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Abstract: Classifying sports videos is complex due to their dynamic nature. Traditional methods, like
optical flow and the Histogram of Oriented Gradient (HOG), are limited by their need for expertise
and lack of universality. Deep learning, particularly Convolutional Neural Networks (CNNs), offers
more effective feature recognition in sports videos, but standard CNNs struggle with fast-paced or
low-resolution sports videos. Our novel neural network model addresses these challenges. It begins
by selecting important frames from sports footage and applying a fuzzy noise reduction algorithm to
enhance video quality. The model then uses a bifurcated neural network to extract detailed features,
leading to a densely connected neural network with a specific activation function for categorizing
videos. We tested our model on a High-Definition Sports Video Dataset covering over 20 sports and
a low-resolution dataset. Our model outperformed established classifiers like DenseNet, VggNet,
Inception v3, and ResNet-50. It achieved high precision (0.9718), accuracy (0.9804), F-score (0.9761),
and recall (0.9723) on the high-resolution dataset, and significantly better precision (0.8725) on the
low-resolution dataset. Correspondingly, the highest values on the matrix of four traditional models
are: precision (0.9690), accuracy (0.9781), F-score (0.9670), recall (0.9681) on the high-resolution
dataset, and precision (0.8627) on the low-resolution dataset. This demonstrates our model’s superior
performance in sports video classification under various conditions, including rapid motion and low
resolution. It marks a significant step forward in sports data analytics and content categorization.

Keywords: sports video analysis; deep learning; Convolutional Neural Networks (CNN); image
processing

1. Introduction

The precise and expedient categorization of sports videos holds pivotal significance
across a spectrum of applications [1], encompassing automated sports analytics [2,3],
content-centric retrieval [4], event distillation [5], and the orchestration of tailored recom-
mendation systems [6]. Given the meteoric surge in sports video content coupled with the
escalating demand for sophisticated analytical paradigms, the performance constraints
of previous methodologies [3,7] are becoming palpably discernible. Consequently, there
emerges an imperative for avant-garde and resilient strategies to navigate the intricate
challenges intrinsic to the multifaceted and kinetic realm of sports endeavors [8,9].

Conventional methodologies for sports video categorization have predominantly
hinged upon manually engineered descriptors, encompassing optical flow [10] and the
Histogram of Oriented Gradients (HOG) [11], to discern and delineate particular actions
and dynamics within sports footage.

These handcrafted features, while historically pivotal, manifest inherent constraints
across diverse tasks and domains. This becomes particularly salient within the sports
arena, where the juxtaposition of rapid action dynamics and the nuances of low-resolution
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video attributes accentuates these limitations. To elucidate: (i) Temporal Intensity: The
crafting of such features demands an extensive reservoir of domain expertise and timely
investment. This translates to potentially weeks or even months dedicated to the design
and fine-tuning of these features for each novel task or domain. For instance, architect-
ing a feature tailored for football match analysis necessitates profound insights into the
sport’s intricacies and iterative experimentation. (ii) Task Specificity: Given the bespoke
nature of these features, tailored for distinct tasks or domains, their efficacy may wane
when transposed to alternative contexts. Drawing from the realm of sports, a descriptor
sculpted for baseball might falter when applied to basketball or football, given the stark
divergence in rules and foundational actions. (iii) Challenges of High-Velocity Movements:
Actions that transpire at elevated speeds might span merely a few frames within a video,
yet they encapsulate a wealth of information. Manually crafted features might falter in
capturing these ephemeral yet pivotal movements, culminating in the omission of cru-
cial data. For instance, in table tennis, a game-altering rapid spin might elude capture
through traditional handcraft techniques. (iv) Pitfalls with Low-Resolution Footage: The
detail attrition inherent to low-resolution videos presents another formidable challenge
for handcrafted features. For instance, when revisiting and analyzing archival footage
from seminal events, constrained by the technological limitations of yesteryear recording
apparatuses, one grapples with the intricacies of processing and recognizing low-resolution
video samples. Herein, handcrafted features often stumble, leading to detail erosion.

Such challenges can culminate in harmful outcomes, like skewed system predictions
and resource misallocation. Take football match analysis as an example: if a researcher
manually crafts a feature to monitor player movements, the confluence of rapid player
motion during pivotal goal opportunities and low video resolution might compromise
the feature’s ability to accurately pinpoint player positions and actions. This could relay
misleading tactical insights to the coaching staff, potentially swaying the match’s trajectory.
In essence, while manually engineered descriptors might exhibit efficacy under certain
circumstances, their inherent limitations and potential pitfalls have catalyzed a shift towards
deep learning-based automatic feature extraction techniques, renowned for their robustness
amidst intricate and dynamic data.

Consequently, the academic background has witnessed an augmented inclination
towards unearthing methodologies that can surmount these impediments. Deep learn-
ing, with an emphasis on Convolutional Neural Networks (CNNs), has burgeoned as a
formidable contender in the realm of sports video categorization, showcasing exemplary
prowess in image classification endeavors. CNNs harbor the potential for fine-tuned
adaptation to video datasets, facilitating the discernment of distinct actions and dynamics
inherent to diverse sporting disciplines.

Although traditional CNN architectures, such as VGG [12] and ResNet [13], have
garnered significant accolades across a plethora of visual tasks, they encounter specific
challenges when navigating sports videos replete with high-velocity movements. Firstly,
conventional CNNs, having been trained on high-resolution image datasets, might witness
performance degradation when confronted with low-resolution or suboptimal quality
sports videos. The absence of efficacious preprocessing techniques to mitigate these artifacts
further jeopardizes classification accuracy. Moreover, VGG and ResNet excel in generic
image classification paradigms, they might falter in discerning the fine-tuned features
intrinsic to the rapid and intricate movements characteristic of sports videos. Meanwhile, it
is also noteworthy that in actual sports matches, the background is often dynamic, and the
movement and speed of athletes are fast. Additionally, the broadcast or recording quality
of lower-level events may not be guaranteed. Traditional deep learning-based sports video
classification methods are susceptible to these factors, which could threaten their reliability.
Developing strategies to mitigate these threats remains an open research area. Furthermore,
the generalizability of these methods across different sports and video quality levels is
limited. When faced with new domains or data distributions, they often result in significant
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performance drops. Techniques such as domain adaptation and data augmentation can
offer assistance but come with their own set of challenges.

In the field of sports video classification, recent years have seen the development of various
studies and methods, especially those focusing on addressing the challenges of rapid motion and
low resolution [14–16], which have provided solutions from different perspectives. However,
there is still room for improvement in terms of their generalizability and accuracy.

In a bid to surmount the aforementioned challenges, this paper introduces the following
enhancements: (i) Bifurcated Neural Network Architecture: This design, juxtaposed against
conventional CNNs, exhibits an augmented capability to extract features across diverse
scales, thereby adeptly capturing the nuances of high-velocity movements. (ii) Pivotal Frame
Sampling: This strategy ensures the model’s focus is honed on the most salient segments of
the video, striking an optimal equilibrium between precision and computational efficiency.
(iii) Fuzzy Noise Attenuation Algorithm: Tailored to address the intricacies of low-resolution
footage, this algorithm proficiently mitigates motion-induced artifacts and noise, bolstering
the model’s classification accuracy. (iv) Multiscale and Multiperspective Feature Extraction:
This approach offers a holistic capture of video intricacies, ensuring rapid movements are
accurately discerned, even under the constraints of diminished resolution.

Specifically, the real-world key challenges and the corresponding solutions proffered
in this study can be delineated as follows:

Image Quality Degradation due to Motion Artifacts: The high-velocity movements inherent
to sports videos often induce motion artifacts. These artifacts can blur the imagery, potentially
misleading the feature extraction process and culminating in imprecise categorizations.

To address this, our study employs the Laplacian second-order differential linear operator
to discern high-frequency components within the input imagery. A scarcity of high-frequency
components suggests potential blurring and motion artifacts. Concurrently, assuming the
original image has been displaced by L pixels either vertically or horizontally, a Fourier
transform is invoked to decompose and rectify this blurring. The Radon transform is leveraged
to compute the frequency offset angle, yielding the blur kernel angle. An inverse Fourier
transform is then executed to retrieve a pristine image. The Laplacian operator meticulously
identifies frames afflicted by blurring, and the Fourier transform technique rectifies these
artifacts, ensuring feature extraction transpires on artifact-free, sharp imagery.

Performance Issues of Traditional Feature Extraction Techniques in Low Resolution:
Sports videos, often captured under varied conditions, exhibit inconsistent resolutions,
occasionally skewing towards the lower end. While conventional neural network architec-
tures flourish on high-resolution imagery, their efficacy wanes on low-resolution footage.
The detail attrition and pixel loss in low-resolution videos impede traditional techniques
from accurately capturing pivotal visual features, leading to performance degradation.

In response, we introduce a novel bifurcated neural network architecture capable of
gleaning granular local features across diverse scales and fields of view. This ensures that
even under diminished resolution, pivotal features are captured for precise classification. By
synergistically harnessing multi-scale and multi-view feature extraction, our methodology
retains efficiency and precision on low-resolution videos, transcending the constraints of
traditional approaches.

The proposed dual-branch neural network efficiently fuses diverse and complementary
local features, enabling improved classification performance in challenging scenarios, such
as high-speed sports and low-resolution videos. We present a comprehensive evaluation
of the method using the self-collected High-Definition Sports Video Dataset (DeepSports-
VDS), and sports videos with motion artifacts and a lower resolution as an additional
validation dataset.

Our key contributions are as follows: (i) Problem-driven Approach: We introduced
a novel approach that specifically addresses the challenges of classifying sports videos, espe-
cially when dealing with high-speed movements and low-resolution inputs.
(ii) Noise and Motion Artifact Reduction: Leveraging the Laplacian second-order dif-
ferential linear operator, we effectively identified and removed motion artifacts from sports
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videos, thereby enhancing the clarity of images, especially in high-speed sports scenar-
ios. (iii) Multiscale and Multiperspective Feature Extraction: Our unique dual-branch
neural network architecture facilitates the extraction of fine-grained local features across
multiple scales and fields of view. This ensures the capture of essential features even in low-
resolution scenarios, leading to more accurate classifications. (iv) Better Performance across
Different Resolutions: On the High-Definition Sports Video Dataset (DeepSports-VDS), our
method achieved an unparalleled accuracy of 0.9804, surpassing the ResNet-50, by a sub-
stantial 1%. Similarly, on the Custom Low-Resolution Dataset, our technique demonstrated
an accuracy of 0.8803, outpacing the closest competitor, Densenet, by approximately 0.5%.

In conclusion, this study aims to address the limitations of traditional sports video
classification methods by proposing an improved deep learning model. Our research
first introduces a method for selecting important video frames and applies a fuzzy noise
attenuation algorithm to enhance video quality. Then, we use a dual-branch neural network
to extract detailed features and classify videos through a densely connected neural network
with specific activation functions. Our model was tested on a dataset of high-definition
sports videos covering over 20 sports and a low-resolution dataset. This study emphasizes
a robust approach to sports video classification, making key contributions to improving
the processing capability for high-speed actions and low-resolution inputs, and ensuring
superior performance at different resolutions. Our results pave the way for advancements
in the field of sports video analysis and are significant for future applications in sports data
analysis, content organization, and retrieval processes.

2. Methods

In this section, we begin by introducing the dataset used and describing the pre-
processing steps. Next, we present our proposed model along with the training details
and implementation specifics. Finally, we provide a summary of the evaluation metrics
employed in our study.

2.1. DATA Set

The DeepSports-VDS is a meticulously curated dataset tailored for classification tasks
in high-definition sports video content. It amalgamates videos sourced from HD sports
broadcasts, high-speed cameras during live matches, and select segments from renowned
datasets like UCF101 and Sports-1M (as shown in Figures 1 and 2). The primary selec-
tion criterion was superior video resolution and clarity, which positions this dataset as a
benchmark for evaluating the influence of video quality on low-resolution sports video clas-
sification. Comprised of roughly 200 clips across 20 sports disciplines, each video has been
rigorously annotated by expert sports professionals, ensuring precise label-content align-
ment. Designed specifically for category classification, clips are capped at 50 s, resulting in
a dataset size of approximately 20 GB.
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In order to effectively train and evaluate our model, we have divided the DeepSports-
VDS dataset into training, validation, and testing sets. Specifically, 80% of the dataset has
been allocated to the training set, which will be used to train our model and fine-tune its
parameters. The remaining 20% has been split evenly between the validation and testing
sets, with each receiving 10% of the data. The validation set will be used to monitor the
model’s performance during training and make adjustments as needed, while the testing
set will be used to evaluate the model’s final performance on unseen data. This division
ensures that our model is well-generalized and able to accurately classify sports videos
from various sources and conditions.

To assess the performance of our proposed model across varied sports video quali-
ties, we curated a low-resolution and blurred sports video dataset. This collection spans
20 prevalent sports disciplines, aggregated from online platforms and low-resolution cam-
eras, mirroring real-world challenges inherent to genuine sports video processing. Our
findings underscore the model’s robustness in handling a spectrum of video qualities. The
dataset comprises 100 video samples, post-preprocessing, each standardized to roughly 50
s. File sizes oscillate between 5 to 10 MB, with an average resolution nearing 480 P. Given
the eclectic and genuine origins of the dataset, there is a pronounced variance in video
quality, encompassing resolution, frame rate, clarity, noise, among other facets. Such dis-
parities render our dataset more demanding and pragmatic, aptly reflecting the intricacies
of processing authentic sports footage.

In collecting the dataset, we chose representative sports like basketball, soccer, and
table tennis, ensuring its diversity and broad applicability. During labeling, we prioritized
accuracy, employing professionals and emphasizing teamwork for consistent results.

2.2. Preprocessing

Given the inherent nature of sports videos, they are often marred by motion artifacts
due to rapid movements. To address this, our study mandates preprocessing steps prior to
classification, which encompasses artifact and noise elimination. Specifically, frames are
extracted from the sports videos and resized to a uniform resolution of 520 × 520 pixels.
We leverage the Laplacian second-order differential linear operator (as per Equation (1)) to
discern high-frequency components in the images. A paucity of these components suggests
potential blurriness and motion artifacts. By computing the image variance using the
Laplacian operator filter, and setting a threshold at 0.3, we ascertain that images falling
below this variance are likely blurred and artifact-laden.

∇ f = ∂2 f
∂x2 +

∂2 f
∂y2 =

f (x + 1, y) + f (x − 1, y) + f (x, y + 1) + f (x, y − 1)− 4 f (x, y)
(1)
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To tackle motion artifacts in images, one can infer that the pristine image has been
displaced by L pixels, either horizontally or vertically. This displacement can be conceptu-
alized as the original image being subjected to a Fourier transform with a blur kernel of
magnitude L, oriented either horizontally or vertically. Given a camera exposure time of t,
the object’s displacement can be delineated into x(t) and y(t) for the horizontal and vertical
axes, respectively. Thus, the motion-artifacted image can be derived by executing a Fourier
transform on the original, as illustrated in Equation (2).

G(x, y) =
∫ T

0 f (x − x(t), y − y(t))dt
g(x, y) =

∫ T
0 f (x − x(t), y − y(t))dt

(2)

By applying the Fourier transform to g(x, y) we obtain the formula:

G(u, v) =
∫ +∞
−∞

∫ +∞
−∞ g(x, y)e−j2π(ux+vy)dxdy

=
∫ +∞
−∞

∫ +∞
−∞ (

∫ t
0 f (x − x(t), y − y(t))dte−j2π(ux+vy)dxdy

=
∫ t

0

∫ +∞
−∞

∫ +∞
−∞ f (x, y)e−j2π(ux+vy)dxdy

(3)

Assuming:

J(u, v) =
∫ +∞

−∞

∫ +∞

−∞
f (x, y)e−j2π(ux+vy)dxdy (4)

k(u, v) =
∫ t

0
e−j2π(ux(t)+vy(t))dt (5)

Then, we can derive that

G(u, v) = J(u, v)k(u, v) (6)

Here G(u, v) represents the spectral amplitude of the transform. Utilizing the Radon
transform, we ascertain the frequency offset angle, aligning with the blur kernel’s orien-
tation. The offset scale is derived from the spacing between consecutive wave patterns
evident in the blurred image. Conclusively, executing the inverse Fourier transform facili-
tates the retrieval of a pristine image devoid of motion artifacts.

2.3. Model and Training

To extract the initial 80 frames from each video and mitigate potential noise from
irrelevant backgrounds, we employ center cropping on these frames. The shorter dimension
of the image dictates the side length of the central square, which is subsequently resized to
299 × 299 pixels via the OpenCV library. Consequently, each sports video input manifests
as an 80 × 299 × 299 × 3 tensor.

In the first branch, the process begins with fine-grained feature extraction from the
downsampled image, leading to the generation of Feature 1. This extraction, as detailed
in Figure 3, starts by dividing the image into four blocks. Each block undergoes a spe-
cialized 1 × 1 convolution process, utilizing 32 filters. These filters are complemented
by a ReLU activation function and a stride of 1, optimizing the extraction process. The
output from each block is a feature map, which are then concatenated along the spa-
tial dimension. This concatenated map undergoes a further transformation through a
1 × 1 convolution with 128 filters, same padding, and a stride of 1, effectively restoring the
dimensions of the combined feature map. This restored map is then processed through two
sequential Conv2D layers, each employing two 3 × 3 convolution kernels with a stride of
1 and 32 filters. These layers are followed by a 2D average pooling, a batch normalization
layer to expedite convergence, and a Mish activation function layer, further refining the
feature extraction. The process concludes with a downsampling layer, producing a refined
feature map designated as f1.
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The second branch initiates with F0 undergoing feature extraction through two
Conv2D layers, followed by a downsampling step to obtain feature map F2, as detailed
in Figure 4. Subsequently, the network pathway behind F2 splits into a main branch and
an auxiliary branch. In the −main branch, F2 is processed through a fine-grained feature
layer, transforming it into F2′. This new feature map, F2′, is then concatenated with F1 in
the channel dimension and further processed through a Conv2D layer, resulting in F2′′.
Concurrently, in the auxiliary branch, F2 first passes through a Conv2D layer, followed by
a downsampling layer. After skip concatenation with F1, it undergoes another round of
fine-grained feature extraction. This is followed by an upsampling layer employing bilinear
interpolation, which yields feature F3. Finally, F3 is concatenated with F2′′, culminating in
the final feature, F_final. This intricate process, where features from different convolutional
depths are fused, encapsulates a richer array of local and global information. This compre-
hensive fusion significantly enhances the model’s capability to understand and interpret
images, leveraging the unique strengths of each convolutional layer and processing step.
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The specific classification mechanism is as follows:
The latter segment of our methodology zeroes in on feature classification. Leveraging

the backbone network, we extract pivotal features from 80 curated frames per video. Given
the multi-dimensional character of these features, a Flatten layer is employed to reshape
them into a linear format, ensuring seamless interfacing with the ensuing network layers
and facilitating efficient data flow.

For the classification module, we harness the prowess of an advanced LSTM network
adept at serializing image frames. Videos, by nature, are sequential, demanding a distinct
analytical approach compared to standalone images. LSTMs, with their capacity to store
and process extended sequences, are paramount for discerning the temporal intricacies
inherent to video data.

To bolster the LSTM’s sequential comprehension, position encoding is integrated
into each frame. This encoding, acting as a sequential identifier, guarantees the LSTM’s
adherence to the original frame order, forestalling potential data misalignment that could
compromise classification accuracy.

Post-encoding, the data is channeled into the LSTM, architected to manage sequential
constructs. Within this network, layers are orchestrated such that one layer’s hidden state
cascades as input to its successor. This layered interplay captures nuanced temporal dy-
namics, ensuring the LSTM’s output encapsulates a holistic video sequence representation,
priming it for precise classification.

To gauge our model’s efficacy, we deploy a binary cross-entropy loss function during
training. This metric quantifies the divergence between predicted outcomes and actual
labels. By fine-tuning model parameters via the gradient descent technique, our aim is to
create a model epitomizing minimal error.

Subsequently, the feature extraction backbone and LSTM converge, culminating in
an integrated model adept at end-to-end tasks. This holistic model ingests raw video
frames, navigates them through the intricate network architecture, and ultimately yields
classification verdicts. To fortify model resilience and curb overfitting, we incorporate
strategies like dropout—for diversified feature dependency—and early stopping, which
halts training upon discerning peak performance on a validation set.

2.4. Implementation Details

In this work, our framework was implemented using the PyTorch library and utilized
two NVIDIA GeForce RTX 3080 GPUs (NVIDIA, California, USA) for computation. We
set the batch size to 16 and used the Adam optimizer for training. The number of training
epochs was configured to 200. To prevent overfitting, early stopping was employed. Addi-
tionally, we incorporated a dynamic learning rate adjustment using the cosine annealing
algorithm. The learning rate was set to vary within the range of 0.001 to 0.00001, allowing
for efficient navigation through the model’s loss landscape and aiding in the convergence
to an optimal set of weights.

2.5. Model Evaluation

In the sports video classification task, it was essential to evaluate the performance of
the model to ensure its effectiveness and reliability. Typically, accuracy, precision, recall,
F1-score, and confusion matrix are used to assess the performance of the classification
model.

3. Results

In this section, we present examples of video data classification using the model
proposed in our study (as shown in Figure 5). We demonstrate the classification results
for inputs using both high-resolution and low-resolution datasets, and compare these
with other traditional models. Finally, we use a Confusion Matrix to illustrate the strong
generalization capabilities of our classification algorithms.
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In this study, we compared our proposed algorithm with other renowned models
in the SPORTS1 m and a bespoke dataset, which encompass sports videos of varying
resolutions. Based on this, we elucidated the effectiveness of our proposed algorithm.
Initially, the evaluation was conducted on the SPORTS1 m dataset. The corresponding
results can be referred to in Table 1 and Figure 6.

Table 1. Classification results of different classification algorithms on the high-resolution dataset.

Model Precision Accuracy F-Score Recall

DenseNet 0.9690 0.9730 0.9670 0.9651
VggNet-16 0.9338 0.9631 0.9238 0.9140

Inception v3 0.9531 0.9781 0.9654 0.9677
ResNet-50 0.9380 0.9645 0.9528 0.9681

Proposed method 0.9718 0.9804 0.9761 0.9723
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In light of the empirical findings presented, it is evident that our proposed algorithm
demonstrates superior performance in comparison to alternative models when evaluated
on a high-resolution dataset. Specifically, the method achieved a precision of 0.9718, an
accuracy rate of 0.9804, an F-score of 0.9761, and a recall rate of 0.9723.

Next, we evaluate the models on a Low-Resolution Dataset, specifically curated for
sports video classification. The results are as follows Table 2, Figures 6 and 7.
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Table 2. Classification results of different classification algorithms on the low-resolution dataset.

Model Precision Accuracy F-Score Recall

DenseNet 0.8627 0.8763 0.8675 0.8592
VggNet-16 0.8532 0.8604 0.8561 0.8523

Inception v3 0.8571 0.8682 0.8634 0.8605
ResNet-50 0.8583 0.8651 0.8602 0.8574

Proposed method 0.8725 0.8803 0.8752 0.8701
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Based on the empirical data presented, it is manifestly evident that our proposed algo-
rithm surpasses its peers when evaluated on the low-resolution dataset, excelling in metrics
such as precision, accuracy, F-score, and recall. Concurrently, the Confusion Matrix derived
from the Validation Set accentuates the robust generalization prowess of our model (as shown
in Figure 8), potentially attributable to the incorporation of the deblurring algorithm.
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In conclusion, the empirical evidence underscores that our proposed sports video
classification algorithm consistently outshines its contemporaneous, well-regarded coun-
terparts across both the SPORTS1 m and bespoke datasets. Such findings unequivocally
attest to the robustness and efficacy of our model in the realm of sports video classification.

4. Discussion

In the realm of artificial intelligence and deep learning, the classification of sports
videos remains a pivotal challenge. In our investigation, we endeavor to elucidate the effi-
cacy of deep learning methodologies in the categorization of sports footage. We introduce
an avant-garde model tailored for sports video taxonomy and juxtapose its prowess against
renowned architectures, namely DenseNet, VGGNet-16, Inception V3, and ResNet-50. Our
paradigm encompasses the preprocessing of video frames, feature extraction via a bifur-
cated neural network architecture, and subsequent classification leveraging an augmented
LSTM framework.

Our empirical results accentuate the preeminence of our proposed algorithm vis-
à-vis its counterparts. The model manifested a precision of 0.9718, accuracy of 0.9804,
F-score of 0.9761, and recall of 0.9723, outstripping the aforementioned architectures across
multifarious performance indices. Notably, within our bespoke dataset, the model attained
an accuracy of 87.25% for low-resolution sports videos and those imbued with artifacts,
underscoring its potential ramifications in diverse sports-centric applications.

Given its superior efficacy in sports video taxonomy, our model stands poised to
confer substantial advantages to myriad stakeholders within the sports milieu. Potential
applications encompass automated annotation and indexing of sports footage, thereby
facilitating seamless content retrieval for coaches, athletes, and aficionados. Furthermore,
the algorithm can be harnessed for the synthesis of video digests, offering spectators a
succinct rendition of athletic events.

Our innovation also holds promise in the following arenas:
(i) Injury Prophylaxis and Rehabilitation: Video studies can be applied for sports injury

analysis [17]. Thus, the model can discern potentially perilous or flawed movements pre-
disposing to injuries. Additionally, real-time detection empowers coaches to intercede with
corrective guidance [18], attenuating injury risk. Adaptations of the model can also serve
rehabilitative ends, e.g., guiding injured athletes in their recuperative journey, as the recog-
nized injury patterns have the potential to guide injury prevention [19]. (ii) Augmented
Fan Engagement: Our model can curate captivating content for sports enthusiasts [20],
autonomously crafting highlights [21], statistics [22], and analytical insights [23]. This
augments the spectator experience, furnishing a profound comprehension of the sport and
its participants. Integration into sports streaming platforms can also offer tailored content
suggestions, resonating with users’ predilections. (iii) Sports Pedagogy and Training: The
model can be integrated into educational frameworks, enlightening students and budding
athletes about techniques, tactics, and best practices across sports disciplines. Automated
video analysis [24,25] can engender a more immersive pedagogical experience.

Our research initially pre-trains the neural network on a large sports video dataset and
then fine-tunes the network for specific sports or tasks. This approach aims to explore the
potential of transfer learning, which can improve model performance and reduce the need for
extensive domain expertise. In the era of large models, our findings contribute to enhancing
the quality of data for precise training of ‘modules’ based on a transferable parameter system
established from vast general-category data. This, in turn, provides valuable support for
optimizing the visual modality branch of AGI (Artificial General Intelligence).

To encapsulate, the sports video taxonomy model delineated herein holds immense
promise in revolutionizing the sports sector, offering invaluable insights and automating
a plethora of tasks. Its versatility spans performance analytics, injury mitigation, talent
identification, and fan engagement. Future endeavors can further refine its capabilities and
extend its applicability, rendering it an indispensable asset in the sports domain.
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Our research also has some limitations. High computational requirements make
deployment difficult on embedded systems and edge devices. Efficient model designs
are being explored [26]. By integrating the research in this field, the robustness, security,
and reliability of real-world systems adopting sports video classification methods can
be enhanced. The precision and accuracy of this model in classifying videos still have a
gap compared to 100%. The most direct reason for the classification errors is the small
amount of data, which is also highly heterogeneous. Additionally, in low-resolution videos,
certain sports like badminton, tennis, and volleyball have minimal feature differences,
which can contribute to classification errors. In future work, this can be addressed by
increasing the sample size of the data, performing data augmentation on such data, or
using pre-training and transfer learning on this type of data. Moreover, considering the
use of transformer architectures to enhance the contextual connections of videos could also
improve classification accuracy.

5. Conclusions

This study proposes a novel deep learning framework specifically designed for sports
video classification. Addressing the limitations of conventional methods in dealing with
fast-paced and low-resolution videos, we adopt techniques such as key frame selection,
fuzzy noise reduction algorithm, and dual-branch neural network. Experimental results
demonstrate the superior performance of our method on two different sports video datasets,
outperforming other renowned baselines. This suggests that our approach possesses
high accuracy and robustness in handling sports video classification tasks under various
conditions. The results of this study will also be practically applied in sports training and
video analysis.
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