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Abstract: Defect detection holds significant importance in improving the overall quality of fabric
manufacturing. To improve the effectiveness and accuracy of fabric defect detection, we propose
the PRC-Light YOLO model for fabric defect detection and establish a detection system. Firstly,
we have improved YOLOv7 by integrating new convolution operators into the Extended-Efficient
Layer Aggregation Network for optimized feature extraction, reducing computations while capturing
spatial features effectively. Secondly, to enhance the performance of the feature fusion network, we use
Receptive Field Block as the feature pyramid of YOLOv7 and introduce Content-Aware ReAssembly of
FEatures as upsampling operators for PRC-Light YOLO. By generating real-time adaptive convolution
kernels, this module extends the receptive field, thereby gathering vital information from contexts
with richer content. To further optimize the efficiency of model training, we apply the HardSwish
activation function. Additionally, the bounding box loss function adopts the Wise-IOU v3, which
incorporates a dynamic non-monotonic focusing mechanism that mitigates adverse gradients from
low-quality instances. Finally, in order to enhance the PRC-Light YOLO model’s generalization
ability, we apply data augmentation techniques to the fabric dataset. In comparison to the YOLOv7
model, multiple experiments indicate that our proposed fabric defect detection model exhibits a
decrease of 18.03% in model parameters and 20.53% in computational load. At the same time, it has a
notable 7.6% improvement in mAP.

Keywords: fabric defect detection; YOLOv7; lightweight network; HardSwish; Wise-IOU v3

1. Introduction

The detection of fabric defects plays a significant role in the industrial sector. In the
process of fabric manufacturing, the defects on the surface of fabric are inevitable. There-
fore, scholars are focused on the effective identification and precise localization of these
fabric defects [1].

There are two main categories of methods for detecting fabric defects: traditional
methods and deep learning methods. The traditional methods include the texture structure
method, histogram statistics, spectral method, modeling method and adaptive dictionary
learning method for fabric defect detection. Li et al. put forward an approach that relies on
saliency region and similarity localization detection to achieve accurate contour segmenta-
tion of periodic textured fabric images and address the challenge of defect detection [2].
This detection speed is not dominant, and the detection effect for fabric images with no
obvious defects or complex texture fabric images is generally not satisfactory. Xiang et al.
proposed a yarn-dyed fabric defect detection algorithm based on Fourier convolution and
convolutional self-encoder that avoids the conventional method of introducing noise in the
training phase and employs a random masking method to generate image pairs for training
instead [3]. In the process, some spatial domain information may be lost, making it difficult
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for the decoder to fully recover the original input when inverting the frequency domain
data back to the spatial domain. Wu et al. developed a method of cotton fabric defect
detection based on K-Singular Value Decomposition dictionary learning [4], in which the
dictionary is generally better suited to handle sparse textures. Kanwal et al. utilized the
K-means algorithm to develop a bag-of-words model and proposed a significance-based
bag-of-words model for fabric defect detection [5]. The bag-of-words model may ignore
the spatial information and contextual relationships of features, leading to the loss of
local information and structural information in images. Although the detection speed and
performance of the methods based on traditional image processing are better than those of
manual detection, the methods of generalization ability are inadequate. In the past two
decades, deep learning has become a trend for fabric defect detection, and the techniques
have achieved significant advancements in this field [6]. Methods for detection based
on deep learning can be classified further into two primary categories: single-stage and
two-stage methods. The single-stage methods mainly include Solid State Drive (SSD) [7]
and You Only Look Once (YOLO) [8,9] series, and the two-stage algorithms comprise
R-CNN [10], Fast R-CNN [11], Faster R-CNN [12] and so on. Zhao et al. utilized ROI Align
and ResNet50 network to replace the region of interest pooling layer and VGG16 features
extraction network in Faster R-CNN [13]. In addition, the softmax classifier is used to
identify the image and obtain the prediction results, but the detection speed needs to be
improved. Zhang et al. introduced the channel attention mechanism to highlight defect
features and suppress background noise features in MobileNetV2-SSDLite and redefined
the loss function by Focal Loss [14]. However, this model still has a lot of parameters and is
difficult to deploy. Based on YOLOv5s, Zhou et al. used K-Means++ clustering to acquire
the anchor frames, followed by combining the CARAFE upsampling operator. In addi-
tion, they added a small target detection layer to the baseline model, which results in an
increase in the amount of model parameters [15]. Wu et al. embedded Classification-Aware
Regression Loss (CARL) into YOLOF. Although this method establishes a relationship
between classification and target localization [16], CARL exhibits sensitivity to noise and
outliers within the data, potentially resulting in the model’s tendency to overfit to these
anomalies. Lin et al. proposed a weighted bidirectional feature network by substituting the
Backbone module within the original YOLOv5 structure with the Swin Transformer [17].
Moreover, they employed the generalized focal loss to decrease the missed detection rate
and improve the learning of positive sample instances. However, the Swin Transformer
increases the parameter number and calculation amount of the original network, and there
is no guarantee that the model will achieve the same detection results on either mobile or
embedded terminals. Guo et al. embedded the Atrous Spatial Pyramid Pooling module
and squeeze-and-excitation channel attention module into YOLO. They used convolution
kernels with varying expansion rates to pool feature maps and achieved improved de-
fect detection accuracy by self-learning the weights of each feature channel [18], but the
background of the dataset is too simple, which can lead to idealized experimental results.
Di et al. developed a deconvolution-based adaptive feature fusion network and introduced
a context receptive field block into the Backbone of the YOLOv5 model; in addition, they
used exponential distance IOU as the model bounding box loss function [19]. The detection
precision of the model is improved by adaptively weighting the bounding box gradient,
but this method has 3.8M more parameters than the baseline YOLOv5 and a lower mAP
value than YOLOv7.

The methods mentioned above can achieve higher defect detection accuracy or the
quantity of computation, but often at the cost of adding more parameters to the original
model. In addition, the background of the dataset used in some literature is not compli-
cated enough, so they have high mAP values. In this paper, we made some data images of
fabric defects with complicated background and researched the structure of YOLOv7 [20].
Our main contributions are as follows:



Appl. Sci. 2024, 14, 938 3 of 21

• We propose Partial Convolution (PConv) to replace the 3 × 3 Conv of Extended-
Efficient Layer Aggregation Networks (E-ELAN) in the Backbone module.
This replacement aims to decrease network model calculation and parameters.

• In the Neck module, we incorporate a Receptive Field Block (RFB) [21] and integrate the
Content-Aware ReAssembly of FEatures (CARAFE) lightweight upsampling operator.

• We utilize the HardSwish activation function to decrease the computational burden
and memory access of the network. The Wise-IOU v3 with dynamic non-monotonic
focusing mechanism is applied as the bounding box loss function of the model.

• Compared with YOLOv7 and other detection models, the experimental results validate
that PRC-Light YOLO has the highest mAP and improves the performance of fabric
defect detection.

The remaining sections of this article are organized as follows: In Section 2, we
introduce the YOLOv7 model and its image processing process. Section 3 presents the PRC-
Light YOLO model, which encompasses the construction of lightweight modules, feature
fusion network and optimization of activation functions and loss functions. Section 4
provides a detailed account of the experimental results and analysis. In Section 5, we
design a fabric defect detection system. Section 6 discusses further research based on the
experimental results. Finally, a conclusion is provided.

2. YOLOv7 Model Structure

The YOLOv7 model is mainly composed of three parts: Backbone, Neck and Head.
The model structure is shown in Figure 1.

Figure 1. The network structure of YOLOv7.

2.1. Backbone

The Backbone part mainly comprises the CBS (Convolution, Batch normalization,
SiLU) layer, E-ELAN module, and MPConv (Max Pool Convolution) module [22]. Among
them, different CBS colors signify varied convolution kernels. The MPConv module
comprises upper and lower branches. The upper branch shows the feature map via
MaxPool operation, effectively reducing spatial dimensions by half. Subsequently, a CBS
operation is applied to halve channel count. In the lower branch, the feature map is
processed by the first CBS to reduce the number of channels, followed by another CBS to
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further reduce channel count. Lastly, the upper and lower branches are merged by tensor
splicing. The E-ELAN module contains two branches [23], and this module improves the
ability of the network to learn additional features.

2.2. Neck

The Path Aggregation Feature Pyramid Network (PAFPN) structure is used in the
Neck module of the YOLOv7 for feature fusion [24]. This involves transmitting and fusing
higher-level feature information through an upsampling process, followed by feature map
predictions obtained through a down-sampling fusion method. The final output comprises
results from three feature layers. As image processing may result in significant image
distortion, the SPPCSPC module incorporates three parallel MaxPool operations during a
series of convolutional operations, effectively reducing the occurrence of image distortion.

2.3. Head

In the Head detection section, the REP module differs between the training and
inference stages. During the training stage, it comprises three branches. While in the
inference stage, the REP module undergoes reparameterization and consists of only a
3 × 3 Conv.

Thus, the fabric defect detection process based on YOLOv7 is outlined as follows.
Firstly, preceding the input of an image into the Backbone, the model executes a series of
operations, including adaptive image scaling, Mosaic data enhancement, adaptive anchor
frame calculation and so on. Secondly, the Backbone module extracts features from the
processed image. Thirdly, the Neck module conducts feature fusion processing on the
extracted features from the Backbone, generating feature maps of three different sizes:
large, medium and small. Finally, the Head layer detects the fused features and outputs the
final results.

3. Fabric Defect Detection Based on PRC-Light YOLO

Although YOLOv7 has excellent detection accuracy and speed on datasets such as
COCO and PASCAL VOC [20], its performance diminishes for fabric defect detection in
fabric datasets. Thus, we study the theoretical foundation and network architecture of
YOLOv7, subsequently proposing PRC-Light YOLO for a fabric defect detection model.

3.1. Lightweight Backbone Network

The reduction of floating-point operations (FLOPs) can alleviate the computational
burden of neural networks, thereby shortening both forward and backward propagation
times. This reduction significantly contributes to achieving lower latency. Simultaneously,
lower FLOPs can enhance the parallelism of neural networks on hardware, increasing
throughput and enabling faster processing of input data streams. Consequently, to achieve
lightweight neural networks that meet the demands of low latency and high throughput,
the focus of most researchers remains on minimizing the total number of FLOPs. This is
because there exists the following relationship between neural network latency and FLOPs:

Latency =
FLOPs
FLOPS

(1)

Floating-point operations per second (FLOPS) is a metric for computing speed ef-
ficiency. As indicated by Equation (1), reducing the number of FLOPs does not always
guarantee a decrease in neural network latency. Hence, it is essential to concurrently reduce
FLOPs and optimize FLOPS to truly achieve low latency.

Chen et al. demonstrated that frequent memory accesses by convolution operations
reduced FLOPS values in neural networks [25]. ShuffleNet [26], MobileNet [27] and Ghost-
Net [28], for example, embed Group Convolution (GConv) or Depthwise Convolution
(DWConv) to extract spatial features. For an input I ∈ Rc×h×w, with c convolution kernels
W ∈ Rk×k, we obtain an output O ∈ Rc×h×w. Then, the FLOPs for regular convolution
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is h × w × k2 × c2, and the DWConv’s FLOPs is h × w × k2 × c. Despite the lower FLOPs,
the DWConv operation cannot be directly followed by the regular convolution operation,
or it will lead to a significant degradation of model accuracy. To compensate for the drop in
precision, the PointWise Convolution (PWConv) operation is typically employed after DW-
Conv, with the channel count in DWConv being augmented to c. As a result, the Memory
Access Cost (MAC) for DWConv is as follow:

h × w × 2c′ + k2 × c′ ≈ h × w × 2c′ (2)

The MAC for regular convolution can be represented as follows:

h × w × 2c′ + k2 × c ≈ h × w × 2c (3)

A comparison of Equations (2) and (3) suggests that the DWConv operation may
elevate the frequency of memory accesses in the process of reducing FLOPs. Furthermore,
since these models typically involve extra data processing operations such as splicing,
disambiguation, and pooling, the inclusion of DWConv does not invariably curtail the
neural network’s latency.

Therefore, we adopt a novel partially convolution PConv in the Backbone, which
reduces the FLOPs and MAC of neural networks. The principle of the PConv is illustrated
in Figure 2.

Figure 2. The principle of PConv.

As can be seen from Figure 2, PConv only performs the convolution operation on
part of the input channels by using the regular conventional Conv for spatial feature
extraction. Meanwhile, the remaining c − cp channels keep an identity mapping to Output.
This approach allows selective processing while preserving certain channel information.
The FLOPs of PConv is calculated to be h × w × k2 × c2

p, and the MAC is h × w × 2cp + k2 ×
c2

p ≈ h × w × 2cp, where cp denotes the number of channels in PConv that perform regular
convolution. The cp is usually taken to be 1/4c. Therefore, the FLOPs of PConv are only
1/16 of those of the regular Conv, resulting in reduced memory access. This paper replaces
all 3 × 3 convolution operations within E-ELAN of the YOLOv7 Backbone network with
PConv. This substitution allowed for a reduction in the frequency of memory accesses by
the neural network. This substitution allowed for the maintenance of higher FLOPS with
fewer FLOPs, consequently reducing neural network latency and making the network more
effective at extracting spatial features.

3.2. Improved Feature Fusion Network
3.2.1. RFB Feature Pyramid

The Feature Pyramid SPPCSP is made up of two components: Single-Point Perfection
(SPP) [29] and Complexity-Sensitive Perfection (CSP) [30]; as a result, it has a larger number
of model parameters and computations, which leads to slower inference speed of the
YOLOv7 model. Additionally, in the sampling process, SPPCSP might cause a reduction in
the size of input feature maps. This could potentially lead to a degree of feature information
loss, which has an impact on the detection of small objects. Consequently, we integrate the
RFB feature pyramid into the Neck of the YOLOv7 model, which is able to learn deeper
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features from the lightweight CNN model, making the detection model faster and more
accurate with less calculation.

The RFB is a multi-branch convolution [31] block inspired by Inception [32] in network
construction. Its internal structures are divided into two parts: multi-branch convolution
employing various convolution kernels and dilated convolutions featuring variable rates.
The dilated convolution operation’s primary function is to expand the receptive field so
that it can capture crucial information in regions with more context. The structure of the
RFB is illustrated in Figure 3.

Figure 3. The structure of the RFB.

In the RFB, we utilize branches with varying dilation factors to capture multiscale
information and different ranges of dependencies. Despite these branches having distinct
receptive fields, they share the same weights, which help reduce the number of parameters,
thereby lowering the risk of overfitting and maximizing the utilization of information from
each sample. Finally, the RBF concatenates the computation results from different branches,
preventing the model from encountering gradient explosion and vanishing gradient issues
during training, ultimately achieving the goal of fusing different features.

3.2.2. CARAFE Upsampling Operator

The upsampling method in the YOLOv7 feature fusion network is the nearest neigh-
bor interpolation method [33]. The principle of this method is to identify the nearest
neighbor pixel in the target image based on each pixel’s position in the original image
and subsequently replace the value of that pixel in the original image with the value of the
nearest neighbor pixel. However, the image quality after scaling by this method is poor,
and obvious jagged edges may appear. To address this issue, we introduce the CARAFE
upsampling operator. This innovation significantly bolsters the neural network’s semantic
feature extraction capacity during the upsampling process within object detection tasks.
Importantly, this improvement is made without significantly increasing the amount of
computations and parameters. The CARAFE upsampling process is depicted in Figure 4.

The CARAFE architecture is made of two primary modules: the upsampling kernel
prediction module and feature reassembly module. These components work together to
enable effective upsampling and feature reassembly within the network. In the upsampling
kernel prediction module, assuming the upsampling ratio is σ, the process begins with
channel compression through a 1 × 1 convolution operation on the input feature map of
size H × W × C, resulting in a feature map of size H × W × Cm. Subsequently, encoding
the feature map using a kenc × kenc convolutional kernel generates the recombined kernel
kup × kup, obtaining a feature map with σ2 × k2

up channels. The channels are then spa-
tially unfolded and subjected to softmax normalization, producing a feature map of size
σH × σW × K2

up, where each feature value corresponds to an upsampling kernel. In the
feature recombination module, through the mapping relationship, the region kup × kup
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centered in the input feature map is taken out, and then the dot product operation is
performed with the upsampling kernel at the same position in σH × σW × K2

up to obtain
the output value.

Figure 4. Upsampling process on CARAFE.

The CARAFE achieves instance-specific content-aware processing by generating real-
time adaptive convolution kernels and can aggregate contextual information over a larger
receptive field. Therefore, we introduce the CARAFE upsampling operator to replace two
upsampling operations in the Neck structure of the YOLOv7 model. According to the
trade-off relationship between kenc and kup, to maintain the performance and efficiency, kup
takes the value of 7 and kenc takes the value of 5 in the experiments.

3.3. HardSwish Activation Function

Activation functions are significant in neural networks, introducing non-linearity and
enabling the networks to learn and represent complex functions, thereby enhancing the net-
work’s representational capacity [34]. In the absence of activation functions, deeper neural
networks would be limited to handling linearly differentiable problems [35]. Commonly
used activation functions are Sigmoid, ReLU, Swish, Mish, GELU and so on. The YOLOv7
model employs the SiLU activation function, which is expressed as follows:

SiLU(x) = x · sigmoid(x) =
x

1 + e−x (4)

The computation process of the Sigmoid function involves exponentiation, which
undoubtedly increases the computational complexity of the SiLU activation function. How-
ever, the Sigmoid activation function can be approximated using a piecewise linear function
called HardSigmoid [36], which significantly reduces the computational cost. The HardSig-
moid activation function and HardSwish activation function expressions are as follows:

HardSigmoid(x) =


0, x ≤ −3
1, x ≥ 3

(x + 3)/6, otherwise
(5)

HardSwish(x) =


0, x ≤ −3

(x2 + 3x)/6, −3 < x < 3
x, x ≥ 3

(6)
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The HardSwish and SiLU activation function output curves are shown in Figure 5.
HardSwish and SiLU are differentiable at all points and have no upper bounds, enabling
them to avoid overfitting while making the model more generalizable. Furthermore,
the segmented function reduces the number of memory accesses, which significantly
reduces the latency cost.

Figure 5. Activation function output curves.

3.4. Wise-IOU v3 Bounding Box Loss

The loss function of YOLOv7 comprises three parts: Bounding Box Loss (BoxLoss),
Classification Loss (ClsLoss) and Object Confidence Loss (ObjLoss). Among them, the
BoxLoss employs the Complete Intersection Over Union (CIOU) loss [37], and the ObjLoss
and ClsLoss are calculated using the binary cross-entropy loss function. The YOLOv7 total
loss expression is shown in Equation (7).

Loss = LossObj + Losscls + LossBox (7)

The CIOU loss in YOLOv7 considers three geometric factors: the overlap area between
bounding boxes, the difference in aspect ratios and the distance between their center points.
Given a target frame and a prediction frame, the CIOU loss is calculated as:

LCIOU = 1 − IOU +

√
(ix − jx)

2 + (iy − jy)
2

c2 + αν (8)

α =
ν

(1 − IOU) + ν
(9)

υ =
4

π2 (arctan
wgt

hgt − arctan
w
h
)2 (10)

The gradient of v with respect to w and h is calculated as follows:{
∂v
∂w = 8

π2 (arctan wgt

hgt − arctan w
h ) ∗

h
w2+h2

∂v
∂h = 8

π2 (arctan wgt

hgt − arctan w
h ) ∗

w
w2+h2

(11)

(ix, iy), (jx, jy) are the center point coordinates of the real frame and the prediction
frame, respectively, v measures the similarities in length ratios, α represents the balancing
parameter and the diagonal length of the smallest outer rectangle containing the true and
predicted boxes is denoted by c. Analysis of Equation (10) shows that when the aspect
ratios of the predicted and real frame are equal, the penalty term related to the aspect ratio
becomes 0. Thus, the aspect ratio penalty term loses its effect, which reduces the optimiza-
tion performance of the model for similarity. From Equation (11), the relationship between
∂v
∂w and ∂v

∂h is inversely proportional, and during training, the simultaneous adjustment of
both width and height dimensions in the prediction frame is not feasible. This constraint
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hinders the prediction frame from effectively approximating the dimensions of the real
frame [38].

The CIOU employs a monotonic focus mechanism, which is predicated on the as-
sumption that high-quality examples exist within the training data. Its primary objective
is to enhance the fitting capability of bounding box loss. Nevertheless, when the target
detection training dataset includes low-quality examples, indiscriminately emphasizing
the regression of bounding boxes for these low-quality instances evidently leads to a deteri-
oration in the model’s detection performance [39]. Therefore, we employ Wise-IOU v3 as
the bounding box loss, which incorporates a non-monotonic dynamic focusing mechanism.
This mechanism relies on the outlier degree rather than IOU to assess the quality of an-
chor boxes, which diminishes the detrimental gradient caused by low-quality examples,
mitigates the competitiveness of high-quality anchor boxes and improves the overall per-
formance of the detector. The equations are as follows:

RWIOU = exp(
(ix − iy)

2 + (jx − jy)
2

(W2 + H2)∗
) (12)

Lw1 = RWIOU ∗ LIOU (13)

r =
β

3 × 1.9β−3 (14)

β =
L∗

IOU

LIOU
∈ [0,+∞) (15)

LWIOU = r ∗ Lw1 (16)

W and H represent the width and height, respectively, of the smallest outer rectangle
of the real frame and the prediction frame and

(
W2 + H2)∗ denotes the separation of W and

H from the Computational Graph to prevent RWIOU from making gradients that impede
convergence. Lγ∗

IOU is the monotonic focusing factor of Lw1. LIOU denotes the sliding
mean with momentum m, and its dynamic updates contribute to maintaining an elevated
overall β, effectively resolving the issue of slow convergence in the later stages of training.
This enables Wise-IOU to flexibly adjust gradient gain allocation strategies during the
training phase in order to best adapt to the current situation.

3.5. PRC-Light YOLO Model Structure

In summary, this paper proposes PRC-Light YOLO. The differences between
PRC-Light YOLO and YOLOv7 are as follows:

(1) We replace all 3× 3 convolution operations of E-ELAN in the Backbone of YOLOv7
with PConv introduced in Section 3.1 to form the PE-ELAN module.

(2) The RFB feature pyramid proposed in Section 3.2.1 replaces the SPPCSP module in
the Neck of YOLOv7.

(3) The CARAFE upsampling operators, as proposed in Section 3.2.2, replace the
two upsampling operations in the Neck structure of the YOLOv7.

(4) Due to the YOLOv7 model’s utilization of the SiLU activation function, which
is composed of exponentials, there is an increased computational cost. To address this
issue, we bring in the HardSwish activation function, which is composed of piecewise
functions, significantly reducing the computational burden of the model. Consequently,
we replace the SiLU activation function in the CBS module with the HardSwish activation
function. Convolution, Batch Normalization and HardSwish activation functions constitute
the CBH module.

(5) We have replaced the bounding box loss function of YOLOv7 with Wise-IOU v3.
It helps mitigate adverse gradients stemming from low-quality instances, thereby enhanc-
ing the overall performance of the detector.

The PRC-Light YOLO structure is shown in Figure 6.
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Figure 6. The PRC-Light YOLO structure.

4. Experiment
4.1. Fabric Defect Image Dataset

The dataset [40] was acquired from multiple resources, including apparel factories, the
existing literature and the “Xuelang Manufacturing AI Challenge”, from which we select
a total of 1061 images encompassing 4 categories: Warp hanged, Yard defects, Holes and
Stains, named as dj, ds, pd and wz, respectively. Their characteristics are as follows:

(1) Warp hanged is small in size, typically suspended above the fabric without proper
weaving, making it difficult to discern against a darker background.

(2) Yard defect refers to the occurrence of defects along the horizontal direction of the
fabric within a specific length.

(3) Hole refers to a large number of broken weft holes on the cloth surface and the
emergence of weft yarn, which is a serious defect.

(4) Stain manifests as an area on the fabric with a distinct color different from its
surroundings, varying in size from large to small within the dataset.

In order to reduce the unnecessary computations of the network model, all images
are cropped to 200 pixel × 200 pixel to speed up the training. Then, we use MakeSense to
label the defect types in the images and extract the txt annotation information files required
for YOLOv7 model training. In order to enrich the fabric dataset, we randomly rotate the
images, add noise, change the brightness, chromaticity and saturation techniques of the
samples, perform data enhancement techniques on 1061 datasets, expand the dataset to
4244 datasets, enhance the PRC-Light YOLO model’s generalization capacity and then
divide the training set, validation set and testing set according to the ratio of 8:1:1. Parts of
the samples are shown in Figure 7.
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Figure 7. Defective fabric image samples.

4.2. Experimental Environment and Parameter Configuration

The experimental equipment parameters are shown in Table 1. The input image size is
320 × 320, with a total of 150 epochs of training with batch size 16; the initial learning rate
is set to 0.01.

Table 1. Experimental equipment parameters.

Name Operating System RAM Graphics Card CUDA Python Framework

Parameter Windows X64 12G NVIDIA Quadro P4000 11.3 3.8 PyTorch

4.3. Evaluation Metrics

To verify the improved model’s performance, we utilize Precision (P), Recall (R),
F1-score and mean Average Precision (mAP) as the measures of detection accuracy; the for-
mulas are calculated as follows:

P =
TP

TP + FP
(17)

R =
TP

TP + FN
(18)

F1 − score =
2 ∗ P ∗ R

P + R
=

2TP
2TP + FP + FN

(19)

mAP =
∑N

i=1 APi

N
(20)

TP represents true positives, representing the amount of positive samples accurately
predicted to be positive in the positive samples. FP denotes false positives, indicating
the count of negative samples that are predicted as positive samples. FN represents
false negatives, depicting the count of positive samples that are wrongly predicted to be
negative. Each category can draw PR curves based on Precision and Recall, every category
corresponds to one PR curve, the area covered by which indicates the Average Precision
(AP) of the category. mAP is the average value after summing up the APs of all categories.
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4.4. Ablation Experiment

An ablation experiment is an important method in deep learning; by improving the
modules of the YOLOv7 network structure and assessing the contribution of different im-
provement methods on its performance, we conducted seven sets of ablation experiments
in all, where “✓” corresponds to the improvement method and the corresponding experi-
mental order. The experimental results are listed in Table 2. Experiment 1 (exp1) is based on
YOLOv7. Experiment 2 (exp2) replaces YOLOv7’s SiLU activation function with HardSwish.
Experiment 3 (exp3) incorporates the Wise-IOU v3 into YOLOv7 as the bounding box loss
function. Experiment 4 (exp4) substitutes YOLOv7’s SSPCSP pyramid with the RFB mod-
ule. Experiment 5 (exp5) replaces the nearest neighbor interpolation method in YOLOv7
with the CARAFE operator. Experiment 6 (exp6) integrates HardSwish, Wise-IOU v3, RFB
and CARAFE into YOLOv7. Experiment 7 (exp7) is based on PRC-Light YOLO, and it
builds upon exp6 by replacing the 3 × 3 convolution operation in the Backbone’s E-ELAN
with PConv.

Table 2. Results of ablation experiments.

Exp HardSwish Wise-IOU v3 RFB CARAFE PConv Params/M GFLOPs/G mAP/% Inference Time/ms

exp1 × × × × × 37.21 105.2 75.4 35.08
exp2 ✓ × × × × 37.21 105.2 78.1 31.49
exp3 × ✓ × × × 37.21 105.2 79.1 32.08
exp4 × × ✓ × × 33.94 102.5 80.6 33.31
exp5 × × × ✓ × 37.87 106.5 79.8 34.65
exp6 ✓ ✓ ✓ ✓ × 34.6 103.8 81.1 30.62
exp7 ✓ ✓ ✓ ✓ ✓ 30.5 83.6 83 28.46

From Table 2, it can be seen that the first set of experiments is based on YOLOv7,
the model parameter number is 37.21 M, the Giga FLoating-Point Operations Per Second
(GFLOPs) is 105.2 G and the mAP is 75.4%, followed by subsequent experiments, which
are all based on the results of the first set of experiments as a benchmark for compar-
ison. The GFLOPs mentioned above is used to measure the computational complexity
of a model, and 1GFLOPs = 1 × 109 FLOPs, so lower a GFLOPs reduces the latency of
the neural network, thereby improving their computational speed. Experiments 2 and 3,
without increasing the parameters, respectively, increased the mAP values by 2.7%
and 3.7%, and in experiment 2, by introducing the HardSwish activation function, the in-
ference time is lower than the other ones that do not use the HardSwish activation func-
tion, which verifies that the characteristic of the segmentation function greatly reduces
the computational cost of the model. In Experiment 4, the introduction of the RFB fea-
ture pyramid reduces the parameters by 8.79% compared to the SPPCSPC module in
YOLOv7 while simultaneously improving the mAP by 5.2 percentage points. Experi-
ment 5 utilizes the CARAFE lightweight upsampling module in the feature fusion mod-
ule, and the mAP value goes to 79.8% with only a slight increase in parameters and
GFLOPs, which is a significant improvement. In order to verify the lightweight effect of the
PConv, Experiment 6 integrates HardSwish, Wise-IOU v3, RFB and CARAFE into YOLOv7.
By comparing Experiment 7 with Experiment 6, Our findings reveal a reduction in the
network’s parameters by 11.85% and computations by 19.46%. Meanwhile, there is a 1.9%
increase in the mAP value. In addition, the inference time of PRC-Light YOLO is 6.62 ms
less than that of YOLOv7.

The variation curves of mAP values in seven groups of experiments are shown in
Figure 8. Compared with YOLOv7, the number of parameters and GFLOPs of PRC-
Light YOLO are reduced by 18.03% and 20.53% respectively, while the mAP value is
improved by 7.6%. Experiments show that by improving the network structure of YOLOv7,
the lightweight effect is significant; moreover, the efficacy of defect detection in fabrics
using the enhanced model has significantly improved.



Appl. Sci. 2024, 14, 938 13 of 21

Figure 8. Change curve of mAP value.

According to the loss curve chart above, it is evident that the PRC-Light YOLO model
exhibits smaller loss values after convergence compared to other models. Specifically, ex-
periments 3, 6 and 7 employ the Wise-IOU bounding box loss function, which dynamically
adjusts the emphasis on different input regions over time. For anchor boxes with lower
outliers, a smaller gradient boost is allocated, thereby directing the boundary regression
towards normal-quality anchor boxes. This adjustment enhances the convergence speed
of the network model. Figure 9 demonstrates that the PRC-Light YOLO model achieves
lower loss values, thereby delivering superior performance in fabric defect detection.

(a) Bounding box loss variation curve. (b) Classification loss variation curve.

(c) Object confidence loss variation curve. (d) The total loss function variation curve.

Figure 9. Loss Function. The loss function of the model consists of three parts, (a), (b) and (c),
respectively, show the change curves of the BoxLoss, ClsLoss and ObjLoss for YOLOv7 and PRC-
Light YOLO. (d) shows the total loss function variation curve.

According to Figure 10, it can be obtained that the mAP value of PRC-Light YOLO
is increased from 75.4% at the beginning to 83%, and the experimental results verified
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that the PRC-Light YOLO has improved the effect of defect detection. The AP values
of threading, yard defects, stains and holes increased by 10.2%, 6.9%, 2.4% and 10.9%,
respectively, with the most noticeable improvement in the detection of hanging warp and
holes, and the AP values of the four categories of defects all are improved.

(a) PR curve for YOLOv7. (b) PR curve for PRC-Light YOLO.

Figure 10. Precision–Recall. (a) and (b), respectively, show the PR curves of YOLOv7 and PRC-Light
YOLO on the fabric dataset.

4.5. Comparison of Detection Effect

Figures 11 and 12 show the YOLOv7 and PRC-Light YOLO effects of four different
types of defect detection, including the location of the defect by box selection, as well as
above the box to display the type of defect and confidence. From the comparison in the
figure, it can be observed that the PRC-Light YOLO detection model has improved the
accuracy of fabric defect detection.

Figure 11. Detection effect of the YOLOv7.
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Figure 12. Detection effect of the PRC-Light YOLO.

4.6. Comparison Experiment

Through comparison experiments, the efficacy of various models can be assessed
so that the better method can be selected. Therefore, we choose to conduct comparison
experiments with Faster R-CNN, SSD, EfficientDet, CenterNet and YOLOv8x target detec-
tion models.

Table 3 shows a performance comparison of defect detection among various object
detection models, with P, R, F1-score, mAP and inference time selected as evaluation metrics.

Table 3. Defect detectability of different models.

Models P R F1 Params/M GFLOPs/G mAP/% Inference Time/ms

Faster R-CNN 0.784 0.491 0.6 136.98 370.3 0.696 177.35
SSD 0.832 0.529 0.647 105.2 87.41 0.731 143.58

EfficientDet 0.787 0.492 0.605 52.11 34.97 0.697 22.71
CenterNet 0.838 0.547 0.662 125 69.66 0.756 158.2
YOLOv7 0.826 0.697 0.76 37.21 105.2 0.754 32.08

YOLOv8x 0.754 0.754 0.754 68.23 258.5 0.784 40.39
PRC-Light YOLO 0.859 0.784 0.82 30.50 83.6 0.83 28.46

Table 4 shows the comparative results of different target detection models for the
fabric defect dataset.

Table 4. Detection effects of different models.

Categories Faster R-CNN SSD EfficientDet CenterNet YOLOv7 YOLOv8x PRC-Light YOLO

Warp hanged 0.738 0.756 0.731 0.802 0.636 0.732 0.738
Yard defects 0.582 0.596 0.599 0.652 0.77 0.768 0.839

Stain 0.692 0.759 0.686 0.765 0.779 0.786 0.803
Hotel 0.773 0.814 0.773 0.804 0.832 0.850 0.941

It can be seen that the two-stage detection model Faster R-CNN has the lowest mAP
value compared to the other detection algorithms; in addition, the two-stage detection
model has one more step of operation compared to the single-stage model: the candidate
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regions are first generated, and then the regions are classified and identified, which also
causes the slower training speed and inference time of Faster R-CNN. Compared with
the target detection models of Faster R-CNN, SSD, EfficientDet, EfficientDet, YOLOv7
and YOLOv8x, the precision of PRC-Light YOLO is improved by 7.5%, 2.7%, 7.2%, 2.1%,
3.3% and 10.5%. The recall is increased by 29.3%, 25.5%, 29.2%, 23.7%, 8.7%, 3%; the
F1-score is increased by 20%, 17.3%, 21.5%, 15.8%, 6%, 6.6%, and params is decreased by
77.7%, 71%, 41.5%, 75.6%, 18%, 55.3%. In terms of GFLOPs, PRC-Light YOLO is lower than
Faster R-CNN, SSD, YOLOv7 and YOLOv8x but higher than EfficientDet and CenterNet,
whereas in terms of mAP, PRC-Light YOLO outperforms EfficientDet and CenterNet by
13.3% and 7.4%. In terms of inference time, EfficientDet is faster than PRC-Light YOLO,
but it is lower than PRC-Light YOLO in terms of P, R, F1 as well as mAP values, and PRC-
Light YOLO is faster than all other models except EfficientDet. Comparing with other
models, it can be found that PRC-Light YOLO is effective at detecting the Hole, and the
AP value reaches 94.1%. In the case of Warp hanged, the detection effect of the PRC-Light
YOLO model is not satisfactory, and the AP value is only higher than that of EfficientDet,
YOLOv7 and YOLOv8x. Therefore, in the subsequent experiments, the PRC-Light YOLO
model should be optimized by taking into full consideration the characteristics of the Warp
hanged. By comparing the AP values of each model for detecting yard defects and stains,
PRC-Light YOLO has at least 25.7% and 11.7% higher detection accuracy than the other
models. Comprehensive indications reveal that our proposed PRC-Light YOLO has an
outstanding detection performance on the fabric dataset, which validates the effectiveness
of the improved method.

5. Fabric Defect Detection System

In order to further illustrate that the model has a certain value for engineering ap-
plications and provide a more intuitive depiction of the detection process and detection
results, we use PyQt5 to design a fabric defect detection system based on PRC-Light YOLO.
The UI interface of the system is shown in Figure 13.

Figure 13. Detection system UI.

Clicking the “Cfg” button, select the necessary configuration file for the detection
system. The file format should adhere to YAML format. The path to the chosen file will be
displayed in the Statistical window. If the loading is successful, it will show “Load yaml
success”. The application effect of the YOLO model is shown in Figure 14.

The YAML file contents include the path to the weight file, the category of the blemish
and the confidence threshold and IOU threshold. The confidence threshold serves to filter
the model’s output, displaying target boxes only when the detection probability exceeds
this threshold. The IOU threshold primarily controls how the target detection algorithm
handles overlapping targets. When two predicted bounding boxes intersect and both their
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IOU values surpass the IOU threshold, the prediction box with lower confidence will be
filtered out.

Figure 14. Application effect of the PRC-Light YOLO model.

After selecting the configuration file, you have the option to designate the path for
saving the detection results. Additionally, the system is capable of processing images,
videos and real-time data captured through a camera feed. The data path will be displayed
in the Statistical window accordingly. By clicking the “Start Detection” button, the detection
results will be presented to the right of the input image. The YOLO model detection effect
is shown in Figure 15.

Figure 15. PRC-Light YOLO model checking effect.

In the Statistical window, you will also find information such as the time taken for
detection, the path where the results are saved as well as the categories and quantities of
defects detected. This information is essential for subsequent and timely manual inspection.

6. Discussion

The detection of defects in fabrics holds significant importance for ensuring fabric
quality, reducing cost, enhancing production efficiency and preserving brand reputation.
It is pivotal for the competitiveness and sustainable development of the fabric industry. This
article presents a fabric defect detection model based on PRC-Light YOLO, which reduces
the parameters of YOLOv7 while improving fabric defect detection accuracy. However,
certain limitations still exist in some aspects.

(1) In the study of fabric defect detection, the size and variety of the dataset significantly
impact the effectiveness of the model training. In practical industrial scenarios, fabric
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backgrounds are often characterized by complexity and diversity and may also be affected
by environmental factors such as light. However, the dataset used in the paper suffers from
limitations such as a uniform background, limited quantity and insufficient diversity in
defect types. Therefore, the exploration of methodologies for obtaining and constructing
a substantial dataset of fabric defects becomes imperative. Furthermore, investigating
fabric defects detection the background of intricate patterns and textures holds significant
research significance so that the PRC-Light YOLO model can maintain robustness in real-
world scenarios.

(2) In the research findings of this paper, it is evident that PRC-Light YOLO requires
improvement in its capability to detect Warp hanged. Therefore, for the detection of minute
defects, further investigation can be conducted into image preprocessing, network feature
extraction capabilities or loss functions, with the aim of enhancing the precision of the
network’s detection capabilities.

(3) We have initially developed a textile defect detection system, which has interactivity
and intuitiveness as its main goals. While this system introduces new perspectives for
real-time fabric defect detection, it has not yet been integrated with hardware infrastructure.
To achieve industrial applications, future efforts can involve further refining the detection
platform and completing the setup of the system’s hardware components. Additionally, we
will collect user cases to evaluate the interactivity of the fabric defect detection system and
continuously optimize it.

7. Conclusions

In response to the complex nature of defect types in fabrics, which vary in size,
the computational intensity of detection models and the lower detection accuracy, this
paper proposes the defect detection model PRC-Light YOLO. PRC-Light YOLO achieves
network lightweight by replacing certain Conv layers with PConv layers in the Backbone.
During the feature fusion stage, the RFB pyramid and the CARAFE upsampling opera-
tor are employed, and this approach enlarges the neural network’s receptive field and
enhances detection accuracy without significantly increasing the model’s parameter count
or computational load. PRC-Light YOLO adopts the HardSwish activation function, which
exhibits piecewise characteristics that reduce computational costs and minimize memory
access. Additionally, it utilizes Wise-IOU v3 as the bounding box loss function during
model training, demonstrating robust performance in scenarios with varying dataset scales
and highly imbalanced positive-to-negative sample ratios. Finally, we design a fabric defect
detection system.

In order to improve the model’s robustness and generalization ability, we extended
the fabric dataset by applying diverse augmentation techniques, including random rota-
tion, noise addition and adjustments to brightness, chromaticity and saturation. Ablation
experimental results reveal that PRC-Light YOLO has a lower reduction in network model
parameters by 18.03% and computations by 20.53% when compared with YOLOv7. Ad-
ditionally, it showcases a 7.6% increase in mAP, enhancing the performance of detecting
defects in fabrics. Furthermore, comparative experiments with other object detection
models show that PRC-Light YOLO surpasses them in precision, recall, F1-score and mAP
values. Although CenterNet outperforms PRC-Light YOLO by 6.4 percentage points in
detecting Warp hanged, PRC-Light YOLO significantly outshines other models in detecting
Yard defects, Stains and Holes with AP values consistently exceeding 80%. Notably impres-
sive is the AP value of 94.1% achieved for detecting Holes.

To sum up, we propose the PRC-Light YOLO model, analyze the results of seven
ablation experiments and seven comparative experiments, verify our model’s excellent
defect detection capability in fabrics and design a fabric defect detection system based on
PRC-Light YOLO.
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Abbreviations

YOLO You Only Look Once
IOU Intersection Over Union
mAP mean Average Precision
SSD Solid State Drive
R-CNN Region with CNN
ROI Region of Interest
VGG Visual Geometry Group
CARAFE Content-Aware ReAssembly of FEatures
PConv Partial Convolution
E-ELAN Extended-Efficient Layer Aggregation Networks
RFB Receptive Field Block
CBS Convolution, Batch normalization, SiLU
MPConv Max Pool Convolution
PAFPN Path Aggregation Feature Pyramid Network
REP Re-Parameterization
FLOPs Floating-Point Operations
FLOPS Floating-Point Operations Per Second
DWConv Depthwise Convolution
GConv Group Convolution
PWConv PointWise Convolution
MAC Memory Access Cost
ReLU Rectified Linear
GELU Gaussian Error Linear Unit
SiLU Sigmoid Weighted Liner Unit
ObjLoss Object Confidence Loss
ClsLoss Classification Loss
BoxLoss Bounding Box Loss
CIOU Complete Intersection Over Union
PE-ELAN Partial convolution, Extended-Efficient Layer Aggregation Networks
CBH Convolution, Batch normalization, HardSwish
P Precision
R Recall
F1 F1-score
TP True Positive
TN True Negative
FP False Positive
FN False Negative
AP Average Precision
GFLOPs Giga FLoating-Point Operations Per Second
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