPPOCS) algorithm, designed specifically for infrared focal plane polarization detection
systems [19]. The primary focus of the reconstruction method’s super-resolution algorithm
is the degradation process of the image. It aims to narrow down the range of potential solu-
tions using an observational model, thereby ultimately improving the preservation of the
image’s geometry. However, due to the complex degradation factors encountered during
the imaging process, artificial modeling cannot fully establish this process comprehensively.

The underlying principle of learning methods involves establishing correspondence
between low-resolution and high-resolution images, utilizing the complementary informa-
tion within similar blocks to preserve signal characteristics. In 2018, Zhang et al. introduced
the Polarization Demosaicing Convolutional Neural Network (PDCNN) [20] to address the
challenge of polarization super resolution, which lacked a specialized network for focal
plane polarizing images. Subsequently, to mitigate accumulated errors caused by formula
computation steps, Zeng et al. proposed an end-to-end fully convolutional neural network,
FORK-NET [21]. This network takes the focal plane image as input and generates output
intensity, polarization degree, and polarization angle images. An objective evaluation
index indicated the superior performance of FORK-NET compared to PDCNN. Conse-
quently, researchers explored alternative network models, such as the Multi-Scale Adaptive
Weighted Network (MSAWN) [22], Deep Compressed Sensing (DCS) [23], and the sparsely
polarimetric image demosaicing model (Sparse-PDM) [24]. These networks primarily target
visible light polarization and necessitate extensive training data, typically sourced from
Sony IMX250 series visible light polarization cameras. Articles [24,25] describe the publicly
available dataset created by these researchers. The advantage of deep learning methods lies
in their ability to achieve excellent reconstruction effects. Nevertheless, these methods also
possess certain drawbacks that limit their suitability for specific tasks. Super-resolution per-
formance becomes heavily reliant on computational power and data volume, limiting their
deployment in computationally constrained and data-limited environments. Furthermore,
the lack of clear interpretation in the structural units is evident. Conversely, shallow learn-
ing methods derived from traditional machine learning algorithms offer advantages such
as adaptability to small datasets, relatively lower computational costs, and interpretability.
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In this paper, we propose an infrared polarization super-resolution reconstruction
model based on sparse representation. Our model optimizes the Stokes vector images,
eliminating the need for mechanical reconstruction of a multi-channel polarization image.
To enhance efficiency and accuracy, we construct three over-complete sets of Stokes vector
image dictionaries. These dictionaries streamline the calculation process of the polarization
degree and polarization angle while minimizing the potential for error.

Furthermore, we introduce a reconstruction method based on our model. This method
utilizes the proposed model to initially reconstruct the low-resolution image in blocks.
The image is then divided by the weight coefficients of the overlaps, and the details
are refined using the Iterative Back Projection (IBP) technique to achieve high-resolution
reconstruction results.

To build the dictionary, we designed a near-real-time short-wave infrared time-sharing
polarization system prototype, leveraging our previous error analysis work [29]. This proto-
type enabled us to acquire the necessary dataset for simulation experiments. Additionally,
we established a short-wave infrared focal plane polarization system for capturing real
data. The experimental results demonstrate the superiority of our proposed method in
both objective and subjective evaluation indexes.

The rest of this paper is organized as follows: Section 2 introduces the reconstruction
model and algorithm, including the establishment of an over-complete dictionary set, noise
analysis, and the iterative solution method. Section 3 presents the simulation and real
experiment results, provides the objective evaluation index, and explains the subjective
index. The anti-noise performance of the proposed algorithm is analyzed, and the running
time of the algorithm is provided. Next, we discuss the results and introduce future research
directions. Finally, Section 4 discusses the advantages of the proposed method, summarizes
the novelty of the method and our contributions, and describes future research direction.

2. Super-Resolution Methods

An infrared focal plane detection system can capture essential intensity images from
four different angles in a single exposure. Due to limitations imposed by the detector
structure, the effective resolution of the four declination angle images is reduced by half of
the original pixel size, expressed mathematically as follows:

IM/2×N/2
θi=1,2,3,4

= IM×N
out ∗ Maskθ (1)

where IM×N
out represents the cumulative light intensity recorded by the detector, analogous

to an image obtained from a single exposure at a specific angle. Maskθ is an intensity
extraction mask that biases the detection process to isolate the individual angle compo-
nents within the overall light intensity. This mask is dependent on the pixel arrangement
employed by the self-developed detector. Each superpixel within this arrangement consists
of a tuple of four pixels. The resulting separated images for each declination angle, denoted
as IM/2×N/2

θi=1,2,3,4
, exhibit a reduced size of half the original dimensions. The Stokes notation is a

widely utilized method for representing polarization states in engineering, and its formula
is provided below:

S = [S0 S1 S2 S3] (2)

where S0, S1, S2, and S3 are parameters that describe different aspects of the incident light.
S0 represents the total incident light intensity. S1 is the difference in intensity between the
horizontal and vertical directions. S2 is the intensity difference between polarized light
at 45 degrees and 90 degrees concerning a reference direction. S3 specifically relates to
the detection of left-handed versus right-handed circular polarization. In typical projects,
the detection of linear polarized light is generally carried out without considering the S3
component. By using the above formula, it is possible to solve for the Stokes vector of
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the incident light inversely. This method allows for the retrieval of information about the
polarization degree and polarization angle of the current scene.

DP =

√
S12 + S22

S0
=

√
(I0 − I90)

2 + (I45 − I135)
2

(I0 + I45 + I90 + I135)× 1
2

(3)

AP =
1
2

arctan(
S2
S1

) =
1
2

arctan(
I45 − I135

I0 − I90
) (4)

When IM/2×N/2
θi=1,2,3,4

is directly included in the aforementioned calculation formula, it
becomes apparent that the dimensions of DP and AP calculated in this manner are
M/2 × N/2. Furthermore, due to the unique arrangement structure of the superpixel,
only a single declining-angle light intensity of a given pixel can be obtained in a single
exposure. This leads to an instantaneous field error in the calculated polarization signal.
Hence, it is imperative to conduct super-resolution reconstruction of IM/2×N/2

θi=1,2,3,4
.

2.1. Infrared Polarization Super-Resolution Reconstruction Model

To obtain the high-resolution image ISR, the low-resolution image ILR is used. It is
assumed that ISR can be linearly represented as α using the over-complete basis vector
space DSR. According to the theory of root sparse coding primitives, we can infer that the
following formula holds when α is sufficiently sparse:

ĨSR = DSRα ∃α ∈ Rk with ∥α∥0 << k (5)

The over-complete basis vector DSR, which can also be referred to as an over-complete
dictionary set, is utilized. The objective is to minimize the Euclidean distance between
the reconstructed image ĨSR and the actual high-resolution image, while ensuring that α
satisfies the sparsity condition. This can be formulated as an optimization problem:

min
a

∥α∥0 s.t. ∥DSRα − ISR∥2
2 < ε (6)

Formula (6) satisfies the condition that the square of the 2-norm is smaller than the
error ε, rather than just the 2-norm being smaller than the error ε. This choice is justified
by previous research which has shown that in the field of super-resolution reconstruc-
tion, penalizing high-frequency errors by using the square of the 2-norm yields better
results [26–28]. When performing super-resolution tasks with the input of image ILR, it
is evident that Formula (6) does not have enough known optimization solutions. In this
context, the existence of dictionary DLR is assumed. This dictionary shares the sparse
representation α with DSR, and solving Formula (6) can be equivalently stated as the
following equation:

min
a

∥α∥0 s.t. ∥GDLRα − GILR∥2
2 < ε (7)

In the equation above, G denotes an edge extraction operator, responsible for generat-
ing edge features for Formula (7). We observe that the pseudo-polarization information is
primarily concentrated in the high-frequency portion. Precisely reconstructing the missing
high-frequency content in the targeted high-resolution image holds the utmost significance.
Extracting the high-frequency components from low-resolution images proves advanta-
geous for the reconstruction of high-resolution images [30]. Formula (7) corresponds to
an L0 problem, which can be approximated through an L1 problem using the Lagrange
multiplier method:

min
a

∥GDLRα − GILR∥2
2 + λ∥α∥1 (8)

In Formula (8), λ is an adjustable parameter that is associated with the noise variance
of the input image ILR. The derivation process will be conducted later on. With the
given image ILR and over-complete dictionary sets DSR and DSR, a set of optimal sparse
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representations α∗ is obtained by solving Formula (8). Subsequently, the reconstructed
image ĨSR can be obtained by applying it to Formula (5). The resulting image satisfies the
constraint stated in Formula (6).

We introduce adjustable parameter λ into Formula (8), which is derived and analyzed
using the Maximum A Posteriori (MAP) theory. According to the MAP theory, the squared
term of the L2 norm in Formula (8) can be interpreted as the maximum likelihood estimate
of α. Additionally, part of the L1 norm can be considered as the Laplace prior of α. Without
taking into account the edge extraction operator G, this prior can be expressed as follows:

α∗ = ar g max
α

p(ILR | DLR, α)p(α) (9)

The α variable in Formula (9) follows a Laplace distribution with the parameter (0, b).
As a result, its probability density function can be expressed as follows:

p(α) =
1
2b

e−
|α|1

b (10)

The variable ILR in Formula (9) is distributed according to a Gaussian distribution with
the parameter

(
DLa, δ2). Thus, its probability density function can be expressed as follows:

p(ILR | DLR, α) =
1√
2πδ

e
1

−2δ2 ∥DLRα−ILR∥2
2 (11)

By incorporating Formulas (10) and (11) into Formula (9), we derive the resulting
Formula (12):

α∗ = arg max
α

log p(ILR | DLR, α) + log p(α)

= arg max
α

1
−2δ2 ∥DLRα − ILR∥2

2 +
1

−2b |α|1
= arg min

α
∥DLRα − ILR∥2

2 +
δ2

b |α|1

(12)

Equation λ = δ2/b can be observed from the aforementioned formula. Given the
sparsity of α, it is assumed that the scale parameter b remains relatively constant, while
λ should be increased in the presence of higher input image noise. For the experiment, a
value of 0.2 was assigned to λ.

2.2. Reconstruction Method

IM/2×N/2
θi=1,2,3,4

is a low-resolution image. If IM×N
θi=1,2,3,4

in the same scene is solved, the DP

and AP of full-resolution images can be solved using Formulas (3) and (4). Consequently,
the Stokes vector needs to be calculated. The calculation process involves finding the
difference between two groups of orthogonal light intensities. It is important to note that
the different image is significantly influenced by the displacement of the target. Based on the
experimental findings in [19], displacement-induced pseudo-polarization has a substantial
impact on subjective perception. Therefore, our reconstruction method is expressed in the
following equation:

α∗ = arg min
a

∥α∥0 S.T. ∥GDLRα − GILR∥2
2 < ε

ILR = {S0LR, (S1/S0)LR, (S2/S0)LR}
ISR = DSRα∗

(13)

S0LR is reconstructed as S0SR through the use of super resolution. Subsequently,
(S1/S0)LR and (S2/S0)LR are reconstructed as (S1/S0)SR and (S2/S0)SR, respectively. Fi-
nally, the DP and AP images at full resolution are calculated. This reconstruction approach
offers several benefits. First, it eliminates the need to calculate the difference between
each angular component, thereby avoiding any potential angle errors. Additionally, the
reconstruction of (S1/S0)SR and (S2/S0)SR does not rely on the light intensity of the scene.
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The light intensity captured by the detector encompasses both natural and fully polarized
light components, which can be derived using Malus’ law:

Iθ =
1
2

IN + I × P × cos2(θ − A) (14)

In the formula above, Iθ represents the intensity of partially polarized light at a given
declination angle θ. This can also be interpreted as the light intensity received by the
detector at that angle. IN represents natural light, while IN represents the total light
intensity. IN denotes the degree of polarization, while A represents the polarization angle.
The orthogonal difference of polarization is defined [31] as:

Iθ
⊥ = Iθ

⊥ − Iθ+ π
2

⊥ = I(1 − P)× (cos2(θ − A)− cos2(
π

2
+ θ − A)) (15)

In the formula above, when θ = 0
◦
, Iθ

⊥ = S1, and θ = 45
◦
, Iθ

⊥ = S2. The Stokes repre-
sentation of the total light intensity I is denoted as S0. Therefore, (S1/S0)LR and (S2/S0)LR
are influenced by the polarization degree and polarization angle. By reconstructing them, it
is possible to achieve better restoration of the DP and AP images at full resolution, instead
of directly reconstructing the DP and AP low-resolution images from the high-resolution
S0, DP, and DP images. The proposed method does not take the entire image as input.
Instead, a sliding window reconstruction is performed on a low-resolution image. The
window size is set at 5 × 5, with a step length of 1. During the reconstruction process, the
number of overlapping pixels is calculated, and the reconstructed ĨSR is divided by the
overlap coefficient W. The operational details are presented in the figure below.

As shown in Figure 1, the red segment illustrates a pixel-level reconstruction process
where each pixel is reconstructed once, using a weight factor of W = 1. The yellow
part represents another reconstruction process. It is important to clarify that this specific
depiction of traversing during the second step is not obligatory, as any traversal with a
step size of 1 covering the entire image would be sufficient. It is worth noting that there
is an overlap between the yellow and red segments. In terms of pixel-level analysis, the
overlapping region carries a weight coefficient of W = 2. The resulting reconstructed ISR is
then divided by the overlap coefficient W. Additionally, the Iterative Back Projection (IBP)
algorithm is employed to enhance image details and minimize the reconstruction error of
the reconstructed ĨSR. The input for the IBP algorithm is composed of the reconstructed
image ĨSR and the reference image obtained through the sampling of ILR using the bicubic
interpolation method.

The overall method consists of the following steps:

(1) The acquired low-resolution image is initially divided into sliding window blocks
with a step size of 1 and window size of 5 × 5.

(2) The α∗ of each component is solved using Formula (8), and in this process, the feature
symbol search algorithm proposed in [32] is employed.

(3) The reconstructed image ĨSR of each component is then divided by the overlap coeffi-
cient W.

(4) The Iterative Back Projection (IBP) algorithm is used to further reconstruct each
component’s W.

(5) Finally, the Stokes vector image, polarization degree image, and polarization angle
image are calculated based on the reconstructed results.
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2.3. Establishment of Dictionary Set

Section 2.1 discusses the dictionary, called DLR, which is mentioned as having a shared
sparse representation with DSR. To achieve our desired solution, we need to construct a
joint dictionary. The optimization problem for this joint dictionary is represented in the
downward form:

min
DLR ,DSR,αU

1
C1

∥GDLRαU − GTLR∥2
2 +

1
C2

∥DSRαU − TSR∥2
2 + λ(

1
C1

+
1

C2
)|αU |1 (16)

The variables C1 and C2 in the formula above are used to balance the costs of the
Dictionary-based Super-Resolution DSR and Dictionary-based Low-Resolution DLR meth-
ods. Since the reconstruction method requires a sliding window, the dictionary set is also
built using a sliding window approach with a window size of 5 and step size of 1. However,
this practice leads to inconsistent matrix sizes, so we up-sample the low-resolution image
before building the dictionary set. The values of C1 and C2 are set to the number of atoms
corresponding to DLR and DSR, respectively. In our case, C2 is set to 25 and C1 is set to 100,
as our edge extraction operator G is defined as the first and second derivatives in the x and
y directions. Additionally, we further simplify Formula (16):

min
DU ,αU

∥DUαU − TU∥2
2 + λ|αU |1

DU =

[ 1
10 GDLR
1
5 DSR

]
TU =

[ 1
10 GTLR
1
5 TSR

] (17)

According to [33], to optimize the problem of solving Formula (17), it is necessary to
constrain DU . This ensures the existence of both drank (DU)×1

U,i and αU atomic sets within

DU , which leads to consistent results for drank (DU)×1
U,i · αU and approaching 0 for |αU |1. As a

result, it is crucial to normalize the atomic sets of DU and impose constraints before training.
Representation of the entire dictionary set can be expressed using the following formula,
with K being the total number of atomic sets in the dictionary set, set to 512 during training:

D∗
U = argmin

DU ,αU

∥DUαU − TU∥2
2 + λ|αU |1 s.t.

∥∥∥drank(αU)∗1
u.i

∥∥∥2

2
≤ 1, i = 1, 2, 3, . . . K (18)
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The formula is not convex on both DU and αU . However, it is convex on one of them.
To address this, we follow the approach proposed in [32]. We first initialize DU and solve
αU using the feature symbol search algorithm. Then, we fix αU and solve the duality
problem of αU using the conjugate gradient method. Solving the duality problem offers
the advantage of generating fewer variables during the optimization process, thus making
it faster.

3. Results

To validate the proposed method, we created a prototype near-real-time short-wave
infrared time-sharing polarization system for collecting training and simulation data,
building upon our previous work. As shown in Figure 2. The system utilized a custom
short-wave detector that operated within the 0.95~1.65 µm wavelength range. Additionally,
a self-designed zoom lens with a resolution of 120 lp/mm was employed. Real-time
communication with the host optical signal was facilitated by the fully electronic design of
the rotating target wheel component. The system offered a polarization time resolution of
25 frames. A total of 60 scenes, encompassing indoor and outdoor settings, were captured.
Amongst these scenes, 54 were used to form the training dictionary set, while 6 scenes were
reserved for simulation testing. The S0 images from the simulation test are depicted in
Figure A1 in Appendix A, showcasing cars, a window, a wall, a building, a tower, and a
tank. Each image has a resolution of 640 × 512 pixels.
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Figure 2. Production of the near-real-time short-wave infrared time-sharing polarization system. In
our study, the incident natural light is partially polarized when it reflects off the target. Subsequently,
it passes through a polarizer to obtain linear polarization. The linearly polarized light then travels
through the lens and reaches the shortwave infrared detector. In terms of the physical products we
manufactured, the foremost component was a motor-controlled rotating target wheel. We achieved
high-precision angle control using a grating ruler. The entire system was connected to the upper
computer via fiber optics for transmission.

In this paper, four interpolation methods were utilized: the Newton polynomial-
based interpolation method (NP) [14], the Edge Sensing Residual Interpolation method
(EARI) [15], a polarization difference priority-based interpolation algorithm (PCDP) [16],
and the Micro-scanning Polarization Projection On Convex Sets (MPPOCS) algorithm [19],
which we previously proposed. As the MPPOCS algorithm is a multi-frame super-resolution
algorithm, we modified its input. In the simulation experiment, we simulated the micro-
scan image input using a single frame image. For the real image test, we directly employed
a multi-frame image as the input.

In terms of objective evaluation indicators, three commonly used methods in super-
resolution reconstruction tasks were selected: a structural similarity coefficient (SSIM), the
Peak Signal-to-Noise Ratio (PSNR), and Root Mean Square Error (RMSE). These evaluation
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criteria were applied to the normalized images of S0, S1, S2, DP, and AP, respectively. A
higher SSIM indicated that the reconstructed image closely resembled the reference image
in terms of intensity, contrast, and structure. The accuracy of each polarization component’s
reconstructed image reflected the true polarization characteristics of the object. The noise
in the polarization image mainly manifested as false polarization. PSNR, which measures
the ratio of peak signal energy to average noise energy, was used to assess the pseudo-
polarization level in each component of the reconstructed polarization image. RMSE was
used to gauge the degree of similarity between the reconstructed polarization image and
the true polarization image in terms of pixel position. A smaller RMSE value indicated a
closer match between the reconstructed and true polarization values for the same pixel
position. By combining these three objective evaluation measures with subjective criteria, a
comprehensive analysis of the proposed reconstruction method was conducted.

3.1. Super-Resolution Performance Test

The experimental setup consisted of a PC host with an i7-4720HQ CPU (Intel Corpora-
tion, Santa Clara, CA, USA) and GTX960 GPU (Nvidia Corporation, Santa Clara, CA, USA).
The specific parameter settings for both the reconstruction and training parts of the dic-
tionary set are provided and explained in Section 2. It is important to note that dictionary
set learning takes place after the image segmentation process. For training purposes, we
randomly selected 100,000 windows from 54 training scenes, each with dimensions of 5 × 5.
No noise reduction algorithm was employed following the non-uniformity correction and
blind element repair of the captured images. Consequently, the resulting images may
have contained electronic noise, dark current noise [34], stray light response, and some
uncorrected blind elements. The objective evaluation indicators for the simulation results
are depicted in Table 1.

Table 1. The objective evaluation indexes of each algorithm for a tower.

Method S0 S1 S2 DP AP

EARI
SSIM = 0.9649 SSIM = 0.9670 SSIM = 0.9751 SSIM = 0.8148 SSIM = 0.7559

PSNR = 35.6509 PSNR = 41.4362 PSNR = 42.4668 PSNR = 27.9892 PSNR = 19.8982
RMSE = 0.0165 RMSE = 0.0085 RMSE = 0.0075 RMSE = 0.0399 RMSE = 0.1012

NP
SSIM = 0.9708 SSIM = 0.9807 SSIM = 0.9842 SSIM = 0.8599 SSIM = 0.7749

PSNR = 36.8702 PSNR = 43.5596 PSNR = 44.0752 PSNR = 29.7688 PSNR = 23.2195
RMSE = 0.0143 RMSE = 0.0066 RMSE = 0.0063 RMSE = 0.0324 RMSE = 0.0690

PCDP
SSIM = 0.9723 SSIM = 0.9748 SSIM = 0.9827 SSIM = 0.8512 SSIM = 0.7602

PSNR = 37.1946 PSNR = 42.4574 PSNR = 43.67161 PSNR = 29.2385 PSNR = 22.4482
RMSE = 0.0138 RMSE = 0.0075 RMSE = 0.0066 RMSE = 0.0345 RMSE = 0.0754

MPPOCS
SSIM = 0.9687 SSIM = 0.9972 SSIM = 0.9952 SSIM = 0.9610 SSIM = 0.9452

PSNR = 36.1099 PSNR = 54.8412 PSNR = 50.9966 PSNR = 38.9372 PSNR = 38.6978
RMSE = 0.0156 RMSE = 0.0018 RMSE = 0.0028 RMSE = 0.0113 RMSE = 0.0116

This Work
SSIM = 0.9809 SSIM = 0.9980 SSIM = 0.9972 SSIM = 0.9729 SSIM = 0.9595

PSNR = 40.0757 PSNR = 56.8644 PSNR = 54.0460 PSNR = 41.8172 PSNR = 41.3630
RMSE = 0.0099 RMSE = 0.0014 RMSE = 0.0019 RMSE = 0.0081 RMSE = 0.0086

The table above clearly demonstrates the excellent reconstruction performance achieved
by the proposed method. All five algorithms yielded good results for the S1 and S2 images.
The majority of pixels in the S1 and S2 images represented the low-frequency component.
Despite this, our approach still stood out and achieved the best results. Unlike the other
algorithms, our method did not obtain the S1 and S2 images by detecting the difference in
declination angle. On the S0 index, the MPPOCS method exhibited a low reconstruction ef-
fect. This is because the filtering method used in this algorithm sacrifices some details of the
decline-detecting image, reduces the noise of the orthogonal difference image, and neglects
the quality of the weighted image. In our reproductions of the other algorithms, some did
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not align with the original data. We analyzed these replications in our experiments using
the publicly available source code provided by the original authors. The primary difference
lay in the down-sampling technique. The authors used interlaced pixel extraction for the
simulation, resulting in simulated images with minimal noise. In contrast, our simulated
image contained significantly more noise. Additionally, our degradation process employs
bicubic interpolation to obtain the subsampled image, where the pixels in the neighbor-
hood are double cubic-weighted. This is because we considered that one of the imaging
units of the detector does not correspond one-to-one with the real scene, as it contains a
weighted component from the neighborhood due to the system’s point spread function.
The impact of calculation errors was evident in the DP and AP indexes. If one of the Stokes
vector images exhibited unsatisfactory reconstruction, the objective indexes of DP and AP
were greatly diminished. In other words, the DP and AP images were more susceptible
to noise. Therefore, it was crucial to analyze the noise robustness of the method, and a
detailed experimental analysis will be presented in the next section. Figure 3 showcases the
simulation reconstruction results of the different algorithms for a tower, where it is evident
that the proposed method yielded results closer to the real image. Additionally, Table A1 in
Appendix A displays the objective index of S0 after the reconstruction of other test images,
while Table A2 presents the objective indicators of S1, and Table A3 exhibits the objective
indicators of S2. Furthermore, Table A4 provides the objective index of DP, and Table A5
presents the objective index of AP after the reconstruction of other test images.

3.2. Noise Robustness

Limited by the manufacturing process of the detector, the noise of a focal plane
polarization system is generally higher than that of a time-sharing polarization system.
Therefore, it was crucial to analyze the noise robustness of the algorithm. Based on the
comparison results presented in the previous section, both the proposed method and
MPPOCS outperformed other methods. Consequently, this section compares the noise
robustness between these two methods. The test image again was a tower. Gaussian white
noise with mean 0 and standard deviation ranging from 0 to 3 was added to the focal
plane image synthesized by each bias detection component of the tower. The value of λ,
introduced in this paper, was set to 0.02. The objective indexes for the reconstructed S0
and DP images of the two algorithms are depicted in Figure 4, while the reconstructed
indexes for the S1, S2, and AP images are shown in the attached Figures A2 and A3a,b.
SSIM is represented on the black axis, PSNR on the intermediate axis, and RMSE on the
blue axis. The + line represents the algorithm proposed in this paper, and the × line
represents MPPOCS.

In Figure 4a, the objective evaluation index of the proposed algorithm gradually
decreased as the level of noise increased, with a decline rate higher than that of MPPOCS.
In Figure 4b, when the mean noise was 0.9, the SSIM index of our proposed method started
to become lower than that of MPPOCS. When the mean noise values were 2.7 and 2.8,
respectively, both PSNR and RMSE were weaker than those of the MPPOCS algorithm.
Similar results were observed for the S1, S2, and AP images. In this set of experiments, we
kept the λ values unchanged. These findings proved that the proposed algorithm possessed
inherent noise resistance, as the reconstruction results were superior to MPPOCS when
the noise level was low. Additionally, our algorithm demonstrated better performance in
the case of low noise, as shown in Figure 4a. This can be attributed to the fact that the S0
image was less sensitive to the noise in each channel compared to the other components,
resulting in consistently optimal reconstruction results. We analyzed the results to ascertain
the reasons behind the MPPOCS algorithm’s high noise robustness. The inclusion of
wavelet threshold noise reduction in the algorithm grants it a natural adaptability to noise,
especially in the presence of high levels of noise. However, in the context of weak noise,
this can lead to excessively smooth image results, as illustrated in Figure 3.
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bias in the AP and DP images, and the S0 image appears blurred. Additionally, the edge details show
a noticeable jagged appearance. Both the NP and PCDP algorithms display clear high-frequency
errors in the reconstructed S1 and S2 images, as they rely on a set of orthogonal polarization angle
image differences to obtain these components. When compared with the ground truth’s S1 and S2
images, it is evident that these two methods yield larger errors. Although visually improved, the
DP and AP images reconstructed by the NP and PCDP algorithms display sharp edges resulting
from pseudo-polarization effects. Due to the strong noise reduction algorithm used in the MPPOCS
algorithm, some loss of detail is observed, leading to a relatively fuzzy reconstruction of the S0 image.
Our proposed algorithm achieves a close resemblance to the ground truth in terms of the S1 and
S2 images; however, it also captures additional details in the AP and DP images compared to the
MPPOCS algorithm.
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3.3. Real Image Testing

We established a focal plane polarization detection system operating in the short-wave
infrared range to collect real images to test our algorithm. The size of the focal plane images
was 320 × 256 pixels. The obtained test results are shown in Figure 5.

The selected test scene had cloudy weather conditions. The drone used as the target
was the DJI Spirit 4Pro (DJI, Shenzhen, China). All display results were normalized to the
same quantization level. No additional image enhancement algorithms were applied to
the presentation results. Figure 5 shows the full-field S0 image, revealing a dim target.
Among the various algorithms tested, the EARI algorithm produced the fuzziest S0 image.
In several other channels, it was not possible to identify the target as a drone. However,
some areas of the DP image allowed for the calculation of the degree of polarization. The
NP and PCDP algorithms did not clearly show the target in the S1 image. In the DP image,
neither of these two algorithms accurately calculated the polarization degree of the UAV.
Man-made objects, being more polarized than the natural background, did not exhibit this
phenomenon well in the results. These two algorithms introduced significant errors in
the AP images. Due to the drone’s orientation towards the lens, the polarization angles
of its left and right sides did not significantly differ. As for MPPOCS, it can be observed
that the S0 image was overly blurry. The filter utilized in this algorithm reduced noise in
the entire image, but it also sacrificed some high-frequency information. The S1 and S2
images performed better than with the NP and PCDP algorithms. The DP image provided
a clearer representation of the target’s polarization information compared to the EARI
algorithm. The AP image was slightly more distinct than with the first three algorithms.
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Ultimately, our proposed S0 algorithm yielded the best results for the image. The brackets
on the left and right holding the rotors were separated from the drone’s fuselage. The S1
and S2 images outperformed other algorithms, particularly in the AP image, where our
proposed algorithm accurately reconstructed the entire shape of the UAV. With a certain
level of prior knowledge, the UAV could be identified as the DJI Genie 4Pro drone even
without specialized equipment. Additionally, in the DP image, our reconstruction results
displayed the target’s polarization degree. The target’s edges were sharp, and the difference
between the target and background was highly noticeable, providing a strong foundation
for the recognition of small polarized targets. Finally, the processing time of the proposed
algorithm was statistically analyzed and is shown in Table 2.
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Figure 5. Real scene reconstruction results of each algorithm. Our algorithm achieved good perfor-
mance in image processing. In the S0 image, the body of the unmanned aerial vehicle is distinguished
from the fixed rotor support structures on its sides. Our algorithm effectively restored the form of
the unmanned aerial vehicle. Even without specialized equipment, we were capable of visually
recognizing the target. In the AP and DP images, our reconstruction results distinctly demonstrate
the polarization degree of the target. The target’s edges are clearly visible, and there is a noticeable
contrast between the target and background. Our algorithm provides a reliable foundation for
identifying small polarized targets.

Table 2. The real image reconstruction results of each algorithm’s running time.

Method EARI NP PCDP MPPOCS This Work

Running Time/s 0.31 0.19 0.03 1.18 18.84
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The running time of the method proposed in this paper appeared to be relatively
long, as shown in Table 2. To analyze the source code, we employed MATLAB’s runtime
analysis tool. Our analysis revealed that the feature symbol search algorithm accounted for
a significant portion of the computing time, specifically 80.1%. Considering this finding,
we are convinced that there is ample scope for improvement. Thus, one of our forthcoming
research areas will focus on optimizing the feature symbol search algorithm.

4. Conclusions

This article presents a sparse representation-based model for infrared polarization
super-resolution reconstruction. We propose a method to overcome the limitations of the
detector’s sampling on the focal plane and achieve satisfactory results without requiring
a large training set. Consequently, this approach is suitable for tasks where obtaining a
vast amount of data is not feasible. Specifically, instead of independently solving each
polarization angle, we solve the model on a designed Stokes vector field. This strategy
effectively avoids errors caused by differential calculations during the polarization image-
solving process. The simulation results depicted in Figure 3 demonstrate that our method
effectively suppresses partial pseudo-polarization phenomena and generates more realistic
polarization information compared to other existing methods. Furthermore, the results from
a real test scene illustrated in Figure 5 reveal the significant advantages of our reconstruction
results in object detection and classification tasks. Our algorithm delivers clearer edges
of the targets and a noticeable contrast between the target and background, marking an
improvement over the other algorithms discussed in this paper. In addition, to construct the
dictionary set, we employ a self-developed detector to create a near-real-time short-wave
infrared time-sharing polarization system. This system is equipped with a high-precision
grating disk, enabling the continuous acquisition of polarization images. The main findings
of our research are described in this article as follows:

(1) We propose a super-resolution reconstruction model for infrared polarization.
(2) We design a reconstruction method based on the model. (3) We produce a prototype of a
near-real-time short-wave infrared time-sharing polarization system and collect an infrared
polarization dataset. (4) We build a short-wave infrared focal plane polarization system
and conduct experiments to demonstrate the excellent results achieved by the proposed
method in terms of quantitative measurement and visual quality.

In our future research, we intend to optimize the algorithms mentioned in the paper
to enhance their speed in a software environment, with a primary focus on accelerating the
feature symbol search algorithm. Moreover, we plan to integrate the proposed algorithm
into our developed short-wave focal plane polarization detection system. Additionally,
our future work involves incorporating convex optimization algorithms and deep learning
methods to further improve image quality. Furthermore, we aim to explore the combination
of metasurface design and its application in achieving full optical image reconstruction.
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Figure A1. Simulation data strength diagram used for testing: (a) Cars, (b) Window, (c) Wall,
(d) Building, (e) Tower, (f) Tank.

Table A1. Objective evaluation indexes of S0 results of different algorithms on different test images.

Method Cars Window Wall Building Tank

EARI
SSIM = 0.4032 SSIM = 0.7799 SSIM = 0.4203 SSIM = 0.5723 SSIM = 0.3943

PSNR = 13.4202 PSNR = 14.5269 PSNR = 13.4207 PSNR = 21.7906 PSNR = 14.1210
RMSE = 0.2133 RMSE = 0.1878 RMSE = 0.2133 RMSE = 0.0814 RMSE = 0.1968

NP
SSIM = 0.4374 SSIM = 0.7858 SSIM = 0.4502 SSIM = 0.5519 SSIM = 0.4114

PSNR = 13.8023 PSNR = 14.6402 PSNR = 12.6379 PSNR = 21.5929 PSNR = 14.6783
RMSE = 0.2041 RMSE = 0.1854 RMSE = 0.2334 RMSE = 0.0832 RMSE = 0.1845

PCDP
SSIM = 0.4481 SSIM = 0.7918 SSIM = 0.4629 SSIM = 0.5441 SSIM = 0.4148

PSNR = 13.6557 PSNR = 14.7660 PSNR = 12.8692 PSNR = 19.9623 PSNR = 14.4895
RMSE = 0.2076 RMSE = 0.1827 RMSE = 0.2273 RMSE = 0.1004 RMSE = 0.1886

MPPOCS
SSIM = 0.6442 SSIM = 0.8353 SSIM = 0.6514 SSIM = 0.8971 SSIM = 0.6470

PSNR = 17.5827 PSNR = 15.7587 PSNR = 20.3389 PSNR = 36.8555 PSNR = 16.9773
RMSE = 0.1321 RMSE = 0.1630 RMSE = 0.0962 RMSE = 0.0144 RMSE = 0.1416

This Work
SSIM = 0.6966 SSIM = 0.8318 SSIM = 0.7093 SSIM = 0.9210 SSIM = 0.6933

PSNR = 18.0517 PSNR = 15.7436 PSNR = 20.8368 PSNR = 38.7827 PSNR = 17.3267
RMSE = 0.1252 RMSE = 0.1632 RMSE = 0.0908 RMSE = 0.0115 RMSE = 0.1360
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Table A2. Objective evaluation indexes of S1 results of different algorithms on different test images.

Method Cars Window Wall Building Tank

EARI
SSIM = 0.9637 SSIM = 0.9922 SSIM = 0.9195 SSIM = 0.8338 SSIM = 0.9886

PSNR = 39.6600 PSNR = 39.6600 PSNR = 37.5078 PSNR = 32.5971 PSNR = 46.5985
RMSE = 0.0104 RMSE = 0.0045 RMSE = 0.0133 RMSE = 0.0235 RMSE = 0.0047

NP
SSIM = 0.9806 SSIM = 0.9958 SSIM = 0.9639 SSIM = 0.8393 SSIM = 0.9931

PSNR = 42.4280 PSNR = 48.6937 PSNR = 40.3364 PSNR = 33.1142 PSNR = 48.0276
RMSE = 0.0076 RMSE = 0.0037 RMSE = 0.0096 RMSE = 0.0221 RMSE = 0.0040

PCDP
SSIM = 0.9781 SSIM = 0.9947 SSIM = 0.9498 SSIM = 0.8365 SSIM = 0.9916

PSNR = 41.7149 PSNR = 47.9808 PSNR = 39.1224 PSNR = 33.0923 PSNR = 47.3843
RMSE = 0.0082 RMSE = 0.0040 RMSE = 0.0111 RMSE = 0.0222 RMSE = 0.0042

MP
SSIM = 0.9938 SSIM = 0.9989 SSIM = 0.9984 SSIM = 0.9882 SSIM = 0.9986

PSNR = 48.9114 PSNR = 59.5889 PSNR = 58.3427 PSNR = 48.7383 PSNR = 58.9306
RMSE = 0.0036 RMSE = 0.0011 RMSE = 0.0012 RMSE = 0.0037 RMSE = 0.0011

This Work
SSIM = 0.9959 SSIM = 0.9991 SSIM = 0.9986 SSIM = 0.9926 SSIM = 0.9989

PSNR = 51.2608 PSNR = 60.5056 PSNR = 59.0080 PSNR = 51.1248 PSNR = 60.0059
RMSE = 0.0027 RMSE = 0.0010 RMSE = 0.0011 RMSE = 0.0028 RMSE = 0.0010

Table A3. Objective evaluation indexes of S2 results of different algorithms on different test images.

Method Cars Window Wall Building Tank

EARI
SSIM = 0.9466 SSIM = 0.9909 SSIM = 0.9196 SSIM = 0.9356 SSIM = 0.9894

PSNR = 36.0382 PSNR = 45.3721 PSNR = 36.9036 PSNR = 37.7624 PSNR = 46.8909
RMSE = 0.0158 RMSE = 0.0055 RMSE = 0.0143 RMSE = 0.0129 RMSE = 0.0045

NP
SSIM = 0.9582 SSIM = 0.9933 SSIM = 0.9614 SSIM = 0.9518 SSIM = 0.9927

PSNR = 37.4198 PSNR = 46.3064 PSNR = 39.6867 PSNR = 39.1404 PSNR = 48.1039
RMSE = 0.01346 RMSE = 0.0048 RMSE = 0.0104 RMSE = 0.0110 RMSE = 0.0039

PCDP
SSIM = 0.9554 SSIM = 0.9930 SSIM = 0.9435 SSIM = 0.9518 SSIM = 0.9920

PSNR = 36.9204 PSNR = 46.1596 PSNR = 38.2077 PSNR = 38.9414 PSNR = 47.6478
RMSE = 0.01426 RMSE = 0.0049 RMSE = 0.0123 RMSE = 0.0113 RMSE = 0.0042

MP
SSIM = 0.9918 SSIM = 0.9983 SSIM = 0.9974 SSIM = 0.9706 SSIM = 0.9977

PSNR = 47.1006 PSNR = 56.4553 PSNR = 55.7543 PSNR = 42.0427 PSNR = 56.1393
RMSE = 0.0044 RMSE = 0.0015 RMSE = 0.0016 RMSE = 0.0079 RMSE = 0.0016

This Work
SSIM = 0.9948 SSIM = 0.9888 SSIM = 0.9981 SSIM = 0.9857 SSIM = 0.9965

PSNR = 49.6021 PSNR = 45.8931 PSNR = 57.6130 PSNR = 45.9872 PSNR = 53.0169
RMSE = 0.0033 RMSE = 0.0051 RMSE = 0.0013 RMSE = 0.0050 RMSE = 0.0022

Table A4. Objective evaluation indexes of DP results of different algorithms on different test images.

Method Cars Window Wall Building Tank

EARI
SSIM = 0.8003 SSIM = 0.9442 SSIM = 0.6495 SSIM = 0.7586 SSIM = 0.6876

PSNR = 27.8272 PSNR = 30.8589 PSNR = 21.5937 PSNR = 26.9068 PSNR = 27.2853
RMSE = 0.0406 RMSE = 0.0287 RMSE = 0.0832 RMSE = 0.0452 RMSE = 0.0432

NP
SSIM = 0.8284 SSIM = 0.9419 SSIM = 0.6942 SSIM = 0.7590 SSIM = 0.7227

PSNR = 29.3589 PSNR = 30.6841 PSNR = 24.7070 PSNR = 27.8181 PSNR = 28.3058
RMSE = 0.0340 RMSE = 0.0292 RMSE = 0.0582 RMSE = 0.0407 RMSE = 0.0384

PCDP
SSIM = 0.8216 SSIM = 0.9484 SSIM = 0.6709 SSIM = 0.7798 SSIM = 0.7113

PSNR = 28.9635 PSNR = 31.2784 PSNR = 22.9016 PSNR = 28.0442 PSNR = 27.7868
RMSE = 0.0356 RMSE = 0.0273 RMSE = 0.0716 RMSE = 0.0396 RMSE = 0.0408
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Table A4. Cont.

Method Cars Window Wall Building Tank

MP
SSIM = 0.9496 SSIM = 0.9747 SSIM = 0.9682 SSIM = 0.9293 SSIM = 0.9213

PSNR = 36.8699 PSNR = 40.9748 PSNR = 44.0480 PSNR = 36.1728 PSNR = 37.4231
RMSE = 0.0143 RMSE = 0.0089 RMSE = 0.0063 RMSE = 0.0155 RMSE = 0.0135

This Work
SSIM = 0.9653 SSIM = 0.9496 SSIM = 0.9775 SSIM = 0.9599 SSIM = 0.9338

PSNR = 40.6423 PSNR = 31.4468 PSNR = 45.8423 PSNR = 39.6173 PSNR = 35.5246
RMSE = 0.0093 RMSE = 0.0268 RMSE = 0.0051 RMSE = 0.0105 RMSE = 0.0167

Table A5. Objective evaluation indexes of AP results of different algorithms on different test images.

Method Cars Window Wall Building Tank

EARI
SSIM = 0.9665 SSIM = 0.9834 SSIM = 0.9616 SSIM = 0.9223 SSIM = 0.9788

PSNR = 31.4232 PSNR = 41.2151 PSNR = 31.9594 PSNR = 27.5346 PSNR = 41.9182
RMSE = 0.0268 RMSE = 0.0087 RMSE = 0.0252 RMSE = 0.0420 RMSE = 0.0080

NP
SSIM = 0.9740 SSIM = 0.9848 SSIM = 0.9665 SSIM = 0.9477 SSIM = 0.9834

PSNR = 32.7683 PSNR = 42.4306 PSNR = 33.1721 PSNR = 29.4241 PSNR = 43.2909
RMSE = 0.0230 RMSE = 0.0076 RMSE = 0.0220 RMSE = 0.0338 RMSE = 0.0069

PCDP
SSIM = 0.9752 SSIM = 0.9859 SSIM = 0.9696 SSIM = 0.9484 SSIM = 0.9848

PSNR = 32.8784 PSNR = 42.6716 PSNR = 33.6649 PSNR = 29.4233 PSNR = 43.6527
RMSE = 0.0227 RMSE = 0.0074 RMSE = 0.0207 RMSE = 0.0338 RMSE = 0.0066

MP
SSIM = 0.9725 SSIM = 0.9852 SSIM = 0.9675 SSIM = 0.9335 SSIM = 0.9818

PSNR = 32.2656 PSNR = 41.3038 PSNR = 32.7580 PSNR = 27.6061 PSNR = 42.0923
RMSE = 0.0244 RMSE = 0.0086 RMSE = 0.0230 RMSE = 0.0417 RMSE = 0.0079

This Work
SSIM = 0.9845 SSIM = 0.9892 SSIM = 0.9810 SSIM = 0.9757 SSIM = 0.9918

PSNR = 34.7240 PSNR = 46.0793 PSNR = 37.4299 PSNR = 33.1091 PSNR = 46.8903
RMSE = 0.0184 RMSE = 0.0050 RMSE = 0.0134 RMSE = 0.0221 RMSE = 0.0045
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