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Abstract: In the rapidly evolving field of cybersecurity, the integration of multi‑source, heteroge‑
neous, and fragmented data into a coherent knowledge graph has garnered considerable attention.
Such a graph elucidates semantic interconnections, thereby facilitating sophisticated analytical deci‑
sion support. Central to the construction of a cybersecurity knowledge graph isNamed Entity Recog‑
nition (NER), a critical technology that converts unstructured text into structured data. The efficacy
ofNER is pivotal, as it directly influences the integrity of the knowledge graph. The task ofNER in cy‑
bersecurity, particularly within the Chinese linguistic context, presents distinct challenges. Chinese
text lacks explicit space delimiters and features complex contextual dependencies, exacerbating the
difficulty in discerning and categorizing named entities. These linguistic characteristics contribute
to errors in word segmentation and semantic ambiguities, impeding NER accuracy. This paper in‑
troduces a novel NER methodology tailored for the Chinese cybersecurity corpus, termed CSBERT‑
IDCNN‑BiLSTM‑CRF. This approach harnesses Iterative Dilated Convolutional Neural Networks
(IDCNN) for extracting local features, and Bi‑directional Long Short‑Term Memory networks (BiL‑
STM) for contextual understanding. It incorporates CSBERT, a pre‑trained model adept at process‑
ing few‑shot data, to derive input feature representations. The process culminates with Conditional
Random Fields (CRF) for precise sequence labeling. To compensate for the scarcity of publicly acces‑
sible Chinese cybersecurity datasets, this paper synthesizes a bespoke dataset, authenticated by data
from the China National Vulnerability Database, processed via the YEDDA annotation tool. Em‑
pirical analysis affirms that the proposed CSBERT‑IDCNN‑BiLSTM‑CRF model surpasses existing
Chinese NER frameworks, with an F1‑score of 87.30% and a precision rate of 85.89%. This marks
a significant advancement in the accurate identification of cybersecurity entities in Chinese text, re‑
flecting the model’s robust capability to address the unique challenges presented by the language’s
structural intricacies.

Keywords: cybersecurity knowledge graph; Chinese named entity recognition; CSBERT; few‑shot
data; cybersecurity dataset

1. Introduction
As network infrastructure continues to improve, traditional industries are moving to‑

wards networking, digitalization, and intelligence. This trend is leading to a rapid iteration
in communication network technology tomeet the increasing industrial capacity demands.
However, behind this rapid development in network technology and infrastructure lies
significant cybersecurity risks. The “2020 Annual Overview of China’s Internet Network
Security Situation” [1] focuses on describing potential network risks such as APT attacks,
supply chain attacks, illegal collection of personal information, ransomware viruses, tar‑
geted delivery, and Wildcard Domain Resolution.

Meanwhile, according to the “2022 Annual Report onNetwork Security Vulnerability
Trends”, nearly 25,000 newvulnerabilitieswere reported in 2022, reaching a historical high
and maintaining a trend of annual growth. The overall situation has seen new changes,

Appl. Sci. 2024, 14, 1060. https://doi.org/10.3390/app14031060 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14031060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0001-3745-9005
https://doi.org/10.3390/app14031060
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14031060?type=check_update&version=1


Appl. Sci. 2024, 14, 1060 2 of 20

characterized by a surge in high‑risk vulnerabilities, intensified competition in zero‑day
exploits, disruptions in international order due to one‑sided vulnerability controls, and
challenges to cyberspace rights by network hegemony. Consequently, the overall network
security situation has become more complex and severe.

Cyberspace is a vast and intricate information environment. In the field of cybersecu‑
rity, conventional cybersecurity solutions often rely on predefined rules or signatures to
detect and defend against known threats. However, they tend to struggle against newly
emerged or unknown types of attack methods. To leverage the scattered and fragmented
cybersecurity‑related data more effectively within the Internet and enhance capabilities
in threat intelligence analysis, risk assessment, and the formulation of protective mea‑
sures, researchers and engineers are now embarking on the construction of a cybersecu‑
rity knowledge graph. A framework constructed based on graph theory and technology
can integrate disparate information into a structured knowledge base that is meaningful
and easily queryable and analyzable. Named Entity Recognition (NER) technology plays
a crucial role in this process. Through Natural Language Processing (NLP) algorithms,
NER accurately identifies various entities from unstructured text, such as names of mali‑
cious software, identifiers of hacker organizations, system vulnerability codes, and other
crucial pieces of information. NER technology aids in rapidly extracting valuable infor‑
mation from extensive textual data, transforming it into a structured format that can be
further processed and analyzed.

The existing research and applications of NER technology mostly concentrate on the
English language context, where this field has made significant progress. In the English
environment, there is a relatively well‑established theoretical foundation, technical frame‑
work, and abundant data repositories. For instance, within the domain of English cyberse‑
curity, NLP tools can effectively extract critical information such as IP addresses, names of
malicious software, vulnerability identifiers, etc., and accurately map them to respective
nodes in a knowledge graph.

However, when attempting to transfer these advanced techniques into the Chinese
language environment, various challenges arise. Firstly, issues stem from the character‑
istics of Chinese characters. Unlike English words that are clearly separated by spaces,
Chinese characters lack fixed delimiters when written. Secondly, many Chinese charac‑
ters exhibit polysemy, where a single character can possess different pronunciations and
meanings based on different contexts. This complexity makes direct segmentation using
spaces or simple character matching to identify entities become intricate and error prone.
Moreover, traditional entity recognition methods struggle to adapt to the iterative nature
of cybersecurity entities and fail to resolve issues related to semantic overlap among cyber‑
security entities. Existing research outcomes are insufficient to support the construction of
a Chinese cybersecurity knowledge graph.

This paper proposes a jointmodel based onCSBERT‑IDCNN‑BiLSTM‑CRT to address
the current issues of lack of datasets and low accuracy in Chinese named entity recogni‑
tion in the field of Chinese network security. This method utilizes the pre‑trained model
CSBERT to ensure high performance even with small datasets, and integrates IDCNN for
extracting local features, BiLSTM for extracting contextual features, and CRF for sequence
labeling to further improve the accuracy of named entity recognition in the Chinese net‑
work domain, better accomplishing the task of transforming unstructured text into struc‑
tured text.

The rest of this paper is organized as follows: Section 2 reviews recent domestic and in‑
ternational research achievements in NER problems and cybersecurity knowledge graphs.
Section 3 details how to establish the CSBERT‑IDCNN‑BiLSTM‑CRT approach for entity
recognition in the Chinese cyber domain. Section 4 presents training results and compar‑
ative tests of the model, while Section 5 provides an experimental summary, concluding
with references at the end of this paper.
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2. Related Work
At present, it is widely recognized in the industry that utilizing entity recognition

technology to convert unstructured data into structured data and assist in building knowl‑
edge graphs is a direction with prospects and practical significance. However, currently,
most named entity recognition is applied in general domains, and there are fewer named
entity recognition technologies specifically designed for the field of network security. In
recent years, with continuous iterations of software and hardware, deep neural network‑
based models for named entity recognition have replaced traditional methods based on
vocabulary and rules. They have become mainstream approaches in academia and indus‑
try with good performance. With the increase in computing power, neural networks have
returned to people’s attention. In 2003, Hammerton J. [2] first applied Long Short‑Term
Memory (LSTM) [3] to named entity recognition tasks. Although the performance in en‑
tity recognition was not satisfactory, it provided a new research direction. In 2015, Huang
Z. et al. [4] designed a neural networkmodel using Bidirectional LSTM (BiLSTM) and Con‑
ditional Random Field (CRF) for entity recognition tasks. It achieved excellent results in
various English NER tasks and became the state‑of‑the‑art (SOTA) model at that time, as
well as the baseline model for many English NER models.

Collobert R. et al. [5] proposed a unified neural network architecture and learning
algorithm for handling various natural language processing tasks. They trained a word
embedding using a language model, and then applied the word embedding to tasks such
as part‑of‑speech tagging, chunking, named entity recognition, etc. By combining word
embeddings, convolutional neural networks (CNN), and conditional random fields (CRF),
they achieved better results than previous research. However, CNN are unable to handle
long text sequences. To enable the model to process long text data, Lample G. et al. [6]
replaced CNNwith bidirectional long short‑term memory networks (LSTM) as feature ex‑
tractors to alleviate the problem of long‑distance dependencies. However, these methods
only considerword‑level semantic features and ignore character‑level implicit information.
Kim Y. et al. [7] proposed a language model that utilizes subword information through
character‑level CNN and extracts contextual features using LSTMwhile normalizing them
with the SoftMax function. Kuru O. et al. [8], on the other hand, input character sequences
into BiLSTM to extract character‑level contextual features. They output label probabilities
for each character and use Viterbi decoder to convert these probabilities into word‑level
entity labels. Additionally, this approach also performs well in handling NER tasks in
multiple languages.

In the EnglishNER field, named entity boundaries alignwithword boundaries. How‑
ever, Chinese does not have clear natural boundaries; therefore, Chinese NER usually in‑
volves segmenting input text data before feeding it intomodels for entity recognition. This
segmentation operation can introduce errors that lead to inaccuracies in entity recognition.

Dong C. et al. [9] proposed a Chinese radical‑level LSTM to capture the pictographic
root features, combined with a character‑based BiLSTM‑CRF model, achieving better per‑
formance on Chinese NER tasks. Zhang Y. et al. [10] used a lattice structure to integrate
lexical information and designed a named entity recognition model called Lattice‑LSTM
based on the LSTM model. In this model, memory units calculate the weighted sum of
the character‑level input and all potential words, integrating both lexical and character in‑
formation. Compared to direct‑word segmentation methods, it alleviates errors caused by
word segmentation operations. In 2018, Google released the natural language processing
model BERT [11], introducing the concept of pre‑training models into the field of natural
language processing. The BERTmodel is trained on large‑scale unlabeled corpora and has
strong generalization ability, setting new records for multiple NER tasks. Dai Z. et al. [12]
applied the BERT pre‑trainingmodel to ChineseNER tasks, combining it with the BiLSTM‑
CRF model for feature extraction and sequence labeling, achieving significantly better re‑
sults than other contemporary Chinese named entity recognition models.

The construction of a knowledge graph for network security belongs to the problem
of constructing a vertical domain knowledge graph [13], which is different from general
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domain knowledge graphs such as DBpedia [14], Freebase [15], and Yago [16]. It is con‑
structed from data in the field of network security. In addition to building a network se‑
curity knowledge graph based on expert systems, researchers both domestically and inter‑
nationally have also studied other methods for constructing network security knowledge
graphs. Fang Y. et al. [17] proposed a network security entity recognition model called
CyberEyes, which combines graph convolutional neural networks with BiLSTMmodels to
extract both contextual and graphical‑level, non‑local dependency relationships simultane‑
ously. The performance of this model on the network security corpus is higher than that of
traditional CNN‑BiLSTM‑CRF models. Yi F. et al. [18] fully utilize the features of security
data and the correlations between entities, proposing a named entity recognition model
for network security based on regular matching, external dictionaries, CRF, and feature
templates. By jointly constraining multiple conditions, more accurate entity recognition
results are obtained. Sills M. et al. [19], in order to enhance AI‑based network defense sys‑
tems in capturing, detecting, and preventing known and future attacks, propose a system
that generates various medical device vulnerability intelligence and known vulnerability
threat intelligence resources through enhanced graph embedding techniques to generate
higher quality graphical representations. TikhomirovM. et al. [20] study BERTmodels and
their variant models’ performance on Russian language Network Security Named Entity
Recognition tasks, and propose a method of enhancing Network Security Domain Data by
adding names after descriptors or replacing descriptors with names.

Jia Y. et al. [21] designed a network security ontology that covers assets, vulnerabil‑
ities, and attacks. They used machine learning methods to construct a network security
knowledge base based on the five‑tuple model deduction rules. Shang Huaijun [22] con‑
structed a vulnerability‑based ontology in the field of network security and improved the
effectiveness of network security entity recognition by using rule‑based and dictionary
feature‑based methods for specific entities. This ultimately achieved the update and vi‑
sualization of the network security knowledge base. Wang Tong et al. [23] conducted re‑
search on threat intelligence graph construction techniques, proposing a model that can
automatically extract entities and relationships from threat intelligence data, and realized
visual presentation of threat intelligence knowledge graphs. Peng Jiayi et al. [24] pro‑
posed a BiLSTM‑CRF model using active learning methods to improve the accuracy of
named entity recognition tasks in small‑sample information security domains. Zhang
Ruobin et al. [25] addressed the problem of identifying security vulnerability entities by
proposing a BiLSTM‑CRF model that uses dictionary correction to improve identification
results while significantly reducing the cost of manually selecting features. Qin Ya and
Shen Guowei et al. [26] proposed an improved CRF algorithm based on Hadoop, which
effectively partitions datasets to enhance accuracy in recognizing security entities. Qin Ya
also proposed a network security identification model that extracts local contextual fea‑
tures using artificial feature templates, character features using CNN, and global text fea‑
tures using BiLSTM; this model outperforms other methods on large‑scale network secu‑
rity datasets.

Based on the above analysis, it is found that English‑language network security knowl‑
edge graph construction techniques are relatively mature, but research on Chinese‑
language network security knowledge graphs is still in its early stages. Due to significant
differences between Chinese and English languages, existing techniques for constructing
English‑language networks cannot be directly applied to Chinese‑language network se‑
curity knowledge graph construction. There is a lack of Chinese‑language named entity
recognition methods specifically designed for the Chinese environment in network secu‑
rity NER. To address this, this paper proposes a CSBERT‑IDCNN‑BiLSTM‑CRF method
for Chinese‑language network security NER, with the following main research work.

(1) From a model perspective, using the CSBERT pre‑trained model based on network
security can project input representations into the network security semantic space,
greatly improving the performance of neural network models on small datasets. By
utilizing IDCNN and BiLSTM, the model is endowed with the ability to capture long
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dependency features and local features, combining these two types of features to bet‑
ter accomplish entity recognition tasks in the field of network security.

(2) A reliable dataset is constructed. Currently, most knowledge graphs related to net‑
work security face issues such as insufficient data or outdated Chinese domain data
that lags current developments in network security. To address this dataset prob‑
lem, this paper used China National Vulnerability Database (CNNVD) as a source
for constructing a network security dataset centered around vulnerability data. The
text corpus for dataset construction consists of vulnerability reports and vulnerabil‑
ity data from CNNVD. Automated scripts are used to crawl vulnerability report data,
download XML format vulnerability data directly, and utilize YEDDA [27] tool for
data annotation to complete dataset construction.

(3) This paper has accomplished the training and testing of the model on its own con‑
structed dataset, mitigating issues associated with poor model training due to low‑
quality datasets. Experimental results indicate that the proposed CSBERT‑IDCNN‑
BiLSTM‑CRFmodel boasts certain advantages in terms of the efficiency and accuracy
of entity recognition.

3. Chinese Network Security Named Entity Recognition Method Based on
CSBERT‑IDCNN‑BiLSTM‑CRF

Based on the characteristics of the current Chinese network security entity structure,
this paper designs a Chinese network security entity recognition model, which is divided
into three parts: corpus processing, model training phase, and model testing phase. The
overall experimental process of this paper is shown in Figure 1 below.
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This paper starts with the processing of the corpus, accessing China’s National In‑
formation Security Vulnerability Database (CNNVD), and using vulnerability reports and
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data from CNNVD as the core of constructing a text corpus for dataset building. After ex‑
tracting and cleaning the data, the text is annotated to complete dataset construction. Then,
the dataset is used to train and test the accuracy of the proposedmodel in this paper. After
completing testing, importance of proposedmodules is demonstrated through ablation ex‑
periments. Section 3 mainly introduces theoretical analysis and composition of the model,
while Section 4 focuses on experimental configuration and specific experimental process.

3.1. Theoretical Analysis of the CSBERT‑IDCNN‑BiLSTM‑CRF Model
3.1.1. Continue Training CSBERT in the Field of Network Security

Deep learning requires a large amount of annotated data to train models, but it is
difficult to obtain such data in professional domains. On the other hand, obtaining unan‑
notated data is relatively easy. How to use unsupervised learning to improve the perfor‑
mance of small sample supervised learning is a research question worth exploring [28].
The BERT model has powerful fitting ability and can enhance the performance of small
sample named entity recognition tasks. Additionally, the BERT model is trained using
a large amount of unlabeled text, making it highly versatile. By training a professional
domain‑specific BERT model with unannotated data from that domain, the performance
of small‑sample named entity recognition models in that domain can be improved.

Compared with fine‑tuning on an open‑source BERT model using professional do‑
main data and training a professional domain‑specific BERT model from scratch with full‑
scale data, there is little difference in their performances. This is because the professional
domain mainly adds numerous proprietary terms compared to the public domain. The
publicly available BERT models are trained on open‑domain data and have learned gen‑
eral knowledge about language. With this foundation, when trained on professional cor‑
pora, pre‑trained models can learn specific terms in that field. Training a BERT model
essentially involves projecting characters into target semantic space through spatial trans‑
formation and representing relationships between characters based on distances between
spatial coordinates. Publicly available BERTmodels have already achievedmost character
projections in semantic space and cover most content in general semantic space. Continu‑
ing training for specific domains aims at projecting general semantic space onto specialized
semantic space and reducing distances between specialized vocabulary items within that
field. In practical applications, thismeans that specialized vocabulary items aremore likely
to be represented as related entities rather than individual characters alone. By leveraging
this pre‑learned “knowledge” about specific domains, better performance can be achieved
in small sample named entity recognition tasks within those domains. Moreover, since
fine‑tuning occurs on existing models without requiring full‑scale data training, it reduces
the resource demands of model training and lowers the threshold for individuals to apply
BERT models in professional domains.

In this paper, we address the development of a knowledge graph for the cybersecu‑
rity domainwithin a Chinese‑language environment. To assessmodel performance, we in‑
put Chinese cybersecurity‑specific terminology and general locational nouns into both the
BERT and CSBERT models to generate word vectors. We performed a clustering analysis
on the output vectors from these models. For visual distinction in the Chinese domain, en‑
tities related to cybersecurity are color‑coded in purple, while all other entities are marked
in yellow. The clustering outcomes for both models are as Figures 2 and 3.
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From the above two clustering result graphs, the BERTmodel is trained using publicly
available corpora and has learned some prior knowledge. However, the word vectors out‑
putted by the model do not show obvious clusters, indicating a poor ability to recognize
network security terms. On the other hand, the CSBERT model is further trained using
network security corpora, resulting in distinct distances between word vectors. Network
security terms and location names are clustered separately with a significant distance be‑
tween these two clusters. The CSBERT model can identify more network security terms
compared to BERT. Additionally, the distances between network security vocabulary are
closer in CSBERT’s outputword vectors, which containmore network security information
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and thus improve the accuracy of named entity recognition for network security entities
in this model.

3.1.2. Introduction of BiLSTM‑CRF Module Based on CSBERT Model
Due to the temporal nature of natural language, it is crucial to utilize neural network

models that can extract sequential features whenmodeling temporal information [29]. The
chain‑like structure of Recurrent Neural Network (RNN) naturally fits the sequence mod‑
eling problem in natural language processing. Therefore, RNN has achieved good per‑
formance in handling natural language tasks. However, with the increase in computing
power and input text length, the original RNN model’s ability to handle long texts be‑
comes limited. On the other hand, RNN tends to suffer from gradient vanishing problems,
leading to poor performance in extracting long‑distance dependency features.

To address the issue of long‑distance dependencies, Long Short‑TermMemory (LSTM)
was introduced. LSTM is a special type of RNN that partially solves the problem by incor‑
porating gate mechanisms on top of the basic RNN structure. This greatly improves the
upper limit on input text length. However, since LSTM models only capture information
from one direction while extracting sequential features, they cannot fully capture contex‑
tual information present in each character of natural language text. In different contexts or
linguistic environments, a wordmay have different meanings. To better extract contextual
information, this paper adds a backward LSTM on top of forward LSTM and using Bidi‑
rectional LSTM (BiLSTM) model instead. The structure of BiLSTM model is as Figure 4:
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When using a single BiLSTM, the model usually takes the label with the highest prob‑
ability at each time step as its output result. The output result only depends on the out‑
put of that time step and ignores the dependency relationship between the entire label
sequence. This labeling method does not consider label regularization issues, which may
lead tomany illegal label sequences and reduce the performance of themodel. To solve this
problem, a CRFmodule is introduced under the premise of BiLSTM. CRF considers depen‑
dencies between labels and adds some restrictions to ensure label legality in the model’s
output. The objective function of CRF consists of two parts and is also constrained by
surrounding annotation results. It abstracts sequence labeling problems into dynamic pro‑
gramming problems, seeking for an optimal sequence that maximizes the objective func‑
tion and reduces the probability of incorrect labels appearing.
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The working process of the CRF module is as shown in the formula.
Given a sequence X = {c1, c2,……, cn} composed of n characters and a label sequence

Y = {y1, y2,……, yn}, calculate the score as shown in Formula (1).

score(X, Y) =
n

∑
i=0

Ayi ,yi+1 +
n

∑
i=0

Pi,yi (1)

where P is the probability matrix output by the upper‑level feature extraction model. Pi,yi
represents the probability of the i‑th character having a label yi. A is a probability transition
matrix generated by a CRF model during training. Ayi ,yi+1 represents the probability of
transitioning from label yi to label yi+1. Perform SoftMax operation on all label sequences
to obtain normalized probabilities, as shown in Formula (2).

P(Y|X) =
exp(score(X, Y))

∑Y′ exp(score(X, Y′))
(2)

Maximize its logarithmic likelihood function, as shown in the Formula (3).

logP
(
YX |X

)
= score

(
X, YX)− log

(
∑ exp

(
score

(
X, Y′))) (3)

Decode using the Viterbi algorithm and select the label sequence with the highest
probability as the output of CRF, as shown in Formula (4).

Y∗ = arg max
Y′

score
(
X, Y′) (4)

Using the BiLSTM‑CRF module can better handle word sequence labeling tasks out‑
put by the CSBERT model and complete NER tasks.

3.1.3. Use DCNN to Stack and FORM IDCNNModule
Although the use of the BiLSTM‑CRF model has achieved excellent results in mul‑

tiple NER tasks and has become one of the baselines for NER tasks, there are some un‑
structured features in Chinese cybersecurity text data that differ from public domain texts.
Specifically, these features include the following two types:
(1) Complexity

Text data in the field of network security is often mixed with Chinese, English, num‑
bers, and special symbols.

(2) Repetition

When describing software and programs, there is often a lot of repetitive content,
which increases the difficulty of entity recognition [30].

Due to the inclusion of these two special features, BiLSTM cannot fully extract se‑
quential information from Chinese network security texts. Therefore, this paper proposes
a model that incorporates BiLSTM‑CRF and introduces CNN. However, when using the
original CNN to handle sequence labeling problems, there are twomain issues. Firstly, tra‑
ditional CNN adds pooling operations after convolution operations to reduce data dimen‑
sions and minimize model performance requirements. However, adding pooling opera‑
tions when processing text sequences can lead to loss of sequence information. Secondly,
natural language is mostly composed of sentences. Deep learning requires the ability to
process long textual data. The receptive field of CNN is small and can only increase by
stacking convolutional layers, which easily leads to overfitting problems [31].
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To avoid the above‑mentioned problems, a different type of convolutional neural net‑
work (DCNN) was chosen instead of traditional CNN [32]. DCNN introduces the dilation
mechanism in the convolutional kernel, replacing pooling operations to reduce informa‑
tion loss. With the same size of convolutional kernel, it increases receptive field and en‑
hances the model’s ability to process long text data.

Calculate the receptive field of dilated convolution, as shown in Formula (5).

Fi+1 =
(
2i+w − 1

)
×

(
2i+w − 1

)
(5)

where them, F represents the size of the receptive field, i is the stride, and w is the dila‑
tion width.

Iterated Dilated Convolutional Neural Network (IDCNN) [33] stacks dilated convo‑
lution modules on top of DCNN to obtain greater text processing capability. The structure
of the dilated convolution module is shown in Figure 5.
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The IDCNN module in this paper is composed of four identical DCNN modules
stacked together. Each DCNN module contains three layers of convolution with dilation
widths of 1, 1, and 2 respectively. The parameters are shared where the four DCNN mod‑
ules. The receptive field of the IDCNN model will exponentially increase as the DCNN
modules are stacked, and the growth rate of the receptive field is much higher than that of
the number of layers to reduce the probability of overfitting issues occurring.

The IDCNN‑BiLSTM‑CRF feature extraction module combines the local features and
sequence features of the text, making more full use of the text information, integrating
multiple granularities of text features, and improving the performance of network secu‑
rity entity recognition. Given a sequence X = {x1, x2,……, xn} consisting of n characters
and the final encoded sequence H = {h1, h2,……, hn}, with dilation widthWj = {1, 2, 4} for
dilated convolutions where j = 1, 2, 3, perform dilated convolution operations on sequence
X = {x1, x2,……, xn}. Let Cj

k represent the j‑th layer with dilation width k for dilated convo‑
lution layers. After performing dilated convolution operation using the first layer C1

1 as
an example, the output sequence Xj is obtained.

Xj = C1
1X (6)

And X represents the input sequence. Assuming that the dilation width of each sub‑
sequent layer’s dilated convolution is represented by kj then the output Oj of each layer is:

Oj = relu
(

Cj
kj

Oj−1

)
(7)

If the three‑layer dilated convolution operation of a DCNN module is regarded as a
whole D, then the output sequence of the initial sequence X after k rounds of iteration is
Dk =

{
d1

k, d2
k, d3

k, . . . . . . , dn
k}. Currently, Dk has already integrated the local features

of the text. Dk is passed to BiLSTM to extract contextual sequence features. BiLSTM ex‑
tracts preceding and succeeding information through forward and backward LSTMs and
concatenates both directions’ sequences together to obtain the final encoding sequence
H = {h1, h2,……, hn} as the feature extraction module. The encoding sequence at this point
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integrates both local text and contextual sequence features, possessing better text represen‑
tation capability. Finally, inputting encoding sequence H = {h1, h2,……, hn} into CRF mod‑
ule for sequential labeling yields the model’s ultimate output: predicted label sequences.
By using IDCNN‑BiLSTM‑CRF jointmodel as a feature extractor for structure extraction si‑
multaneously captures both local and overall sequential information in texts which further
enhances Chinese network security entity recognition effectiveness.

3.2. CSBERT‑IDCNN‑BiLSTM‑CRF Model Structure and Algorithm Flow
After analyzing and filtering each module in Section 3.1, this paper proposes a joint

entity recognitionmodel based on theCSBERTnetwork security pre‑trainingmodel, called
CSBERT‑IDCNN‑BiLSTM‑CRF. The structure diagram is as Figure 6.
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The algorithm flow of the model during its working process is as Algorithm 1:
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Algorithm 1 CSBERT‑IDCNN‑BiLSTM‑CRF Algorithm Formula

   The input to the model is a text corpus sequence X = {c1, c2…, cn}, and the output is a
predicted label sequence ŷ = {ŷ1, ŷ2,……, ŷn}.
   Step 1: Extract a batch size of text data from the dataset for processing. Tokenize the text
sequence and perform character‑level segmentation on it. Vectorize the text sequence at the
character level using a dictionary to generate unique encoding sequences.
   Step 2: Input the unique encoding sequence into the BERT model. The model combines
context and semantic information to dynamically generate word vectors xB, which are then
passed to downstream task models.
   Step 3: IDCNN performs local information modeling for the target task by extracting local
features from the text sequence. It outputs a local feature sequenceW = {w1, w2…, wn}.
   Step 4: Bi‑LSTM is used to perform context and sequential information modeling for the
target task. It extracts contextual features and sequential order features contained in the local
feature sequenceW = {w1, w2……, wn}, which are used for sequence labeling.
   Step 5: Use CRF (Conditional Random Field) to select the predicted label sequence with
maximum probability ŷ = {ŷ1, ŷ2,…, ŷn} as an output of the model.

4. Experimental Design and Analysis
4.1. Data Annotation

In deep learning, named entity recognition problems are often treated as sequence
labeling problems. Therefore, the datasets used for NER are usually saved in a formwhere
each character corresponds to an entity label. Common data annotation methods include
BIO, BIOES, BMESO, etc. The dataset used by the model in this paper is annotated using
the BIO annotationmethod. Taking the Chinese sentence “API存在跨站脚本漏洞”(API has
a cross‑site scripting vulnerability) as an example, the annotation result obtained using the
BIO annotation method is shown in Figure 7.
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In the above BIO annotationmethod, “B” represents the starting character of an entity,
“I” in BIO annotation indicates characters other than the starting character within an entity,
i.e., middle and ending characters of the entity, and “0” indicates that theword is unrelated
to the current named entity under consideration. In the final dataset, we used the BIO
annotation method to label a total of 710,000 rows of data for model training.

4.2. Dataset Construction
The data source of the network security dataset used in this paper is the China

National Vulnerability Database (CNNVD) at https://www.cnnvd.org.cn (accessed on 9
September 2023). The website provides information related to hot vulnerabilities, vulner‑
ability reports, and other information related to network security vulnerabilities. It has a
high‑quality network security corpus, which is suitable for constructing the network secu‑
rity dataset in this paper. By extracting and cleaning data from CNNVD’s raw corpus, the
YEDDA tool is used for data annotation. Based on the network security text corpus, eleven
entity types are designed for the network security dataset: person names (PERSON), orga‑
nization names (ORGANIZATION), company names (COMPANY), location names (LO‑
CATION), software names (SOFTWARE), program names (PROGRAM), hardware names
(HARDWARE), vulnerability names (VULNERABILITY), actions (ACTION), network en‑
tities (NETWORKENTITY), and version numbers (VERSION). Data annotation using the
YEDDA tool is shown in Figure 8.

https://www.cnnvd.org.cn
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Person (PERSON) includes software developers, company owners, legal representa‑
tives, etc.; organization (ORGANIZATION) includes hacker groups, non‑profit organi‑
zations, open‑source software communities, software foundations, etc.; company (COM‑
PANY) specifically refers to for‑profit entities such as Apple Inc., Google LLC, Huawei
Technologies Co., Ltd., etc.; location (LOCATION) includes countries, regions, specific ad‑
dresses, etc.; software name (SOFTWARE) includes but is not limited to specific applica‑
tion platforms, operating systems, software plugins; program name (PROGRAM) includes
APIs, components within the software system, processes/modules in the software system,
variables in the software system, scripts and codes; hardware name (HARDWARE) in‑
cludes various hardware components such as CPU, GPU, memory, disk drives, routers,
and switches; vulnerability name (VULNERABILITY) includes various vulnerabilities such
as cross‑site scripting vulnerability (SQL injection vulnerability); action (ACTION) includes
actual impact of vulnerabilities and specific operations to achieve attack objectives; net‑
work entity (NETWORKENTITY) includes various difficult‑to‑determine network elements
that have a greater association with the Internet than other types of entities, such as pro‑
tocols and protocol implementations, browsers, clients, front‑end, C language (program‑
ming language), files, and other abstract concepts; version number (VERSION) includes
specific version codes for various software and hardware.

4.3. Dataset Entity Statistics
The entity statistics of the network security dataset annotated using the YEDDA an‑

notation tool are shown in Table 1.

Table 1. Dataset entity statistics results.

Entity Category Entity Quantity

NETWORKENTITY 22,868
SOFTWARE 11,915
VERSION 4987
ACTION 3589

VULNERABILITY 2223
LOCATION 2171
COMPANY 2093
PROGRAM 1914
HARDWARE 1680

ORGANIZATION 688
PERSON 159
Total 54,287

To visually display the distribution of samples, calculate the proportion of each entity
in the dataset. The statistical results are shown in the Figure 9.
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4.4. Experimental Hyperparameter Settings
When training the model, the parameter settings in Table 2 were used. Some param‑

eters in the table will be adjusted according to the actual situation of model training to
achieve optimal experimental results. The model fine‑tunes CSBERT during the training
process and separates the learning rates of CSBERT and other parameters to obtain better
experimental performance. Additionally, to avoid overfitting during training, a dropout
mechanism is introduced to randomly discard some neurons.

Table 2. Experimental hyperparameter settings.

Parameter Name Numerical Value

Pretrained Model Dropout 0.1
Dropout of LSTM layer 0.5
Dropout of IDCNN layer 0.5

Weight decay 0.01
Word vector 768

LSTM hidden layer size 256
Number of tags 23

Epoch 100
Batch size 32

IDCNN input maximum length 120
BERT learning rate 0.00002
IDCNN learning rate 5 × Bert learning rate
LSTM learning rate 5 × Bert learning rate

Fully connected layer learning rate 5 × Bert learning rate
CRF layer learning rate 100 × Bert learning rate

Warm up 0.1
Optimizer AdamW

4.5. Entity Recognition Result Analysis
To verify the performance of the CSBERT‑IDCNN‑BiLSTM‑CRF network security

named entity recognitionmodel proposed in this paper, different models were selected for
experiments on the same dataset. The experimental results are shown in Table 3. The net‑
work security entity recognitionmodel proposed by Jia Y. et al. [21] is used as a benchmark
model. The remaining models include mainstream sequence labeling models such as the
BiLSTM‑CRF, CNN‑BiLSTM‑CRF model with convolutional neural networks introduced,
and IDCNN‑BiLSTM‑CRF proposed in this paper for sequence labeling tasks. Further‑
more, by introducing the BERT model and the cybersecurity pre‑trained CSBERT model,
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a more comprehensive and precise comparative analysis was conducted, thereby accen‑
tuating the superior capability of this model in the recognition of Chinese cybersecurity
entities. Model performance is evaluated and analyzed based on precision, F1 score, and
recall using a classical evaluation system.

Table 3. Experimental results of each model.

Model P (%) F1 (%) R (%)

Jia Y [21] 71.34 73.32 75.37
Peng Jiayi [24] 70.23 75.12 80.13

Zhang Ruobin [25] 70.62 75.71 81.37
BiLSTM‑CRF 69.72 74.29 80.11

CNN‑BiLSTM‑CRF 71.39 75.42 79.31
Qin Ya [26] 71.81 76.02 79.59

IDCNN‑BiLSTM‑CRF 72.37 76.42 80.33

BERT+IDCNN‑BiLSTM‑CRF 83.89 85.65 87.7
CSBERT+IDCNN‑BiLSTM‑CRF 85.89 87.3 88.88

Through the line chart, the changes of various evaluation indicators between different
models can be displayed more intuitively. The statistical graph of model performance is
shown in Figure 10:
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Figure 10. Comparison of multi‑model effects.

The experiment was conducted on the nine models mentioned above. As shown
in the figure, in the task of network security named entity recognition, the mainstream
BiLSTM‑CRF model performs better than Jia Y’s proposed network security entity recog‑
nition model. Peng Jiayi’s strategy of improving small‑sample information security in the
field by introducing active learning did indeed yield results slightly higher than those of
the classic BiLSTM‑CRF model. Zhang Ruobin used dictionary correction to improve rep‑
resentation outcomes, adding a correction step on top of the classic BiLSTM‑CRF model
and significantly increasing the model’s accuracy. However, due to differences in Chinese
and English structures, using BiLSTM‑CRF cannot effectively capture Chinese sequence in‑
formation and local features. From the results of these twomodels, without addressing the
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effective capture of Chinese sequence information and local features, improvements based
solely on the classic BiLSTM‑CRF model are limited for Chinese entity recognition. After
introducing CNN, the CNN‑BiLSTM‑CRF model has obtained the ability to capture local
features and to some extent process Chinese specific structures to obtain sequence informa‑
tion. This can also be seen in Qin Ya’s model, where Qin Ya considered using a CNN‑based
model solution for entity recognition tasks in constructing a network security knowledge
graph, and further improved the accuracy of the CNN+BiLSTM+CRFmodel by combining
feature templates on this basis. But compared to IDCNN, traditional CNN has a smaller
receptive field and cannot handle longer text sequences. The IDCNN‑BiLSTM‑CRFmodel
can extract local features from long texts and then fuse them with long‑term dependency
features extracted by BiLSTM, enabling it to capture more semantic information.

After introducing BERT pre‑training models, the performance of the BERT‑IDCNN‑
BiLSTM‑CRF model significantly improves compared to models without BERT. This in‑
dicates that pre‑training models play an important role in improving entity recognition
accuracy. When continuing pre‑training BERT with network security corpora, a CSBERT
pre‑trained model more suitable for network security domain is obtained. The F1 scores
of the CSBERT‑IDCNN‑BiLSTM‑CRFmodel reach 87.31%. Comparedwith BERT‑IDCNN‑
BiLSTM‑CRF using general‑purpose BERT pre‑trainingmodels, CSBERT pre‑trainedmod‑
els gain abundant prior knowledge in the field of network security through continued train‑
ing specifically in this domain and ultimately acquire word vectors more suitable for this
domain which enhances their performance. This demonstrates the importance of contin‑
ued training within specific domains.

From the above experimental comparisons, it is necessary to continue training open‑
source pre‑training models with network security corpora for network security named
entity recognition tasks. Combining IDCNN as an IDCNN‑BiLSTM feature extractor can
simultaneously capture both local and long‑term dependency features of the text. Com‑
pared to traditional BiLSTM, it can capture more semantic features and improve entity
recognition accuracy.

4.6. Analysis of Entity Recognition Results by Category
The experimental results of Section 4.5 are the weighted average of evaluation indi‑

cators for each entity category, with the evaluation indicators for each entity shown in
Table 4.

Table 4. Evaluation index value of each entity.

Entity Number Entity Type Precision (%) Recall (%) F1(%)

1 ACTION 75.86 78.22 77.02
2 COMPANY 95.76 98.03 96.88
3 HARDWARE 77.33 80.11 78.69
4 LOCATION 98.91 98.55 98.73
5 NETWORKENTITY 63.35 76.57 69.33
6 ORGANIZATION 85.11 89.88 87.43
7 PERSON 100 100 100
8 PROGRAM 75.81 79.21 77.47
9 SOFTWARE 86.06 92.06 88.96
10 VERSION 89.98 89.11 89.55
11 VULNERABILITY 96.65 95.94 96.29

To analyze the experimental results of the CSBERT‑IDCNN‑BiLSTM‑CRF model in
detail, the experimental indicators of each entity category are mergedwith the correspond‑
ing quantity in the dataset and analyzed in Figure 11.

Overall, the number of entities in the dataset does not directly correlate with their
recognition accuracy. Where “COMPANY”, “LOCATION”, “ORGANIZATION”, “PER‑
SON “COMPANY”, “LOCATION”, “ORGANIZATION”, “PERSON”, “SOFTWARE”,
“VERSION” and “VULNERABILITY” have higher recognition accuracy, with F1 scores ex‑
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ceeding 85%. However, the recognition accuracy for entities such as “ACTION,” “HARD‑
WARE,” “NETWORKENTITY,” and “PROGRAM” is relatively lower.
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Figure 11. The number of each entity and its evaluation indicators.

The low accuracy in identifying the entities “ACTION” and “PROGRAM” is due to
their long lengths, as well as the overlap of some entity content with other entity categories.
The model easily confuses the end tags of entities, resulting in incorrect label predictions.

On the other hand, the entity “HARDWARE” has similar features to “SOFTWARE,”
and both can only be distinguished based on contextual information. However, there are
far more instances of “SOFTWARE” entities in the dataset compared to “HARDWARE,”
which leads to higher accuracy in recognizing “SOFTWARE” entities than “HARDWARE”.

As for the entity “NETWORKENTITY,” it contains too many concepts and is prone to
being predicted as an ‘O’ (non‑entity) by the model compared to other entities. Therefore,
its recognition accuracy does not directly correlate with its quantity in the dataset.

Ultimately, we found that the number of entities has a significant impact on prediction
accuracy when faced with relatively similar entity types, whereas it is not a major factor in
other cases such as entity types with complex concepts.

4.7. Melting Experiment
To verify the effectiveness of the main modules proposed in this paper, a set of com‑

parative experiments is conducted in this section. Based on the IDCNN‑BiLSTM‑CRF
model, two groups are designed by replacing IDCNN with CNN and removing the ID‑
CNN module as controls to validate the role of using the IDCNN module. The results of
ablation experiments are shown in Table 5 below.

Table 5. Ablation experiment evaluation index value.

Model P (%) F1 (%) R (%)

IDCNN‑BiLSTM‑CRF 72.37 76.42 80.33
CNN replaces IDCNN 71.39 75.42 79.31

Remove IDCNN 69.72 74.29 80.11
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The performance of the three models in the table decreases sequentially on the net‑
work security dataset. This indicates that both CNN and IDCNN can extract local in‑
formation from text, but IDCNN has a larger receptive field, allowing it to handle long
text information and further improve the performance of network security entity recogni‑
tion models.

5. Conclusions
The Chinese knowledge graph of network security can effectively address the issue

of fragmentation and difficulty in integrating information in the field of Chinese network
security. Named entity recognition technology plays a pivotal role in the construction of
the graph, and significantly enhances the accurate identification and associative analysis
of cybersecurity‑related entities. Accordingly, this paper introduces a NER method in
the Chinese domain called CSBERT‑IDCNN‑BiLSTM‑CRF, based on a cybersecurity pre‑
trained model. This method initially leverages the cybersecurity pre‑trained model for
further training, thereby generating more sophisticated word vectors pertinent to the cy‑
bersecurity field. Subsequently, considering the temporal nature of natural language, it is
crucial to extract sequential features from the model; this is where the chained structure
of RNN comes into play for natural language sequence modeling. However, as compu‑
tational power increases and the length of input text grows, the traditional RNN model’s
capability to process long texts becomes increasingly inadequate. Additionally, the origi‑
nal RNN models are prone to gradient vanishing, which leads to subpar performance in
capturing long‑distance dependent features; therefore, BiLSTM are used to resolve the is‑
sues with long‑distance dependencies and to enhance the capacity to extract contextual
information, thus extending the upper limit of natural language processing input texts.
Following that, traditional CNN are employed as an auxiliary process to address issues
where BiLSTM cannot fully extract the sequential information due to the unique textual
structure of Chinese online texts. Nevertheless, the inherent limitation of CNN, after con‑
volution operations followed by pooling, results in the loss of sequence information. Given
that natural language consists mostly of sentences and the relatively small receptive field
of CNN, which can only be increased by stacking convolution layers, risking overfitting,
the paper introduces the DCNN with the atrous mechanism and establishes the IDCNN
for processing longer text sequences via stacking techniques. Finally, a CRF is incorpo‑
rated to consider the interdependency of labels at the sequence level, imposing constraints
on the model’s output to ensure the legitimacy of the labels. By integrating local and con‑
textual features, the model achieves superior performance. Using the data from the China
National Vulnerability Database of Information Security and the YEDDA tool for label
annotation, this paper constructs a Chinese cybersecurity dataset for training and testing
the proposed model. Experimental results demonstrate that on the Chinese cybersecu‑
rity dataset, the CSBERT‑IDCNN‑BiLSTM‑CRF model outperforms other Chinese entity
recognition models, leading in terms of accuracy and F1 Score, which sufficiently proves
the efficiency of the proposed CSBERT‑IDCNN‑BiLSTM‑CRF model and provides more
precise recognition results in the task of named entity recognition in the Chinese cyberse‑
curity domain.
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