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Abstract: Predictive maintenance (PdM) is a policy applying data and analytics to predict when
one of the components in a real system has been destroyed, and some anomalies appear so that
maintenance can be performed before a breakdown takes place. Using cutting-edge technologies like
data analytics and artificial intelligence (AI) enhances the performance and accuracy of predictive
maintenance systems and increases their autonomy and adaptability in complex and dynamic
working environments. This paper reviews the recent developments in AI-based PdM, focusing
on key components, trustworthiness, and future trends. The state-of-the-art (SOTA) techniques,
challenges, and opportunities associated with AI-based PdM are first analyzed. The integration of
AI technologies into PdM in real-world applications, the human–robot interaction, the ethical issues
emerging from using AI, and the testing and validation abilities of the developed policies are later
discussed. This study exhibits the potential working areas for future research, such as digital twin,
metaverse, generative AI, collaborative robots (cobots), blockchain technology, trustworthy AI, and
Industrial Internet of Things (IIoT), utilizing a comprehensive survey of the current SOTA techniques,
opportunities, and challenges allied with AI-based PdM.

Keywords: predictive maintenance (PdM); artificial intelligence (AI); explainable artificial intelligence
(XAI); explainability; interpretability; trustworthiness; generative AI

1. Introduction

The maintenance of the systems has recently become increasingly important for en-
hancing product efficiency and continuity. Different varieties of system maintenance exist,
such as reactive, planned, proactive, and predictive [1]. Figure 1 summarizes them. Re-
active maintenance only solves the issue when the system breaks down or malfunctions.
The malfunction becomes apparent, and then the repairing steps are applied. Planned
maintenance is previously scheduled to perform regular inspections and maintenance tasks
at predetermined intervals to prolong the system’s life and reduce repair costs, regardless
of whether the system has shown failure signs. Predictive maintenance (PdM) is an ap-
proach applying advanced analytics on the obtained data from multiple sensors to predict
when the system tends to fail and organize the maintenance tasks accordingly to optimize
maintenance intervals, reduce malfunction time, and enhance the system’s reliability.

PdM has shown significant growth and advancements. Most recently, low-cost sen-
sors have been developed, and new real-time condition monitoring systems have been
successfully used to obtain big data. These developments, expert algorithms, and expert
human experience brought considerable developments and progress in predictive main-
tenance. Current efforts are given to developing new multivariate statistical models and
expert algorithms to improve predictions’ accuracy and reduce labor costs [1–11]. Reaching
next-step autonomy in a robotics system is possible thanks to sophisticated artificial intelli-
gence (AI)-based algorithms, models, and expertise. Moreover, the potential AI-based PdM
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reduces costs and boosts efficiency and safety. Hence, the researchers pay special attention
to AI models and techniques to improve the autonomy and adaptability of robotic systems
in complex and dynamic industrial environments [12–22].
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Figure 1. Diverse levels of system maintenance.

AI has been successfully employed in the automotive, manufacturing, energy, aerospace,
and transportation industries by making real-time predictions and estimations of malfunc-
tions and anomalies on big datasets [23]. It has been demonstrated that AI-based techniques,
including machine learning and deep learning, exhibit improved performance and accuracy
at PdM utilizing remaining useful life (RUL), fault diagnosis, and predictive maintenance
scheduling [23–43]. Using AI brings some challenges, such as transparency, explainability,
system integration, and ethical issues [44], leading to explainable artificial intelligence
(XAI) [45]. Figure 2 shows the general AI cover. This paper aims to comprehensively survey
the current state-of-the-art techniques, challenges, and opportunities exhibited by AI-based
PdM, focusing on key components, trustworthiness, and future trends. The most recent
outcomes and innovations in the field are discussed in this paper by suggesting directions
for further investigation. Finally, it gives some insights into the most recent research and
advancements in the subject and assists in suggesting prospective areas for future research
by providing a thorough overview of the existing literature.
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Research Questions

This study examines current advances in AI-based PdM, particularly emphasiz-
ing next-generation autonomy. The following research inquiries are what this review
is based on:

1. What are the main components of AI-based PdM systems?
2. What are the state-of-the-art (SOTA) PdM methods? Regarding accuracy, cost-effectiveness,

and scale, what are their advantages?
3. What are the advantages of AI-based PdM techniques over traditional techniques

regarding performance and cost-effectiveness?
4. What are the challenges and limitations of AI-based PdM?
5. How can AI-based PdM systems ensure high transparency and explanation?
6. How can AI be integrated into existing PdM systems and workflows?
7. What are the ethical issues in AI-based PdM?
8. How can an efficient human–machine interaction in AI-based PdM systems be obtained?
9. How can testing and validation of AI-based PdM systems be effectively conducted in

real-world scenarios?
10. What are recent advances and future trends in AI-based PdM?

Taking in the research questions, the contributions of this review are (i) the description
of the main components of AI-based PdM systems, (ii) the analysis of the SOTA methods
in PdM, (iii) comparison of the AI-based PdM with traditional approaches, (iv) investiga-
tion of the challenges and limitations of AI-based PdM, (v) assessment of transparency
and explainability in AI-based PdM, (vi) integration of AI into existing PdM systems and
workflows, (vii) investigation of ethical issues related to AI-based PdM, (viii) enhanc-
ing human–machine interaction in the AI-based PdM systems, (ix) effective testing and
validation of AI-based PdM systems, and (x) study of the AI-based PdM advances and
emerging topics.

The rest of the paper is organized as follows: Section 2 comprehensively describes
the key components of AI-based PdM. The SOTA for PdM and its enabling technologies
are presented in Section 3. Then, Section 4 focuses on transparency and explainability
in AI-based PdM. The challenges and limitations of using AI for PdM autonomy are
highlighted in Section 5. Section 6 presents recent advances and future trends in AI-based
PdM. Conclusions are given in Section 7.

2. Key Components in AI-Based Predictive Maintenance

AI-based PdM can be fundamentally broken down into six distinct components: data
preprocessing, AI algorithms, decision-making modules, communication and integration,
and user interface and reporting, as shown in Figure 3. This section briefly discusses each
component to understand how they work together to enable AI-based PdM.
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1. Sensors: Sensors are the frontline data collectors in a PdM system. These specialized
devices are strategically placed on equipment and machinery to continuously monitor
various parameters, such as temperature, pressure, vibration, and more. Sensor
data provides real-time insights into equipment health and forms the foundation for
predictive maintenance analysis.

2. Data Preprocessing: Raw data obtained from sensors often contains noise and incon-
sistencies. Data preprocessing is the initial step in preparing the data for analysis. It
includes data cleaning, normalization, and missing data handling. High-quality data
are essential for accurate PdM modeling.

3. AI Algorithms: AI algorithms, including machine learning and deep learning tech-
niques, are the brain of the PdM systems. The algorithms analyze the data to identify
the most important features relating to possible failures. They learn from historical
data to predict equipment failures, anomalies, and RUL.

4. Decision-Making Modules: The insights and predictions generated by the AI algo-
rithms are processed by decision-making modules. These modules are responsible
for determining when maintenance actions are needed. They can recommend pre-
ventive or corrective maintenance tasks, schedule maintenance, and trigger alerts to
maintenance teams when necessary.

5. Communication and Integration: Communication and integration ensure that the
insights generated by the system are effectively translated into action. This com-
ponent involves interactions with various stakeholders, including maintenance per-
sonnel and management. Furthermore, integration with enterprise systems such as
ERP and asset management software aligns predictive maintenance with broader
organizational goals.

6. User Interface and Reporting: To make these insights accessible to maintenance staff
and decision makers, user interfaces and reporting tools are essential. The tools
make it easier for users to understand complex data patterns and make informed
decisions by providing data visualization, dashboard, and reporting capabilities.
Data visualization tools and dashboards communicate data insights and forecast
information to maintenance teams and decision makers. Visual aids help understand
complex data patterns and make informed decisions.

The following three data-related units are added to the advanced AI methods to obtain
resilient, reliable, secure, and highly stable results using AI-based PdM in complex and
dynamic environments.

Sensor data and the Internet of Things (IoT) integration: Integrating IoT and sensor
technology is pivotal in next-step autonomy for PdM tasks. The IoT sensors are strategically
placed in equipment and machines to monitor their condition in real-time continuously.

Data integration: Data integration combines data from various sources, including
historical maintenance records, real-time sensor data, external factors (e.g., weather), and
production schedules. This holistic view of equipment health enhances decision making.

Digital twins: Digital twins create virtual replicas of physical assets, facilitating real-
time simulation and monitoring. AI systems monitor these digital twins, identifying
performance irregularities and recommending optimal maintenance strategies before any
physical equipment is adversely affected.

Edge and cloud computing: Edge computing proceeds closer to the data source
through IoT sensors for real-time analysis rather than in a centralized data center, which
reduces latency and enables real-time analysis. Cloud computing stores and manages
enormous amounts of data to analyze historical events.
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3. State-of-the-Art Techniques for Predictive Maintenance

SOTA consists of (i) the AI-based PdM approaches, including machine learning al-
gorithms, deep learning, statistical control, and statistical modeling, (ii) data-driven ap-
proaches, including big data analytics, data mining, data visualization, and predictive data
analysis, (iii) vibration and thermal analysis, (iv) augmented reality (AR), virtual reality
(VR), mixed reality (MR), and their extended versions, and digital intelligent assistants,
(v) methods based on prescriptive maintenance, (vi) edge and cloud computing, IoT, fed-
erated learning, and blockchain, (vii) energy-based methods, and (viii) methods based
on prognostics and health management (PHM) [23–131]. This section reviews some PdM
studies using these approaches. Each paper has been evaluated through the application
and the proposed approach.

PdM applications employ all AI approaches, including the classification and/or re-
gression problem type of the supervised learning approach, the clustering problem type of
the unsupervised learning approach, or a problem type relating to the reinforcement learn-
ing (RL) approach to analyze the large volume of data obtained from real-time condition
monitoring systems. The approaches have presented magnificent contributions to PdM
tasks [23–52]. Deep neural networks (DNNs) covering CNNs, RNNs, and LSTMs have
been used to generate the proposed predictive maintenance strategies and algorithms and
improve their prediction accuracy [53–64]. In these works, the networks have been applied
to extract the significant features from raw sensor data, including images or the data in the
form of time series, and to detect, recognize, or predict sudden and expected changes in
the system according to the features.

Machine learning algorithms have been successfully applied to many PdM applica-
tions [65–69]. Algorithms such as feedforward neural networks (FNNs), decision trees
(DT), random forests (RF), and support vector machines (SVMs) have been used to classify
sensor data.

Refs. [70–84] have shown various works applying statistical and probabilistic modeling
approaches such as hidden Markov models (HMMs), Bayesian networks (BNs), Gaussian
mixture models (GMMs), extreme gradient boosting (XGBoost), Density-based spatial clus-
tering (DBSC), principal component analysis (PCA), and K-means to PdM tasks. Moreover,
they introduced different DNN models, such as LSTM and autoencoders, for the tasks.
They have identified the deterioration event by analyzing an interdependent relationship
among the data collected from multi-sensors and predicted possible future failures.

In [85–92,129], data-driven approaches, including big data analytics relating to data
from various sources, including sensor data, historical records, external factors, and data
mining, have been used to improve the accuracy and comprehensiveness of PdM systems.
Significantly, interactive and intuitive data visualization tools have contributed to quickly
understanding the equipment’s health and making informed decisions.

In [93–99], vibration analysis is a widely used method of PdM. The analytical method
uses sensors to measure the vibrations of machinery and identify possible problem areas,
such as bearing failure or misalignment on various machines, including motors, pumps,
and gearboxes.

Thermal imaging is another widely known technique for PdM [100–104]. The tech-
nique uses infrared cameras to perceive potential problems, such as overheating, break-
down, friction, and energy inefficiencies, on a wide range of equipment, including electrical
panels, transformers, and motors, by measuring the temperature of equipment.

In [105–108], the technologies of AR, VR, MR, digital intelligent assistant, digital twin,
and IoT sensors have been leveraged. The IoT sensor has enabled real-time data collection
from various sensors attached to equipment in PdM. The technologies of AR, VR, and MR
increase the capabilities of maintenance technicians with visual guidance, remote assistance,
real-time information, and a virtual view of equipment status to perform PdM, improving
efficiency and accuracy. Ref. [109] showed an approach for maintenance experts and
operators to interact with a PdM system by AI intelligent assistant through natural language
processing (NLP) and user feedback about the success of maintenance interventions.
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In [110–115], PdM is realized through prescriptive maintenance. It provides specific
recommendations for maintenance actions going beyond prediction. It includes detailed
instructions for technicians on what steps to take. This approach predicts when maintenance
is needed and recommends the most effective and efficient maintenance actions.

Refs. [116–118,130,131] have used edge computing and cloud computing. Edge com-
puting is used to proceed closer to the data source through IoT sensors for real-time analysis
rather than in a centralized data center, which reduces latency and enables real-time analy-
sis. To analyze historical events, cloud computing stores and manages enormous amounts
of data.

In [119–121], federated learning, blockchain, and industrial IoT have been used. Fed-
erated learning allows multiple parties to train a machine learning model collaboratively
without sharing their data. Blockchain ensures data integrity, while industrial IoT sensors
provide real-time equipment condition data. It may be indicative of problems if unusual
energy consumption is observed. In [122–125], PdM has been provided by analyzing their
energy consumption patterns to gain information on the health of such devices.

In [126,127], PdM has been carried out by focusing on PHM. PHM techniques take
a different approach to assessing equipment health from predicting failures. Advanced
modeling and data analysis are generally included in these methods, enabling further
RUL estimation of an asset and providing valuable insight into maintenance planning.
Ref. [128] shows an example of a predictive analytics software platform for PdM. In order
to make implementing PdM easier, numerous software platforms and tools have been
developed. Premade models and features for data integration are frequently included in
these platforms.

This article reviews real-world simulation and experimental applications in tables,
while some utilize benchmark datasets. Table 1 describes the benchmark datasets such
as the National Aeronautics and Space Administration (NASA) Turbofan [132,133], PHM
2008 [134], NASA Ames Milling [135], NASA Bearing Dataset [136], CWRU Bearing [137],
FEMTO Ball Bearing [138], Roll Bearing [139], Backblaze [140], PAKDD2020 Alibaba AI
OPS [141], NASA Ames Prognostics [142], Lithium-ion Battery of University of Mary-
land [143], MOSFET Thermal Overstress Aging [144], MAFAULDA [145], Microsoft Azure
PdM [146], GEFCOM [147], and The UCI SECOM [148] in multivariate time-series forms
commonly employed in PdM applications.

Table 1. Benchmark datasets for PdM tasks.

Ref. Name Description

[132,133] NASA Turbofan Dataset-CMAPSSD and
CMAPSSD-2

The turbofan engine degradation simulation dataset,
generated with the Commercial Modular Aero-Propulsion

System Simulation (C-MAPSS) dynamical model.

[134] PHM 2008 Dataset The degradation collected from aircraft engines derived
from CMAPSSD.

[135] NASA Ames Milling Dataset
Acoustic emission, vibration, and motor current data
collected under different experimental conditions for

predicting the milling tool wear.

[136] NASA Bearing Dataset Run-to-failure vibration data from 4 accelerometers in
a shaft.

[137] Case Western Reserve University
(CWRU) Bearing Dataset Test rig operating with different load conditions.

[138] FEMTO Ball Bearing Dataset from IEEE
PHM Challenge

Run-to-failure temperature and vibration data from engine
thermocouple and accelerometer sensors.
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Table 1. Cont.

Ref. Name Description

[139] Roll Bearing Dataset from IEEE PHM
Challenge

A training set of six rolling bearings operated in three
different conditions, and a testing set of 11 more.

[140] Backblaze Hard Disk Drive Dataset The daily status of hard disk drives (HDDs), consisting of
433 failed drives and 22,962 good drives.

[141] PAKDD2020 Alibaba AI OPS
Competition Dataset

HDD daily health status data including both a raw and a
normalized value as well as a label and the time of failure.

[142] NASA Ames Prognostics Dataset Li-ion battery degradation data during repeated charge and
discharge cycles.

[143] Lithium-ion Battery Dataset of the
University of Maryland

The current and voltage data on different EV drive cycles at
varying ambient temperatures (including 0 ◦C, 25 ◦C, and

45 ◦C).

[144] MOSFET Thermal Overstress Aging
Dataset

Run-to-failure experiments on power
MOSFETs under thermal overstress.

[145] MAFAULDA Fault measurements from machinery simulators run under
different load conditions.

[146] Microsoft Azure PdM Dataset
Data modules of machines, telemetry, errors, maintenance,

and failures collected by a Microsoft employee for PdM
modeling collection.

[147] Global Energy Forecasting Competition
(GEFCOM) Dataset

Hourly solar power generation data and assigning
numerical weather forecasts from 1 April 2012 to 1 July 2014.

[148] The UCI SECOM Dataset Measurements of features of semiconductor production
within a semiconductor manufacturing process.

Table 2 shows a taxonomy for PdM applications in different problem types/approaches
from various industries. The second column of Table 2 mainly indicates a class name
relating to the repair and maintenance activities from [149]. Table 3 summarizes the study
numbers in Table 2. As seen in Table 3, the electrical equipment class of the repair and
maintenance field is the most popular in AI and maintenance, with 30 studies focused on
this field. The machinery category is an essential topic with ten studies and attracts wide
attention in this field. The classes of electronic and optical equipment and fabricated metal
products attract attention with nine and eight studies, respectively.

Table 2. Summary of different AI techniques in PdM systems.

Ref. Class of Repair
and Maintenance Industry Application Problem Type/

Approach Algorithm/Technology

[53] Electrical
equipment

Electrical and
electronics

Aging monitoring
for twisted pair

specimens in
low-voltage stator

windings of
electrical machines

Regression 2D-CNN

[54]
Computers and
communication

equipment

Information
technology

RUL estimation on
Microsoft Azure
AI-based PdM
dataset [146]

Regression

CNN, RNN, LSTM,
CNN-LSTM, regression

random forest (RRF),
deep feed-forward (DFF)

networks, and gated
recurrent unit (GRU)
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Table 2. Cont.

Ref. Class of Repair
and Maintenance Industry Application Problem Type/

Approach Algorithm/Technology

[55]

Electrical
equipment

Electronic and
optical equipment

Electrical and
electronics

Metals and plastics

Failure prediction
on PAKDD2020
Alibaba AI OPS

competition [141]
and NASA bearing

dataset [136]

Classification CNN and time-series
encoding techniques

[56] Electrical
equipment Metals and plastics

Health monitoring
on NASA milling

dataset [135]
Regression 1D CNN

[57] Electrical
equipment Metals and plastics

RUL estimation on
FEMTO bearing

dataset [138]
Regression LSTM and autoencoder

[58] Electrical
equipment

Diagnosis and
classification of

faults in rotating
machinery using

MAFAULDA
dataset [145] and
CWRU-bearing
datasets [137]

Classification CNN

[59] Electrical
equipment Metals and plastics

Fault diagnosis on
the experimental

data collected from
a rotor fault

diagnosis
experimental

platform and the
CWRU bearing

dataset [137]

Regression
Classification

ELM, CNN, and
autoencoder

[60] Electrical
equipment

Electric vehicles
battery technology

Charge estimation
of lithium-ion
battery state in
electric vehicles

-
Bidirectional GRU

circuit module, and
attention circuit module

[61] Electronic and
optical equipment

Electrical and
electronics

The condition of
rotating machinery

in university
laboratory by

using a single-axis
piezoelectric

accelerometer

Classification CNN

[62] Transport
equipment

High-speed
railway

Predictive and
proactive

maintenance for
modeling physical
degradation and

failure in
gas-insulated
switchgear in

high-speed railway

Regression LSTM-RNN
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Table 2. Cont.

Ref. Class of Repair
and Maintenance Industry Application Problem Type/

Approach Algorithm/Technology

[63] Electrical
equipment

Electrical and
electronics

RUL estimation of
lithium-ion

batteries in NASA
Ames prognostics

data repository
[142]

Regression LSTM

[64] Machinery Aircraft
manufacturing

Health condition
in a horizontal

machining center
in an aircraft

manufacturing
cooperation

Regression An attribute attentional
LSTM

[65] Electronic and
optical equipment

Medical devices
and healthcare

services

Failure diagnosis
for the Vitros
immunoassay

analyzer in a local
hospital in the
United Arab

Emirates by using
IoT sensors

Classification SVM

[66] Electronic and
optical equipment Nuclear power

Condition
monitoring of

nuclear
infrastructure on
NASA turbofan
dataset [132,133]

Regression SVM and logistic
regression

[67] Electronic and
optical equipment

Electrical and
electronics

RUL estimation on
MOSFET thermal
overstress aging

dataset [144]

Regression SVM

[68] Buildings and
other structures

Architecture,
engineering,

construction, and
facility

management

Data-driven
condition

monitoring based
on building
information

modeling and IoT
to predict the

future condition of
the mechanical,
electrical, and

plumbing
components

Regression FNN and SVM

[69] Fabricated metal
products

Large service
management

Failure prediction
on Backblaze
dataset [140]

Classification
Decision tree-based
machine learning

method

[70] Other machinery
and equipment

Renewable energy,
wind energy

Fault prediction in
wind turbines Classification

RF, decision tree
algorithms, DBSC, and

statistical process control
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Table 2. Cont.

Ref. Class of Repair
and Maintenance Industry Application Problem Type/

Approach Algorithm/Technology

[71] Electrical
equipment

Electronics
manufacturing

RUL estimation of
the equipment in

an industry
manufacturer of

memory modules
(DRAM and SSD)

Regression

Combined statistical
process control charts
and RF, XGBoost, and

LSTM

[72] Electrical
equipment

Electrical and
electronics

PdM and health
monitoring on

appropriate quality
data collected in

the form of
product

measurements or
readings from

various machines

Classification Statistical process
control and naïve Bayes

[73] Motor vehicles Autonomous
vehicles

Hierarchical
component-based
health monitoring
system with fault

detection,
diagnosis, and

prognosis on the
CaRINA II

autonomous
vehicle platform
and the CARLA

simulator

Classification Dynamic Bayesian
network

[74] Other machinery
and equipment Manufacturing

State and failure
prediction of rim
welding machine
in the process of
creating vehicle

rims from the iron
plate in the

assembly line
using IoT-based

sensors

Classification Naïve Bayes and
Markov chain

[75] Electrical
equipment

Electrical and
electronics

Failure prediction
in an electrical

motor
Classification Bayesian network

[76]
Transport

equipment, except
motor vehicles

Transport
Infrastructure

Failure prediction
for rail bridges on
the rail network in

Great Britain

- Bayesian network

[77] Motor vehicles Automotive
Anomaly detection
for off-road vehicle

maintenance
Classification

HMM, kNN and
isolation forest, and

autoencoders
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Table 2. Cont.

Ref. Class of Repair
and Maintenance Industry Application Problem Type/

Approach Algorithm/Technology

[78] Motor vehicles Automotive

The ecological
PdM through

condition
monitoring of a
bus with diesel
engines taking
temperature,

humidity,
pollutant

emissions (NOx,
CO2, HC, and PM),
emitted noise, etc.

- HMM

[79] Transport
equipment

Energy and
sustainability

RUL estimation of
the machines on
the PHM 2008
dataset [134]

Regression Cluster-based HMM

[80] Machinery Semiconductor
manufacturing

Condition
monitoring in a
semiconductor
manufacturing

station

Clustering HMM

[81] Transport
equipment

Energy and
sustainability

RUL estimation
using degradation

indicators in an
airplane engine on

NASA turbofan
engine dataset

[132,133]

Unsupervised
Learning HMM

[82]
Industrial

machinery and
equipment

Pumping systems

Fault detection and
life cycle cost

analysis of
pumping systems

Statistics
Regression

Classification
SVM and HMM

[83] Transport
equipment Marine

PdM for cost
estimation during
the design process

of a ship engine
room

-
Bayesian probabilistic

inferential approach and
HMM

[84] Other machinery
and equipment

Pharmaceutical
manufacturing

Real-time health
monitoring in an

industrial
freeze-dryer

Clustering,
Classification

DBSC, K-means and
GMMs, PCA, one-class

SVM, and the local
outlier factor
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Table 2. Cont.

Ref. Class of Repair
and Maintenance Industry Application Problem Type/

Approach Algorithm/Technology

[85] Fabricated metal
products

Cloud services and
data centers

The detection of
imminent hard

disk drive failures
in Backblaze
dataset [140]

Classification

Apache Spark, which is
an in-memory

distributed data analysis
platform, and RF

[86] Electronic and
optical equipment

Smart
manufacturing

A manufacturing
big data ecosystem

addressing the
issues of big data

ingestion,
management, and

analytics for
fault/anomaly

detection in
IoT-based smart

factories

Clustering

The distributed K-means
clustering,

MapReduce-based
distributed PCA-based

T-squared, and SPE
algorithms

A data lake, NoSQL
database, and

encryption protocol on
the Apache Spark

platform

[87] Transport
equipment Transport

PdM approach for
malfunction
evaluation in
relation to the

kilometers of the
train and the
periodicity of

faults in the Greek
Railway Company

Regression
Classification

Classification trees J48
and regression trees M5

form algorithms

[88] Machinery and
equipment Electronics

Failure prediction
of the monitored
manufacturing

industrial
machinery by UCI

SECOM dataset
[148]

Classification A fusion of data mining
and semantics

[89] Other machinery
and equipment Textile

Production quality
prediction in the
textile industry

Regression

Supervisory control and
data acquisition

(SCADA) architecture to
develop a cloud-based

analytics module

[90]
Transport

equipment, except
motor vehicles

Logistics and
parcel delivery

A big data
analytics

framework for the
data-driven

prediction of
courier package
breaks in smart

goods
transportation

systems

Classification

IoT networks
Gradient boosting

classifiers, SVM, logistic
regression, and Apache

Spark

[91] - Vinyl flooring

Quality
management in the

vinyl flooring
industry

-
Big data analytics and

optimization
Edge computing
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Table 2. Cont.

Ref. Class of Repair
and Maintenance Industry Application Problem Type/

Approach Algorithm/Technology

[92] Electrical
equipment Industrial robots

Health status
degradation

assessment using
real data of the
ABB IRB 6400r
industrial robot

Regression

Programmable logic
controllers (PLC)
One-class novelty

detection using SVM
and extreme learning

machine (ELM)
IIoT

[93] Electrical
equipment

Metal and
metallurgy

Fault detection in
the friction stir
welding tool

Classification Best first tree classifier

[94] Electrical
equipment

Electrical and
electronics

Detection of the
essence of the
unbalanced

conditions in the
rotary machine in

the constructed
experimental setup

Classification SVM

[95] Electrical
equipment

Building and
construction

Failure prediction
in HVAC

installations at a
sports facility in a

building
automation system
in the Paris region
using sensors such

as vibration,
temperature, and

energy
consumption

meters

Regression LSTM and autoencoders
IoT

[96] Electrical
equipment Manufacturing

Prediction of
gradual

degradation of an
impeller using the

sensors such as
vibration, gyro-

scope/accelerometer,
rotational speed,

temperature,
pressure, ambient

pressure,
temperature, and
humidity on an
industrial radial

fan

Regression Linear regression, RFR,
and symbolic regression

[97] Electrical
equipment Semiconductor

Vibration-related
failure prediction

on a dataset
including

machines, errors,
maintenance,

telemetry, and
failures

Regression Linear regression
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Table 2. Cont.

Ref. Class of Repair
and Maintenance Industry Application Problem Type/

Approach Algorithm/Technology

[98] Electrical
equipment

Electrical and
electronics

Fault detection in
rotating machinery
by monitoring and

visualizing
vibrations using
transformed raw
data into images

through a
short-time Fourier

transform or
Mel-frequency

cepstral
coefficients

spectrogram

Classification CNNs

[99] Fabricated metal
products Nuclear energy

PdM in the
research reactor by
using core-cooling

pump vibration
signals

Classification FNN

[100] Electrical
equipment Railways

Fault detection
using thermal
imaging in rail

systems in Turkiye

Classification Fuzzy

[101] Machinery Railways

Locomotive
maintenance in Sri
Lanka Railways for

the issues of
premature axle
bearing defects,

suspension bearing
conditions, diesel
engine inspection,

compressor
inspection, weak

thermal insulation
detection, dynamic

grid resister
element inspection,
water, air, fuel, and
oil pipeline blocks,

fuse contractors,
resistors, relays,

and loose electrical
wires

- Thermal imaging
technology

[102] Electrical
equipment Medical

PdM for
progressive

deterioration
processes and

failure
mechanisms of

different medical
equipment

- Infrared thermal
imaging
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Table 2. Cont.

Ref. Class of Repair
and Maintenance Industry Application Problem Type/

Approach Algorithm/Technology

[103] Electrical
equipment Hydraulics

PdM for
evaluating

premature failures
of hydraulic drive

systems in a
university

laboratory using
simulation

software AMESim
from SIEMENS

LMS Imagine.Lab

-
Some numerical

simulations using
infrared thermography

[104]

Fabricated metal
products,

machinery, and
equipment

Gearbox
manufacturing

PdM through
failure prediction

and analysis in the
gearbox

high-speed shaft
bearing using

temperature and
vibrational sensors

Classification Decision trees

[105] Electrical
equipment Automotive

Intelligent PdM
control through the
collected data from

condition
monitoring sensors

of electrical
monorail system

Classification
Rule-base intelligence

system
IIoT and AR

[106] Fabricated metal
products

Electrical and
electronics

Fault detection and
remote monitoring
system to control

the status of
professional
refrigeration

systems

Regression
Planned SVM

Digital twin, IoT, and
MR

[107]

Electrical
equipment

Electronic and
optical equipment

Machine tools
manufacturing

Fault prediction in
machine tools
equipped with

various sensors to
acquire huge
volumes of

production data in
a typical

machining
workshop in Wuxi,

China

Regression
Reinforcement

Learning

CNN, LSTM, and deep
reinforcement learning

(DRL)
AR and IoT

[108] Fabricated metal
products

Steel strip
processing

Prediction of the
real-time fatigue
strength of the

component under
loading in steel
strip processing

lines

Regression
Finite element analysis,

linear regression
AR and IoT
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Table 2. Cont.

Ref. Class of Repair
and Maintenance Industry Application Problem Type/

Approach Algorithm/Technology

[109] - -

PdM system by a
digital intelligent

assistant for
industry

-

NLP and user feedback
about the success of

maintenance
interventions

[110] Electrical
equipment

Automotive
manufacturing

Prescriptive
maintenance for

evaluating failure
and quality effects
in an international
manufacturer of
gearboxes and
engines for the

automotive sector

-

Data management,
predictive data analytic
toolbox, recommender
and decision support

dashboard, and
semantic-based learning

and reasoning

[111] Fabricated metal
products Chemical industry

The prediction of
failure time and
probability of a

pump

Classification Ensembles of SVMs

[112] Electrical
equipment Manufacturing

The prediction of
potential

equipment failure,
expected failure

time, and expected
repair time and
providing the

appropriate action
for production
planning and

control in future
factories

Reinforcement
Learning

RL
Digital twin

[113] Machinery Manufacturing

RUL estimation in
a machine park

consisting of 100
machines

Reinforcement
Learning DRL

[114] Machinery Rail transport

The optimal
maintenance

strategy jointly
incorporates the

effect of aging and
degradation for

locomotive
wheelsets

-

Reliability analysis,
sensitivity analysis, and
a continuous stochastic

process

[115] Transport
equipment Aviation

Discrete-event
simulation

framework for
post-prognostic

decision for
aircraft

maintenance using
tire pressure

indication system
for an Airbus A320

-
The technological

maturity of an
underlying PHM system
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Table 2. Cont.

Ref. Class of Repair
and Maintenance Industry Application Problem Type/

Approach Algorithm/Technology

[116] Electrical
equipment Manufacturing

Anomaly detection
in all the

equipment in a
global

manufacturing
system

Unsupervised
Learning

Autoencoder-based
deep learning technique
Edge computing and IoT

[117] Machinery Manufacturing

Failure prediction
using different
sensors such as

temperature,
rotation speed,
vibration, and
humidity in a
ball-bearing

automatic line

Regression

Autoregressive
Integrated moving

average model
(ARIMA),

ARIMA-LSTMs
Traditional cloud-edge

architecture

[118] Machinery Industrial robotics
manufacturing

Failure prediction
for monitoring

the health status of
all machines in

COMAU industrial
robots company

Regression
Classification

NN, RF, logistic
regression, SVM, and
gradient-boosted tree
A hybrid cloud-edge

computing

[119] Machinery Air conditioning
manufacturing

Failure prediction
in air-conditioning

systems
Classification

Centroid distance
weighted federated
averaging algorithm

[120] Electronic and
optical equipment Industry 4.0

Blockchain
framework for

PdM in Industry
4.0

Classification
Fuzzy logic, blockchain,

case-based reasoning,
and KNN

[121] Electrical
equipment

Home energy
management

Failure prediction
of the applications
in a home energy

management
system

Classification IoT sensors
SVM

[122] Electrical
equipment

Electric vehicles
battery technology

Prediction of
starter battery

failure times from
a fleet of vehicles

- Maximum likelihood
approach

[123]
Electrical

equipment
Machinery

Hydraulics

Energy-based
maintenance for

lubricant condition
monitoring in a
rubber-mixing

hydraulic control
system

Regression
Classification SVM and RF

[124] Machinery Steel
manufacturing

RUL estimation in
hot rolling milling

machines
regarding segment

surface
temperatures and

hydraulic force
measurements

- Maximum likelihood
approach
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Table 2. Cont.

Ref. Class of Repair
and Maintenance Industry Application Problem Type/

Approach Algorithm/Technology

[125]

Fabricated metal
products

Machinery and
equipment

Robotics
manufacturing

Failure prediction
in a discrete

multi-robot mobile
assembling line

using sensors such
as energy analyzer

modules,
temperature,

vibration,
corrosion, and

humidity

Classification FNN

[126] Machinery and
equipment

Electrical and
electronics

PHM-based PdM
for the degradation
estimation of gear
motor assembly in
mechanical power

transmission

-
Cloud computing and

the multitenancy
principle

[127]

Electrical
equipment

Electronic and
optical equipment

Electrical and
electronics

The detection of
changes in the

operating
conditions and

abrupt faults in the
platform

composed of an
asynchronous
motor and a

gearbox made of
two pulleys in the

university
laboratory

- Edge and cloud
analytics

[128] - Manufacturing

Product lifecycle
management by
connecting the
industrial unit

floor with design
and manufacturing

engineers

- A predictive analytics
software platform

Table 3. Summary of the studies in Table 2.

Class of Repair
and

Maintenance
Study Number Industry Study

Number PdM Task Study
Number

Problem Type/
Approach

Study
Number

Electrical
equipment 30 Electrical and

electronics; electronics 13 Failure
prediction 22 Classification 33

Machinery 10

Manufacturing;
manufacturing of

automotive
manufacturing; aircraft

semiconductor; machine
tools; gearbox; smart;

pharmaceutical;
electronics; steel;

robotics; industrial
robotics; air

conditioning; industrial
robots; Industry 4.0

22
RUL estimation;
Cost and charge

estimation
11 Regression 26
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Table 3. Cont.

Class of Repair
and

Maintenance
Study Number Industry Study

Number PdM Task Study
Number

Problem Type/
Approach

Study
Number

Electronic and
optical

equipment
9

Transport; automotive;
high-speed railway;

autonomous vehicles;
railways; rail transport

10 Fault detection 12 Clustering 3

Fabricated metal
products 8 Metals and plastics;

metal and metallurgy 5

Condition
monitoring;
Vibration

monitoring

9 Reinforcement
Learning 3

Transport
equipment 6

Energy and
sustainability;

nuclear power; nuclear
energy; renewable

energy; wind energy

5 Anomaly
detection 4 Unsupervised

Learning 2

Other machinery
and equipment 5

Information technology;
cloud services and data

centers
2

Production
quality

prediction
1 The others 16

Motor vehicles 3 Electric vehicle battery
technology 2 Product lifecycle

management 1

Machinery and
equipment 3

Medical; medical
devices and healthcare

services
2

Component
fatigue strength

prediction
1

Transport
equipment,

except motor
vehicles

2

Building and
construction;
architecture;
engineering;

construction; facility
management

2
PdM system by a
digital intelligent

assistant
1

Computers and
communication

equipment
1 Hydraulics 2

Blockchain
framework for

PdM
1

Industrial
machinery and

equipment
1 Large service

management 1
A big data
analytics

framework
1

Buildings and
other structures 1

Infrastructure; pumping
systems; marine; textile;

logistics and parcel
delivery; steel strip

processing; chemical
industry; aviation; home

energy management

9 Post-prognostic
decision 1

The transport equipment category in Table 3 is noted as an essential field with six stud-
ies. The other machinery and equipment category is also notable with five works. On the
other hand, the categories computers and communication equipment, industrial machinery
and equipment, and buildings and other structures have a lower level of interest, with one
study each, respectively. As a result, industries such as electrical equipment, machinery,
electronic and optical equipment, and fabricated metal products are popular areas for AI
and maintenance. On the other hand, computers and communication equipment, industrial
machinery and equipment, and buildings and other structures categories have received
more limited attention. These results are essential guidance for directing future research
and development efforts.

On the other hand, manufacturing industries, including automotive, aircraft, semi-
conductor, machine tools, gearbox, pharmaceutical, electronics, steel, robotics, industrial
robotics, air conditioning, and industrial robots, are the industry sectors receiving the most
attention in AI and maintenance, with 22 studies. This wide-ranging industry shows a
significant research focus as it includes a variety of subsectors.

The industries of ‘electrical and electronics’ and ‘electronics’ also have attracted at-
tention with 13 studies. Technological advances and maintenance practices have been
reflecting significant interest in this industry. The transport, automotive, high-speed rail-
way, autonomous vehicles, railways, and rail transport industries represent an important
research area with ten studies. The combination of subsectors such as automotive, high-
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speed rail, and autonomous vehicles shows a wide range of topics covering various aspects
of this industry. The industries of ‘metals and plastics’ and ‘metal and metallurgy’ have five
studies. The energy and sustainability, nuclear power, nuclear energy, renewable energy,
and wind energy industry is also a prominent field with five studies and covers a wide
range of topics related to energy sustainability.

Information technology, cloud services and data centers, electric vehicle battery tech-
nology, medical, medical devices and healthcare services, large service management, build-
ing and construction, hydraulics, and architecture, engineering, construction, and facility
management industries are important industries represented with two studies. A lim-
ited number of studies represent infrastructure, pumping systems, marine, textile, logis-
tics and parcel delivery, steel strip processing, chemical industry, aviation, and home
energy management.

In addition, Table 3 also shows different PdM tasks and study numbers. RUL, cost,
and charge estimation tasks have attracted attention with 11 studies. These tasks cover
strategically essential issues such as estimating the useful life of equipment and determin-
ing maintenance costs. Fault detection tasks are a vital topic, with 12 studies focusing
on the early detection and prevention of malfunctions that may occur in systems. The
condition and vibration monitoring task has attracted the attention of nine studies. The
anomaly detection task is a distinct area with four studies focusing on detecting unexpected
situations and abnormal behavior. Other tasks are represented by only one study each
and seem to concentrate on more specific topics. These tasks include product lifecycle
management, component fatigue strength prediction, PdM by a digital intelligent assistant,
blockchain framework for PdM, and a big data analytics framework. As a result, basic
tasks such as failure prediction, RUL estimation, fault detection, and anomaly detection
are popular areas of AI and maintenance. In contrast, other tasks are more specialized and
focus on specific topics.

Although PdM tasks often appear to be primarily classification and regression prob-
lems in Table 3, the presence of unknown events and the general nature of the data with
ambiguous labels clearly shows the importance of unsupervised learning, reinforcement
learning, and statistical and probabilistic applications in PdM applications.

In addition, Table 2 includes some PdM tasks without using AI. Ref. [89] includes
production quality prediction in the textile industry. Refs. [101–103] use thermal imaging
technology in railways, medical, and hydraulics industries. Ref. [110] applies data man-
agement, predictive data analytic toolbox, recommender and decision support dashboard,
and semantic-based learning and reasoning for PdM in the automotive manufacturing
industry. Ref. [114] introduces the optimal maintenance strategy applying reliability analy-
sis, sensitivity analysis, and a continuous stochastic process in the rail transport industry.
Ref. [115] applies a discrete-event simulation framework for post-prognostic decisions in
the aviation industry. Ref. [128] introduces a predictive analytics software platform in the
manufacturing industry. Moreover, Ref. [91] includes quality management in the vinyl
flooring industry using big data analytics and optimization and edge computing without
having a PdM task, but it is related indirectly.

Figures 4 and 5 show the number of studies carried out using different machine
learning methods such as FNN, CNN, LSTM, autoencoder, SVM, RNN, fuzzy, RF, K-
means, decision trees, rule-based intelligence system, DR, HMM, Bayes, ELM, and gradient
boosting in Web of Science and Google Scholar for 2018 to 2023, respectively. Total study
numbers in Web of Science and Google Scholar have been determined as (67, 104, 149, 213,
296, and 255) and (4406, 6506, 10,498, 16,638, 22,619, and 28,069) over 2018–2023, respectively.
Both the results in Google Scholar and Web of Science clearly show that the fusion of PdM
and AI will continue over the years. Since 2019, there has been a notable increase in the use
of deep learning methods, specifically LSTM, CNN, and autoencoder, with a particularly
pronounced surge in the utilization of DRL in the last two years. Additionally, SVM
has maintained its relevance since 2018, and its usage has continued to grow. Another
remarkable result has been observed in decision trees. The use of decision trees has shown
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a consistent upward trend since 2018. Notably, there has been a visible increase in the
adoption of fuzzy and rule-based methods. Moreover, HMM, Bayes, gradient boosting,
and FNN also exhibit a growing trend in usage since 2018. Even these escalating values
in fundamental AI methods underscore the inevitability of AI becoming indispensable
in future research endeavors. All the mentioned subjects show current relevance and an
exponential increase has emerged, which signifies a robust and growing interest in these
topics, indicating that AI will be indispensable in future studies. As a result, the figures
exhibit an evolving landscape characterized by an increasing breadth of methods employed
in PdM applications, suggesting a continuous effort by researchers to explore and integrate
diverse machine learning methods, indicating the adaptability of the field and the ongoing
quest for innovative approaches.
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Figures 6 and 7 show the number of studies carried out relating to four recent advances
in PdM, including (PdM, digital twin, and AI), (PdM, IoT, and AI), (PdM, edge and cloud
computing, and AI), and (PdM, AR, VR, MR, and AI) in Google Scholar and Web of Science,
respectively. The total number of studies relating to the four technological combinations
in Web of Science and Google Scholar has been determined as (2, 15, 24, 42, 50, and 40)
and (1184, 2102, 3542, 5554, 7684, and 9867) over 2018–2023, respectively. The number of
studies has a consistent annual increase. The observed growth proves a rising interest in
incorporating advanced technologies into PdM applications and the shifts in the focus of
researchers, reflecting evolving priorities in the field. In addition, the numbers indicate that
(PdM, digital twin, and AI) and (PdM, IoT, and AI) have been gaining momentum since
2018 and that the use of (PdM, Edge and cloud computing, and AI) and (PdM, AR, VR, MR,
and AI) has increased in the past three years and will increase in the future. As a result,
the upward direction of the study numbers points to a positive inclination to integrate
innovative techniques in PdM. Researchers are encouraged to explore the potential of
digital twin, IoT, edge and cloud computing, AR, VR, MR, and AI for PdM applications.
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Table 4 compares various AI methods. As observed, deep learning methods exhibit
high accuracy and scalability. On the other hand, machine learning methods show higher
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cost-effectiveness in comparison. When comparing traditional methods with AI approaches,
as in Table 5, AI methods outperform in stability and scalability. However, in terms of
computational cost, traditional methods are more efficient.

Table 4. Comparison of AI methods in PdM systems.

Techniques Accuracy Cost-Effectiveness Scalability

Deep Learning High Moderate High
Machine Learning Moderate High Moderate

Table 5. Comparison of AI-based PdM systems with traditional methods.

Methods Accuracy Cost-Effectiveness Scalability

AI-based High Moderate High
Traditional Moderate High Low

4. Transparency and Explainability in AI-Based Predictive Maintenance

Model interpretability is critical to AI, as it allows us to gain insights into complex
models’ black-box nature and build trustworthy models. Various techniques have emerged
to show how these models make predictions and decisions. Ref. [150] exhibited two
concepts titled explainability and interpretability used in the XAI area. If the model’s
design is understandable to a human being, it is considered interpretable. On the contrary,
explainability ties into the idea that explanation is a form of interaction between humans
and decision makers. Explainability is regarded as a post hoc tool because this specification
covers the techniques used to transform an uninterpretable model into an explainable one.

On the other hand, ref. [151] mentioned that if the models are inherently interpretable,
they have their own explanations, which align with the model’s calculation. This implies
that interpretability inherently includes explainability. In the interpretable model, each step
of the decision-making process can be traced. Still, there remains a gap in explaining why
this specific sequence of steps was chosen during the decision-making process. Explainable
models are interpretable by default, but the reverse is not always true [152], indicating that
explainability is a subset of interpretability. In explainable AI systems, it can be challenging
to understand how the model reached a decision, but it can grasp the underlying reasoning
behind it. XAI takes a broader approach, striving to design inherently transparent and
interpretable models for humans.

The interpretability techniques are classified in different ways. One way is to separate
them into two branches, post hoc and ad hoc, concerning the training process [153]. Post
hoc techniques use external tools to analyze the trained models. The techniques rely on
input perturbations. That is why they can provide unreliable results in cases like adversarial
attacks, as in [154].

Moreover, they are not concerned about the model’s inner dynamics and the actions
to generate different features. Ad hoc techniques modify the model’s inner dynamics to
facilitate understanding, and the model comes with some explanations during the training
itself. The post hoc techniques require feature analysis, model inspection, saliency maps,
proxy models, mathematical analysis, physical analysis, and explanation by using text
and case to extract the explanations. They are divided into “model agnostic” and “model
specific”. Model-agnostic models also use any model covering neural networks.

On the other hand, model-specific techniques are developed as specific to the model.
Some examples of post hoc techniques are local interpretable model-agnostic explana-
tions (LIME) [155] and SHapley Additive exPlanations (SHAP) [156], class activation map
(CAM) [157], layer-wise relevance propagation (LRP) [158], and gradient-weighted class
activation mapping (Grad-CAM) [159]. Ad hoc methods include approaches to explain-
ing the model in an explicitly understandable manner, using hand-crafted criteria for the
selection of features or incorporating heuristics based on current physics [160,161].
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Ref. [162] also classified the interpretation techniques as local and global. Local inter-
pretability provides single predictions, whereas global predicting provides interpretation
to make new predictions from model features. Local methods such as LIME and SHAP
provide model-agnostic means to explain and interpret the predictions generated by a wide
range of machine-learning models. Deep learning models, known for their complexity,
benefit from techniques like Grad-CAM and attention mechanisms, which offer insights
into the input regions that influence their decisions.

Some approaches to achieving model interpretability include techniques such as partial
dependence plots (PDP) [163], decision tree visualization [163,164], attention module [165],
and feature importance calculation by using methods such as wrapper, filter, embedded,
and dimension reduction techniques [166]. PDPs represent a method of showing the
relationship among one or several components and the expected outcomes of machine
learning models. They give us an insight into how changes affect model predictions for
a given feature. The structure of the decision tree, the observed features split, and the
way the tree makes decisions based on the input features are displayed in the decision
tree visualization.

On the other hand, the attention module contains a mechanism for generating feature
weights consisting of parallel hidden layers. Each module part provides a value between 0
and 1, which shall be multiplied by the suitable feature to enter the rest of the network. The
module can be visualized. Feature importance helps understand the features with the most
weight in the model’s predictions. Wrapper methods are trained with various input features
to obtain the best results using heuristic and sequential search algorithms, which is time
consuming [167]. Filter methods employ statistical metrics such as the Pearson correlation
coefficient, mutual information, and X2 test prior to training to identify the importance of
features. The techniques are unrelated to the model or its predictions after training, and they
have no interest in interactions between features [168]. Embedded methods work on the
subsets of the data along with techniques such as random forest, least absolute shrinkage
and selection operator (LASSO) regression, ridge regression, regularization, decision tree,
and XGBoost [169,170]. Dimension reduction techniques such as PCA, ICA (individual
component analysis), linear discriminant analysis (LDA) reduce the dimensionality of the
dataset to obtain a smaller set of principal components that explain most of the variance in
the data [171].

In the literature, there are a lot of other methods, such as rule-based systems and sen-
sitivity analysis. Rule-based systems utilize logical rules to describe the decision-making
process of a model, making the decision logic explicit and understandable [172,173]. Lastly,
sensitivity analysis helps identify the most influential input variables, contributing to a
clearer understanding of a model’s predictive behavior. In an era where AI plays an increas-
ingly prominent role, these interpretability techniques and methods are indispensable tools
for building trust, improving model performance, and ensuring ethical and accountable
AI systems.

Table 6 summarizes interpretable and explainable studies between 2018 and 2023
and their application content. In [174–183], SHAP, LIME, ELI5, integrated gradients,
SmoothGrad, and LRP have been used. Refs. [184–189] use the semantic web rule language,
rule-based expert systems, fuzzy systems, quantitative association rule mining (QARM),
and data-driven sensitivity analysis. In [190–204], some techniques and visualizations such
as decision trees, graph-based approaches, the attention modules used together with LSTM,
generative adversarial networks (GAN), PDPs, and feature importance calculation methods.
Refs. [205–208] give some new algorithms, including interpretability and explainability,
such as temporal fusion separable convolutional network, federated learning, HMM, and
reinforcement learning.
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Table 6. Summary of different transparency and explainability approaches used in AI-based PdM.

Ref. The Approach Application

[174] SHAP
PdM in a coal crusher operating at the boiler of the real
power plant and gantries in a steelworks converter, a

transport line in a steelworks converter

[175] SHAP PdM in a coal crusher operating presented in [174]

[176] LIME, SHAP, and ELI5 Solar photovoltaic energy forecasting by GEFCOM
dataset [147]

[177] Integrated gradients, SHAP, and
SmoothGrad

Anomaly detection in press machine data of a
production line

[178] SHAP and LIME. RUL estimation of hard disk drive in the Backblaze
dataset [140]

[179] SHAP RUL estimation of the engines on the NASA turbofan
engine dataset [132,133]

[180] Integrated gradients
PdM to reveal the most sensitive gearbox operations in the

MW load range in a petrochemical plant to a
specific abnormality

[181] SHAP RUL estimation of NASA turbofan engine dataset [132,133]

[182] LIME and NLP Maintenance work orders

[183] LRP Bearing health condition estimation on the NASA bearing
dataset [136]

[184]
Knowledge-based system including

domain ontologies and semantic web rule
language rules

The detection of future machinery failures as well as the
prediction of their time of occurrence in semiconductor

manufacturing process by the UCI SECOM dataset [148]

[185] Rule-based expert system PdM of a real hybrid bus

[186] Real type-2 fuzzy-based XAI PdM within the water pumping industry

[187] Rule-based model called logic language
model

RUL estimation of the engines on the NASA turbofan
engine dataset [132,133]

[188] QARM algorithm RUL prediction of a drilling machine of an automotive
manufacturer

[189] A data-driven sensitivity analysis The prediction of the future reliability of components in a
large gas distribution network

[190] Bagged decision trees A synthetic dataset that reflects real predictive maintenance
data encountered in the industry

[191] Gradient boosting decision tree The prediction machine errors or tool failures on Microsoft
Azure dataset [146]

[192]

A premier transparent, interpretable, and
self-explainable automated machine

learning software, including methods like
random forest and gradient boosting

Manufacturing quality prediction in real-life environment

[193] A virtual knowledge graph-based
approach PdM in the hydraulic systems

[194] Attention and LSTM-GAN PdM to reduce maintenance costs and downtime of
machines in the intelligent manufacturing system

[195] Attention and bidirectional LSTM RUL estimation on the NASA turbofan engine
dataset [132,133]

[196] Bidirectional self-attention gated
recurrent unit

The prediction of the health index on the NASA rolling
bearing dataset from IEEE PHM challenge [138]
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Table 6. Cont.

Ref. The Approach Application

[197] The attention mechanism RUL estimation on the NASA turbofan engine
dataset [132,133]

[198] The attention mechanism Structural Health Monitoring

[199] The multi-layer, multi-source
attention distribution

The fault detection and recognition on the general data
hierarchy of AUV

[200] Attention and LSTM RUL estimation on the NASA turbofan engine dataset
[132,133] IoT

[201] Feature attribution and
counterfactual generation

Fault diagnosis in water injection pump for production
stimulation in offshore oil wells, offshore natural gas

treatment plant

[202] PCA/Kernel PCA/KNN-PCA,
LIME, and integrated gradient

RUL estimation of the NASA turbofan engine dataset
[132,133]

[203]

Pobability density function, Fourier
transform, spectral kurtosis, autoencoder

and variational autoencoder, and
K-means clustering

Gearbox and bearing health assessment in wind
turbine system

[204]
Unsupervised feature selection, adapting

relevance metrics with the dynamic
time-warping algorithm

Health indicators for a rotating machine

[205]

Temporal fusion separable convolutional
network, a hierarchical latent space

variational auto-encoder, and a regressor
consisting of a linear layer and a sigmoid

activation function

RUL estimation on the NASA turbofan engine
dataset [132,133]

[206] A blockchain-based architecture that
achieves trustworthy federated learning A service

[207] Balanced K-star PdM in an IoT-based manufacturing system

[208] HMM and reinforcement learning RUL estimation of the engines on the NASA turbofan
engine dataset [132,133]

An extensive application range of PdM consists of a coal crusher operating at the boiler
of the real power plant and gantries in a steelworks converter, a transport line in a steel-
works converter, the MW load range in a petrochemical plant, a real hybrid bus, hydraulic
systems, a modular aero-propulsion system, an intelligent manufacturing system, the
water pumping industry, a large gas distribution network, rolling bearings and a rotating
machine, PdM for autonomous underwater vehicles (AUV), a water injection pump, wind
turbine systems, the IoT-based manufacturing environment, hard disk drives, the turbofan
engine, the drilling machine of an automotive manufacturer, solar photovoltaic energy
systems, maintenance work orders, manufacturing, and structural health monitoring.

Figures 8 and 9 show numbers relating to PdM and explainable/interpretable AI in
Web of Science and Google Scholar for 2018 to 2023, respectively. The total study numbers
in Web of Science and Google Scholar are (6, 5, 9, 30, 34, and 18) and (2328, 3058, 4166,
5834, 7350, and 6540) over 2018–2023, respectively. All numbers show significant growth
in using both PdM and explainable/interpretable AI over the specified time frame. The
increasing number of studies presents a rising interest and emphasis on these subjects and
methods. In addition, the numbers emphasize the importance of PdM and the need for AI
systems that are transparent and interpretable. The numbers support that using PdM and
explainable/interpretable AI will continue to expand and generate a broader shift in the
research focus on these areas.
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between 2018 and 2023.
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5. Challenges and Limitations of Using AI for PdM Autonomy

Several problems and limitations that need to be overcome to realize AI’s potential
benefits are posed by its use for PdM autonomy. Some key challenges and limitations are
(i) transparency and explainability, (ii) integration with existing systems and workflows,
(iii) data quality and quantity, (iv) the lack of real-world data, (v) the lack of standard eval-
uation metrics, (vi) ethical considerations, and (vii) effective human–machine interaction.

Transparency and explainability could make understanding and believing the deci-
sions adopted in this system difficult for human operators, leading to mistrust and lack
of acceptance among users. All developments about transparency and explainability are
given in Section 4. More development should be undertaken to gain the trust of human
operators in PdM applications.

The seamless integration into existing systems and workflows requires specialized
software and expertise. Moreover, the different types of data formats, communication
methods, and protocols create difficulties in integrating AI systems into current systems.
There are some approaches for the seamless integration of AI-based PdM systems into
current systems and workflows [209–224]. In [209–221], a modular design has been applied.
The design allows the AI-based system to be flexibly integrated with existing systems and
workflows and adaptable using standard interfaces and protocols, such as Modbus, Snap7,
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and OPC-UA, to communicate with existing systems and develop APIs. Refs. [223,224]
has leveraged a service-oriented architecture (SOA) for integration. Web services, such
as RESTful APIs, to access the AI-based system and message-oriented middleware, such
as MQTT, to communicate with existing systems have been applied. Additionally, some
researchers have proposed using edge computing and fog computing to integrate AI-based
PdM systems into existing systems [219–222].

Data quality and quantity are crucial for training and validating AI-based PdM models.
High-quality data provides accurate predictions. In contrast, the time and costs of gathering
and cleaning data may be considerable. In addition, it is essential to have large amounts of
data for learning deep learning models, and in certain cases, they may be challenging to
obtain [85,86,129,192,210]. AI-based PdM systems should be tested and validated under
various conditions, such as different types of equipment, different operating conditions,
and different levels of data quality for successful real-world applications. The lack of real-
world data makes it difficult to test the system under realistic conditions and to evaluate
its performance and accuracy. Researchers have proposed various methods for simulating
real-world scenarios to overcome this challenge, such as using virtual environments and
testbeds [26,35,37,42,96,109,210,225–231].

The lack of standard evaluation metrics is another challenge in testing and validating
AI-based PdM systems. The shortcoming makes comparing different systems’ performance
and evaluating their accuracy and reliability difficult. Researchers have proposed various
evaluation metrics to overcome this challenge, such as prediction accuracy, mean squared
error, and precision and recall [24,232].

Ethical considerations are essential for AI-based PdM systems to ensure they are
robust, reliable, and secure. Additionally, ethical considerations are associated with using
AI-based PdM systems, such as transparency and explainability, trust and acceptance
among users, integrating AI-based systems with existing systems and workflows, testing,
validating, and data privacy and security [221,233,234].

Human–machine interaction is an essential aspect of AI-based PdM as it involves
the interaction between human operators and autonomous systems. The goal of human–
machine interaction in PdM is to enable human operators to monitor, control, and interact
with autonomous systems safely, efficiently, and effectively. One of the critical challenges in
HRI for AI-based PdM is the development of intuitive and user-friendly interfaces [235,236].
Researchers have proposed various methods for designing intuitive and user-friendly
interfaces to overcome these challenges, such as virtual and augmented reality gestures and
NLP [11,19,21,26,48,50,105,106,108,230]. Another challenge in HRI for AI-based PdM is
the development of trust and acceptance among human operators. Generally, ML models,
especially deep learning models, provide decisions that are too complicated for humans to
understand, reducing people’s trust in their predictions. That is why developing simplified
and interpretable models is vital [182]. Recent works have proposed to use NLP and, its
more powerful version, generative AI, including large language models (LLMs), such as
ChatGPT, PaLM, and Llama [237–240], to predict component failure or service requirements
and to analyze historical log data that include equipment performance, environmental
conditions, and maintenance schedules [241–245]. Ref. [246] has used NLP, dimension
reduction, and clustering techniques for the PdM of an aircraft by using previous reports.
A human collaboration with ChatGPT has applied PdM for mobile firefighter turnout
gear cleaning in [247]. Ref. [248] has applied GPT and RL to control an HVAC system.
Ref. [249] has proposed to leverage ChatGPT in different areas of supply chain management,
such as route optimization, predictive maintenance, and order shipment. Ref. [250] has
proposed a new language model for network traffic, including PdM in telecommunication.
Critical AI training, testing, and diligence methods for PdM in automotive projects have
been introduced in [251]. In [252], LLMs have been investigated for the failure mode
classification task, an essential maintenance step. The works in [241–252] have shown
that NLP and LLMs have increased predictive maintenance efficiency and accuracy since
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they can be constantly updated with real-time equipment data, enabling them to learn the
patterns associated with healthy operational functioning.

6. Recent Advances and Future Trends in AI-Based PdM

Recent advances in AI-based PdM have improved the performance and accuracy
of predictive maintenance predictions and increased the autonomy and adaptability of
machines in complex and dynamic working environments. Some recent advances in this
field include the following:

1. Integration of advanced machine learning algorithms;
2. Edge and cloud computing for real-time analysis and data storing;
3. Predictive analytics with big data;
4. XAI for transparency;
5. IoT sensor integration;
6. Digital twin, AR, VR, MR, and extended versions.

The field of AI-based PdM has been developing and improving, as shown in Figure 10.
The future research topics in the field are given below:

1. Big data and analytics are used to collect, analyze, and interpret large amounts of data.
2. The exponential growth of cyber–physical systems of digital twins, AR, VR, XR,

metaverse, and human-driven industrial metaverse solutions to both physical and
virtual work environments allows smooth collaboration and communication between
employees, machines/robots, and AI.

3. Development of autonomous maintenance systems that are capable of self-diagnosis,
decision making, and proactive interventions without human intervention.

4. Evolving toward zero-touch maintenance operations where AI systems automate the
maintenance process from detection to resolution.

5. Extraction of actionable insight advancements in AI algorithms to predict failures and
provide actionable insights and recommendations for optimal maintenance strategies.

6. Integrating experiential learning and reinforcement learning techniques to improve
AI models based on ongoing data and continuous feedback.

7. Implementation of blockchain technology for data security to enhance the security
and integrity of PdM data, ensuring trust and transparency.

8. Development of trustworthy AI algorithms and human-centric AI interfaces for bet-
ter collaboration between AI systems and human operators, facilitating seamless
interaction and decision making.

9. Development of energy-efficient AI-based PdM to minimize resource consumption
while maintaining high prediction accuracy.

10. Development of collaborative robots (cobots), IIoT, edge and cloud computing, and
5G/6G connectivity for next-step PdM autonomy and smart factory that can adjust to
shifting circumstances and changing conditions and streamline manufacturing processes.

11. Development of generative AI models to contribute to the above items. For example,
they can provide failure warnings, present encompassing instructions for repair and
replacement methodologies, achieve suggestions to optimize energy consumption
and cut down the carbon footprint to human operators by simulating the real system
and/or analyzing maintenance logs and sensor data, and facilitate better collabora-
tion between automated systems and human operators through natural language
communication in automated maintenance planning.
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7. Conclusions

This paper has reviewed the recent developments in AI-based PdM, focusing on next-
step autonomy in robots. SOTA, challenges, and opportunities associated with AI-based
PdM have been analyzed. The ethical considerations, integration, testing, and validation
of AI-based PdM in real-world scenarios and human–machine interaction have also been
discussed. The potential benefits of AI-based PdM, such as cost savings, increased efficiency,
and improved safety, have been highlighted. It has been concluded that PdM is trustworthy
thanks to explainable and interpretable AI for human operators. Therefore, AI is the main
component of PdM for next-step autonomy in machines, which can improve the autonomy
and adaptability of machines in complex and dynamic working environments. Finally,
recent advances and future trends, including the use of generative AI models, have been
addressed for further improvements and developments of the AI-based PdM.
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