
Citation: Benedict, A.C.; Ras, Z.W.

Distributed Action-Rule Discovery

Based on Attribute Correlation and

Vertical Data Partitioning. Appl. Sci.

2024, 14, 1270. https://doi.org/

10.3390/app14031270

Academic Editor: Andrea Prati

Received: 6 October 2023

Revised: 19 January 2024

Accepted: 26 January 2024

Published: 3 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Distributed Action-Rule Discovery Based on Attribute Correlation
and Vertical Data Partitioning
Aileen C. Benedict 1,† and Zbigniew W. Ras 1,2,*,†

1 Computer Science Department, University of North Carolina at Charlotte, 9201 University City Blvd,
Charlotte, NC 28223, USA; abenedi3@uncc.edu

2 Polish-Japanese Academy of Information Technology, Institute of Computer Science, 02-008 Warsaw, Poland
* Correspondence: ras@uncc.edu or ras@pjwstk.edu.pl
† These authors contributed equally to this work.

Abstract: The paper concerns the problem of action-rule extraction when datasets are large. Such
rules can be used to construct a knowledge base in a recommendation system. One of the popular
approaches to construct action rules in such cases is to partition the dataset horizontally (personaliza-
tion) and vertically. Different clustering strategies can be used for this purpose. Action rules extracted
from vertical clusters can be combined and used as knowledge discovered from the horizontal clus-
ters of the initial dataset. The number of extracted rules strongly depends on the methods used to
complete that task. In this study, we chose a software package called SCARI recently developed by
Sikora and his colleagues. It follows a rule-based strategy for action-rule extraction that requires
prior extraction of classification rules and generates a relatively small number of rules in comparison
to object-based strategies, which discover action rules directly from datasets. Correlation between
attributes was used to cluster them. We used an agglomerative strategy to cluster attributes of a
dataset and present the results by using a dendrogram. Each level of the dendrogram shows a vertical
partition schema for the initial dataset. From all partitions, for each level, action rules are extracted
and then concatenated. Their precision, the lightness, and the number of rules are presented and
compared. Lightness shows how many action rules can be applied on average for each tuple in
a dataset.

Keywords: recommendation system; action rules; clustering; rules evaluation

1. Introduction

Every day, massive amounts of data are generated from a multitude of sources, from so-
cial media to scientific research. Analyzing and extracting useful insights from these vast
datasets can be a daunting task, but action rules provide a powerful tool for identifying
patterns and relationships within the data. They can help uncover hidden connections
that may be invisible to human analysts. However, generating action rules efficiently for
datasets with a large number of attributes remains a significant challenge.

Let us assume that objects in a dataset are described by a group of classification
attributes and a single distinguished attribute called the decision attribute. Classification
attributes can be further divided into stable and flexible. The values of flexible attributes,
describing objects, can change in time, whereas values of stable attributes stay the same.
Stable attributes are mainly used for the personalization of data mining results. Action
rule discovery is a type of data mining method used to reclassify objects with respect to a
decision attribute. The idea here is to identify sets of minimal changes in flexible attributes,
describing certain objects, that would lead to a desired change in the decision value for
these objects.

Action rules have been used to build a subclass of recommendation systems called
knowledge-based recommendation systems. Domains of application include, among others,

Appl. Sci. 2024, 14, 1270. https://doi.org/10.3390/app14031270 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14031270
https://doi.org/10.3390/app14031270
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6038-7994
https://orcid.org/0000-0002-8619-914X
https://doi.org/10.3390/app14031270
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14031270?type=check_update&version=2

Appl. Sci. 2024, 14, 1270 2 of 21

business (see [1–3]), healthcare (see [4–6]), music (see [7]), and art (see [8,9]). Next, we give
a brief overview targeting some of these application areas.

The authors of [5] present a strategy to build a procedure graph for each medical pro-
cedure that takes place in a hospital. The procedure graph models sequences of consecutive
procedures that follow the same initial procedure undertaken with a group of patients in a
hospital. Data publicly available in the Florida State Inpatient Database (SID), which is a
part of the Healthcare Cost and Utilization Project (HCUP) [10], were used for that purpose.

The paper also presents a collection of hierarchically structured recommendation
systems used for decreasing the number of re-admissions to hospitals based on action
rules extracted from the SID. To build these recommendation systems, patients in the
SID were hierarchically partitioned into subgroups using their common characteristics
as the filtering tool. This process is called the personalization of patients; it increases the
predictability of the following procedures represented as nodes in the procedure graphs
and also decreases the anticipated number of re-admissions. Here, action rules represent
medical recommendations that can be used by physicians for placing a patient on the
shorter, more successful, and safer procedure path.

Another work [11] presents a recommendation system for the surgical treatment of
Parkinson’s disease. This kind of surgery is called deep brain stimulation (DBS). During
DBS surgery, a set of three to five parallel-reading micro-electrodes are inserted into the
patient’s brain. The electrodes are directed toward the expected location of the target
nucleus, which is a small structure placed deep in the brain called the STN that does
not show well in CT or MRI scans. At each desired depth, the reading electrodes record
the electrophysiological activity of surrounding brain tissue. These electrodes advance
until at least one of them passes through the nucleus, but it still requires an experienced
neurologist/neurosurgeon to tell whether the recorded signal comes from the STN or not.
The recommendation system presented in [11] answered this question with a confidence
close to 100 percent. After such an electrode is verified, it is replaced by a permanent
stimulating electrode.

Tarnowska and Ras [2] present a recommendation system based on knowledge (action
rules) extracted from a sample dataset of customer feedback (around 300,000 records)
concerning repair shops for caterpillar equipment covering 34 companies located in the
US and Canada. Each record in the dataset represents a survey with features describing
the company, the particular service assessed, and the customer surveyed. Feedback is
represented by numerical scores in different areas and by additional notes in the free-form
text. The Net Promoter Score (NPS) is used to partition the customers into three different
groups: promoters, passive, and detractors. The goal is to extract action rules showing what
minimal business changes are needed in the repair shops in order to change the customers’
status from passive to promoter, from detractor to passive, and from detractor to promoter.
As already mentioned, action rules are composed of so-called stable attributes, flexible
attributes, and target attributes. For stable attributes, the characteristics of a survey type and
characteristics of a customer were chosen for the experimental setup. For flexible attributes,
we chose benchmark questions from surveys, which represented areas of improvement in
the customer satisfaction problem. The target attribute had three values: promoter, passive,
and detractor.

In other work, the authors present a Basic Score Classification Database (BSCD), which
describes associations between different scales, regions, genres, and jumps [7,12]. This
database is used by a knowledge-based system to automatically index all submitted or
retrieved pieces of music by emotion. Action rules extracted from the BSCD are used by
a knowledge-based recommendation system to create solutions (automatically generated
hints) that permit developers to manipulate a composition by retaining the music score
while simultaneously varying the emotions it invokes. By score, we mean a written form of
a musical composition.

Gelich and Ellinger [13] discuss a CO2 sensor network deployed in 16 equally divided
parts of a classroom at UNC-Charlotte. Each part is equipped with one sensor node for

Appl. Sci. 2024, 14, 1270 3 of 21

CO2 concentration monitoring. Higher occupancy in the room triggers a higher value
of CO2 concentration. Sensors in close proximity to people have higher CO2 readings.
Personalized knowledge-based recommendation systems can be built to monitor indoor air
quality inside the classroom and give recommendations on different strategies that can be
followed to improve its air quality.

All of the above examples of knowledge-based recommendation systems show a
variety of application domains where action rules can be successfully used. However,
in many cases, action rules need to be discovered from large or very large datasets, not only
those containing a large number of tuples but also a large number of attributes. Mining for
action rules efficiently in such datasets can be a challenge. As the volume and complexity
of data continue to grow, there is a critical need for methods that can efficiently discover
action rules from large datasets.

To target this problem, we propose a new strategy for generating action rules based on
the vertical partitioning of a dataset driven by correlations between its attributes. The idea
is quite simple. We know, from rough sets theory that the more correlated attributes are
in a dataset, the smaller its reducts are. Similarly, action rules should be shorter when
discovered from datasets having correlated attributes. Therefore, instead of discovering
action rules from a given dataset, we partition its attributes into clusters by treating the
correlation as the distance measure. The more correlated the attributes are, the more close
they are to each other in terms of distance. Our plan is to conduct hierarchical clustering and
determine which level in the hierarchical tree provides the most effective attribute partition.
Meaning, we iterate between each level to determine the optimal set of discovered action
rules, defined by measures such as the number of rules, confidence, coverage, and lightness.

In this paper, we discuss our proposed method of distributed action rule discovery
based on attributes correlation and vertical data partitioning and report on its performance
as compared to other methods. Section 2 provides a background on recommendation
systems and action rule discovery. In Section 3, we discuss a previous related work done
for distributed action rule discovery and how our work differs. Section 4 provides all
the information for the materials and methods. This includes detailed descriptions of
both our proposed method and the random partitioning method we compare to. We
also discuss the dataset used for experiments, data preprocessing steps, experimental
parameters, and evaluation metrics used for the comparative analysis. In Section 5, we
discuss the results found along with some example action rules. Finally, in Section 6, we
discuss our conclusions and insights drawn from the study.

2. Background
2.1. Recommender Systems

For years, people have often recommended products or services through “word of
mouth”. This highly social approach “pursued the principle of sharing an individual
experience with others” [14]. Yet, with the development of the internet, we have now
entered an era of “information explosion”. We live in a society where we are continuously
retrieving information in all aspects of our lives [15]. Because of this information overload,
it can be overwhelming to sift through it all ourselves. Therefore, it is essential to depend
on technologies capable of filtering through available data and enabling the search for
valuable insights [15]. Recommender systems are one such technology aimed at resolving
this problem of information overload [14–16]. A comprehensive review paper covering this
topic was published in 2019 (see [17]).

The goal of a recommender system is to suggest relevant items to the user. Recom-
mender systems strive to anticipate the inclinations of a user or customer and furnish
recommendations for additional resources or items that are probable to appeal to them.
Specifically, recommender systems are designed to propose the most fitting products or
services to specific users or businesses by forecasting a user’s curiosity in an item. This is
done by utilizing data about analogous items, the users themselves, and the interactions
between items and users.

Appl. Sci. 2024, 14, 1270 4 of 21

Recommendation systems often collect information on users to generate a suitable
recommendation of items [15]. This information can be in an explicit or implicit form of
feedback [18]. Examples of explicit feedback include background information input by the
user or item ratings the user provides through interaction. Implicit feedback is information
the system infers based on the user’s behaviors, such as their navigation history or time
spent on a certain page [18]. This information is used to create user profiles so that the
system can better understand its users. After this information collection phase comes the
learning phase, where learning algorithms are applied to “filter and exploit the user’s
features from the feedback isinkaye2015recommendation. Finally, the recommendation
phase combines the data and what has been learned to recommend or predict what items
the user may like [15].

Depending on the data collected, various types of recommendation models can be
applied. These models include:

• Collaborative Filtering: This method assesses items based on other users’ opinions [19].
This type of system utilizes the item ratings of many users to categorize them into
groups based on their similarities. Items are then recommended to users based on
those similarities.

• Content-Based Filtering: This technique is based on the user’s data itself, such as their
inputted preferences or past interactions with the system, and the metadata associated
with the items that exist in the system. With this system, users’ past preferences are
usually mapped to predict their future preferences [15,19].

• Knowledge-Based: These systems determine the recommendations based on the
user’s inputted requirements and the system’s knowledge about the items [15,19].
This method relies on external knowledge about items.

• Hybrid: These are systems that combine any of the above methods in ways to balance
out each method’s strengths and weaknesses [19].

2.2. Action Rules

Action rules (or actionable patterns), first introduced by Ras and Wieczorkowska
in [20], describe possible transitions of objects from one state to another with respect to a
distinguished attribute called the decision attribute. Strategies for discovering them are
divided into two types: rule-based and object-based. The rule-based approach consists
of two main steps: (1) using a standard learning method to detect interesting patterns
in the form of classification rules, association rules, or clusters, and (2) employing an
automatic or semi-automatic strategy to inspect these results and derive possible action
strategies. These strategies can provide insights into how the values of some attributes
should be modified to move desirable objects into a desired group. The object-based
approach assumes that actionable patterns are directly extracted from a database. Examples
of rule-based strategies for extracting action rules are System DEAR (presented in [21]) and
System DEAR2 (presented in [22]). Jan Rauch’s group has implemented these systems as
modules of his LISP Miner software package (see [23–25]). Another example of a rule-based
approach to action rules discovery is a strategy based on tree classifiers (see [26]). It should
be mentioned here that the quality and quantity of action rules discovered heavily depend
on the classification rules used in that process. To our knowledge, there is only one method
based on discernibility functions in rough set theory that can discover all classification
rules from a given dataset (see [27]). The more classification rules we have, the more action
rules can be discovered. Object-based strategies for action rule mining have the same
limitations—they do not discover all action rules [28]. An interesting concept is an action
rules schema, which can be constructed directly from so-called action reducts. Action-rules
schemas cover all action rules. Can we propose a strategy for generating all action rules
from action-rules schemas?

Additional examples of strategies for action rules discovery can be found in publica-
tions by Kalanat (see [29,30]) and Dardzinska (see [31]). Action rules have been used in var-
ious domains, such as medical (see [5,6,32–34]) business (see [2,3,35,36]), music (see [7,12]),

Appl. Sci. 2024, 14, 1270 5 of 21

and art (see [8,9]). The rule-based approach has two main steps: (1) mining classification
rules and (2) generating action rules from those classification rules. A classification rule r1
is defined as a term:

r1 = [((A, a1) ∧ (B, b1) ∧ (C, c1) ∧ (E, e1)) ⇒ (D, d1)], (1)

where, in the rule’s antecedent, a1, b1, c1, and e1 are attribute values associated with
attributes A, B, C, E, correspondingly. Attribute value d1, associated with attribute D, is a
predicted target value called the consequent or the decision.

The support and confidence are calculated for each classification rule as a performance
measure. The support is measured by the number of objects (or rows in the dataset) that
match both the antecedent and consequent of a given rule. The confidence is the “ratio
between” a given rule’s support and the total number of items that “satisfy [just] the
antecedent” [37].

Action rules can be discovered directly from the dataset or constructed from classifica-
tion rules. An action rule is defined as follows [20]:

r = [[a1 ∧ g2 ∧ (B, b1 → b2) ∧ (H, h2)] ⇒ (D, d1 → d2)], (2)

In the above, a1 and g2 are stable attributes, meaning they are attributes that do not
change over time (their values cannot change). The next parts (B, b1 → b2) and (H,→ h2)
show the flexible attributes. These are the attributes that can change over time. The final
piece, (D, d1 → d2), is our consequent, the target value we wish to change. In the above
example, it is stated that attribute A should equal a1, attribute G should equal g2, attribute
B should change from b1 to b2, and attribute H should change from any value to h2. If all of
these happen, then a change in our consequent D from d1 to d2 is expected.

Let’s say we have two classification rules:

r1 = [(a1 ∧ b1 ∧ c1 ∧ e1) ⇒ d1], r2 = [(a1 ∧ b2 ∧ g2 ∧ h2) ⇒ d2]. (3)

Attributes A and G are stable, while B and H are flexible. If we have an object with
features a1, b1, c1, and e1, the rule r1 says that these four values impact the decision feature
d1 of that item. Assuming that the item also has a feature (G, g2) and we wish to change its
decision feature to d2, based on the info from r2, we could change its value of B from b1 to
b2 and the value of H to h2. This would be expressed using the action rule [24]:

r = [[a1 ∧ g2 ∧ (B, b1 → b2) ∧ (H,→ h2)] ⇒ (D, d1 → d2)]. (4)

Similarly to classification rules, we evaluate action rules using support and confidence,
though calculated differently. In the above example, r is an action rule generated from
the classification rules r1 and r2. The support of our action rule r is the same as sup(r1).
The confidence of r is the product of both classification rules’ confidences: con f (r1)× con f (r2).

3. Related Works

The efficient extraction of action rules from large datasets has posed significant challenges
to conventional models that analyze data in a non-distributed manner. Recognizing this limi-
tation, there have been efforts to adopt a distributed approach to better handle the intricacies
associated with larger volumes of data. This section provides an overview of such distributed
approaches to action rule discovery, establishing the context for our proposed improvements.

Bagavathi et al. [38] introduces a distributed approach to extract action rules from
large datasets. Their method emphasizes the data distribution phase, suggesting parti-
tioning data into smaller granules both horizontally (across rows) and vertically (across
attributes). Rules extracted from these vertical pairwise disjoint granules, which cover
distinct attributes, are concatenated, thereby capturing some of the knowledge from the
initial dataset. Similarly, Tarnowska et al. [35] propose another distributed method for
action rule discovery using both horizontal and vertical partitioning. They employ Spark

Appl. Sci. 2024, 14, 1270 6 of 21

for horizontal partitioning, while their vertical approach randomly separates attributes.
This method notably reduces the time required to discover action rules. However, a limita-
tion lies in their combined study of both partitioning methods without isolation, making it
unclear whether the benefits arise from horizontal partitioning, vertical partitioning, or a
synergy of both.

While the above approaches offer a foundation for distributed action rule discovery
methods, our work seeks to advance this further. We identify a potential limitation in the
random nature of vertical data partitioning present in existing methods. Our contribution
focuses on introducing a more logical and structured approach to vertical data partitioning.
We propose using feature correlations as a distance measure in data partitioning, specifically
for action rule discovery. This is a technique that, to the best of our knowledge, has not
yet been explored. By doing so, we aim to enhance both the efficiency and the quality of
the actionable patterns extracted from distributed datasets, distinguishing our work from
existing methods.

4. Materials and Methods
4.1. Methods for Distributed Action Rule Generation

In this work, we propose a new method of action rule discovery based on attribute
correlation and vertical data partitioning for datasets with many flexible attributes. Here,
we will discuss the methodology in more detail.

4.1.1. Vertical Partitioning Based on Attribute Correlation

The process for this method are shown in Figure 1 and the steps include:

1. Calculate the correlations between the flexible classification attributes in a given dataset.
2. Perform agglomerative clustering on all of the flexible attributes using correlations

among them as the distance measure, resulting in a dendrogram.
3. Iterate through the different levels of the dendrogram, resulting in various sets of our

flexible attributes clustered. Extract action rules for each cluster of flexible attributes,
each one extended by the same stable attributes. Then, create all possible combinations,
taking one action rule from each cluster and checking its support.

4. Determine the best vertical partition of the dataset by comparing the F-scores of the
sets of action rules discovered for each partition.

The first step is calculating the similarity between flexible attributes in a dataset.
Similarity between attributes is calculated differently based on whether the attributes are
continuous (numerical) or discrete (categorical). If both attributes are continuous, Pearson’s
R correlation is used for that purpose. If both are discrete (categorical), we use Cramer’s V.
If one attribute is continuous and the other is discrete, the Correlation Ratio is used.

Pearson’s correlation coefficient (r) is a way to measure the similarity between two
attributes. It requires that both attributes are quantitative, normally distributed, and also
specifically measure a linear relationship [39,40]. It is defined as follows:

Pearson′s R =
n ∑ xy − (∑ x)(∑ y)√

[n ∑ x2 − (∑ x)2][n ∑ y2 − (∑ y)2]
(5)

Cramer’s V measures the relationship between two nominal features, returning a 0 for
no relationship or a 1 for a perfect relationship [39,40].

Cramer′s V =

√
X2

n ∗ min(c − 1, r − 1)
(6)

where X2 is the chi-square value, n is the sample size, c is the number of columns, and r is
the number of rows.

Appl. Sci. 2024, 14, 1270 7 of 21

Figure 1. Illustration of the Vertical Partitioning based on Attribute Correlation Method. This method
efficiently groups features based on their mutual correlations, optimizing the partitioning process for
action rule discovery.

We utilized the Dython Python (http://shakedzy.xyz/dython, accessed on 25 January
2024) library to calculate these associations given the attributes’ types (continuous or
discrete). To calculate our distance matrix, we use the following:

DistanceMatrix = 1 − |associations|+ 1
2

(7)

We then performed agglomerative clustering using the distance matrix. Since all
the attributes in our examples are categorical, only the Cramer’s V measure is used in the
definition of a Distance matrix (by |D|, we mean the absolute value of D). We utilized the
SciPy library (https://docs.scipy.org/doc/scipy/index.html, accessed on 25 January 2024)
to perform the agglomerative clustering using single linkage and to create our dendrogram.
Using this dendrogram, we iterated through to find the clusters at each level, resulting in
various clusters of our flexible attributes. For example, if we have attributes {A, B, C, D, E},
we may get the following sets of clusters: (1) {A}, {B}, {C}, {D, E}, (2) {C}, {D, E}, {B, A},
and (3) {D, E}, {B, C, A}. Here, attributes D and E are closest to each other, B and A are
next closest to each other, and then C is the closest to the {B, A} cluster. The last possible
level would be to combine {D, E} and {B, C, A} into one cluster of {A, B, C, D, E}, but that is
not what we need, but so we stop there. In other words, our aim is to break our flexible
attributes into smaller groups to work with rather than working with them all at once.
A single cluster of all attributes would defeat this purpose and is therefore not used.

We then generated action rules for each set of clusters. Clusters split the flexible
attributes, and the stable attributes remained the same throughout. Using the example
above, if we had two separate clusters {D, E} and {B, C, A}, we would generate action

http://shakedzy.xyz/dython
https://docs.scipy.org/doc/scipy/index.html

Appl. Sci. 2024, 14, 1270 8 of 21

rules with the flexible attributes {D, E}, and then we would generate another set of sepa-
rate action rules using the flexible attributes {B, C, A}. The stable attributes, consequent,
and remaining parameters would remain identical for both. This work utilized the Python
library developed by Sykora and Kliegr (see [37]) to generate action rules, implementing
the rule-based strategy described by Ras and Wieczorkowska [20]. We will refer to this
action rule generation method as Sykora’s package. Additionally, further experiments
have been conducted using an alternative method for action rule discovery to facilitate
comparative analysis. The details of this secondary action rule generation method are
outlined in Section 4.1.2 and will be referred to as the RSES-based method.

Next, we concatenated the action rules by taking combinations of rules from each
cluster. For each combination, we then checked its supporting objects and excluded any
combinations that created action rules with a support of zero. Note that the stable attributes
remained the same, but the flexible attributes differed across clusters.

As an example, cluster one may have the rule:

r1 = [(sex, male) ∧ (class, 3 → 1)] ⇒ (survived, 0 → 1) (8)

Cluster two may have:

r2 = [(sex, male) ∧ (embarked, Southampton → Cherbourg)] ⇒ (survived, 0 → 1) (9)

We would then try to form the combined rule:

r3 = [(sex, male) ∧ (embarked, Southampton → Cherbourg) ∧ (class, 3 → 1)] ⇒ (survived, 0 → 1) (10)

With this potential rule, we would then have to find the intersection of support sets
for r1 and r2. If this intersection is empty, we cannot make r3, and it would be excluded
from the final set of action rules. Otherwise, it is added to our set of action rules for this
particular partition.

To determine the optimal partition and the number of clusters to be used for rules
extraction, we iterated through the newly created set of action rules for each cluster and
evaluated its performance. Performance is evaluated using the F-score, defined by:

F-score(R) = 2 ∗ (precision ∗ recall
precision + recall

) (11)

Precision is defined by:

Precision(R) = ∑{con f (ri) ∗ sup(ri) : i ∈ I}
∑ sup(ri) : i ∈ I

(12)

where con f (ri) is the confidence of rule i, and sup(ri) is the support of rule i.
Recall, then, is defined by:

Recall(R) = card[∪{Di : i ∈ I}]/card(D), (13)

where card[∪{Di : i ∈ I}] is the cardinality (number of elements) of ∪{Di : i ∈ I}. In other
words, we found the percentage of all objects in D that are covered by R, our set of action
rules. This definition of recall also takes into account the overlapping of domains—we
want any object in overlapping domains to only be counted once. The set of action rules
with the highest F-score determines the optimal partition of flexible attributes.

4.1.2. Random Partitioning

We compare the random vertical partitioning method to our initial proposed method
(vertical partitioning based on attribute correlation). For random partitioning, instead of
splitting based on correlation, it is fully random. This method was proposed by authors
of [35], where they split the datasets vertically, by attributes, and extract action rules

Appl. Sci. 2024, 14, 1270 9 of 21

from multiple partitions. Similar to our method discussed previously, “once all parallel
processes are complete, action rules from each partition are combined to yield the final
recommendation of action rules” [35].

The process is illustrated in Figure 2 and the steps include:

1. Generate multiple sets of groupings for flexible attributes, varying the number of
groupings (N) from two to the total number of attributes (exclusive). In each set,
shuffle the attributes randomly and divide them into k groups, where k ranges from 0
to N−1, creating diverse arrangements of the attributes. Store each set of groupings
in a partition list.

2. Iterate through each partition in the partitions list obtained in Step 1. Again, each
partition is our set of flexible attributes randomly grouped. With each iteration, extract
action rules for each group of flexible attributes. Then, create all possible combinations,
taking one action rule from each group and checking its support.

3. Determine the best partition of the dataset by comparing the F-scores of the sets of
action rules discovered in each partition.

Again, for this method, splitting is done randomly. In our proposed method, splits are
determined by correlation and clustering, not just randomly.

Figure 2. Illustration of the Random Vertical Partitioning Method. This method randomly groups fea-
tures for action rule discovery, serving as a baseline for comparison with our correlation-based approach.

4.2. Additional RSES-Based Method for Action Rule Discovery

Again, our main experiments utilized the Python package developed by Sykora
and Klieger (see [37]) for action rule discovery, adopting a rule-based approach to action
rule mining.

Appl. Sci. 2024, 14, 1270 10 of 21

We then utilized a secondary RSES-based action rule discovery method for comparison
purposes. Initially, classification rules are generated using the Rough Sets Exploration
System (RSES) tool. These rules are extracted from a dataset and typically represent patterns
or associations between various attributes. Next, these classification rules outputted into a
text file, are parsed and transformed into a structured format suitable for further analysis.
This involved developing a parser that reads the text file, identifies the format of the rules,
and converts them into a programmatically accessible format.

The classification rules are then categorized based on their decision attributes. In our
case, they are grouped into “passive”, “promoter”, and “detractor” bins. For generating
action rules, pairs of classification rules are compared, particularly focusing on rules that
transition between different decision attribute values. Since our experiments focused
on generating action rules reclassifying passive to the promoter, those are the bins we
focused on.

Next, pairs of classification rules are compared (e.g., from ‘passive’ to ‘promoter’) to
identify potential action rules. The comparison focuses on two types of attributes: stable
attributes and flexible attributes. The method ensures that for any pair of classification
rules being compared, their stable attributes are compatible (i.e., they have the same values
or are absent in one of the rules). Flexible attributes are subject to change and are the focus
of the action rules. This method looks for differences in flexible attributes between the pairs
of rules to suggest possible actions.

Based on the comparison of classification rules, action rules are generated, suggesting
changes in one or more flexible attributes that could lead to a transition from one decision
class to another. The method takes into account various scenarios for each flexible attribute
in the ruling pair, such as when an attribute is the same in both rules, when it differs,
or when it’s present in one rule but not in the other. The action rules are formulated
to recommend changes in attribute values that are hypothesized to result in the desired
change in the decision attribute.

4.3. Experimental Setup

Our aim was to explore and compare the performance of the following methods:
vertical correlation partitioning (our proposed method), random vertical partitioning, and
no partitioning. In the case of no partitioning, action rules were generated from all of the
given flexible attributes. The metrics used for evaluation include the following: the time to
extract action rules and their count, the number of distinct objects covered by these rules,
and the average number of identical objects included in the domains of all extracted action
rules (referred to as the lightness).

The experiments were conducted on the UNC-Charlotte Orion research cluster. The clus-
ter consisted of compute nodes equipped with Intel Xeon CPUs, with each node having
32 cores and 128 GB of RAM. The SLURM workload manager was utilized for job scheduling,
resource allocation, and monitoring. The experiments were implemented using Python 3.8.5.
We employed Ray as the parallel processing framework to accelerate the training of our
machine learning models. Each experiment was executed on a single compute node, which
featured 16 CPUs and 4 GB of memory per CPU. By harnessing the computational power of
the cluster, we achieved significant reductions in the training time of our models.

4.3.1. Dataset Source and Background

One business metric used to evaluate customer experience is called the Net Promoter
Score (NPS®), a registered trademark of Satmetrix Systems, Inc., Redwood City, CA, USA
(Bain and Company and Fred Reichheld). This score gauges the likelihood of customers
recommending a company. Customers who are highly likely to recommend, scoring 9 or 10,
are categorized as promoters. On the other hand, customers scoring 6 or below are referred
to as detractors. Customers who fall in between are classified as passive, as they do not
express strong advocacy or dissatisfaction.

For our experiments, we used the NPS (Net Promoter Score) dataset, which comprises
customer feedback data collected on heavy equipment repair. We specifically chose this

Appl. Sci. 2024, 14, 1270 11 of 21

dataset to maintain consistency with related works, enabling us to offer a comparable assess-
ment of our methodology. This also allowed us to adopt similar data pre-processing steps
as those outlined in the related works. The dataset includes information from 38 companies
and encompasses 340,000 customers across sites in the USA and Canada. Each customer
survey is stored in a database, with each question (benchmark) represented as a feature in
the dataset. The benchmarks consist of numerical scores ranging from 0 to 10, which indi-
cate the quality of service provided. Examples of benchmarks include questions relating to
job correctness, customer satisfaction, likelihood to refer, and more. The decision attribute
in the dataset is labeled “PromoterStatus”, which classifies each customer as a promoter,
passive, or detractor. The primary objective of the decision problem is to enhance customer
satisfaction and loyalty, as measured by the Net Promoter Score. By applying action rules,
the aim is to identify minimal sets of actions that can “reclassify” customers from “Passive”
to “Promoter”, thus improving the NPS. For our experiments, we utilized surveys obtained
from customers of four companies during the year 2015.

4.3.2. Data Preprocessing

Due to semantical inconsistencies in datasets representing 38 companies (resulting in
low confidence in the extracted rules), we opted to select datasets from three companies
for mining, labelling them as datasets A, B, and C. First, we followed several data pre-
processing steps: (1) we removed columns based on a sparsity threshold, (2) we checked
for correlations and removed redundant columns, (3) we handled null values, and (4) we
categorized benchmarks into bins.

We first examined the sparsity of the benchmark columns and removed any columns
that had 75% or more null values.

Next, we checked for correlations among all of the features using the pairwise correla-
tion between numerical columns. Specifically, we used the Pearson correlation coefficient
to measure the linear relationship between variables. If we identified any pairs of features
with a one-to-one relationship, we removed one of the columns to eliminate redundancies.

We then handled null values based on the column. For any rows where the Promot-
erScore was null, we removed them since this attribute is our decision attribute, and its
availability is necessary. For the benchmark features, we treated nulls as a separate category
and created a new category called “No Response”.

This leads us to the next step of categorizing benchmark features into bins. In addition
to treating null values as “No Response”, we assigned values between 0 and 4 (inclusive)
to the category “Low”, values between 5 and 6 (inclusive) to “Medium”, values 7 and 8 to
“High”, and values 9 and 10 to “Very High”.

4.3.3. Dataset Descriptions and Experimental Parameters

In our experiments, we utilized these three different subsets of the NPS dataset
described in Section 4.3.1. Dataset A contained 542 rows, Dataset B contained 1279 rows,
and Dataset C contained 661 rows. All three datasets were preprocessed and contained
the same three stable attributes, named “division”, “survey type”, and “channel type”.
Additionally, Dataset A had 11 flexible attributes, Dataset B had 10, and Dataset C had
10 as well. All flexible attributes in the dataset consisted of benchmarks taken from the
discussed surveys. The consequent attribute used in all datasets is the “promoter status”.
Possible values for the promoter status are “Detractor”, “Passive”, and “Promoter”. We
conducted experiments for all datasets searching for action rules changing our consequent
from “Passive” to “Promoter”. For all experiments, we applied a confidence threshold of
0.8 and a support threshold of 2 to filter rules extracted from this dataset.

4.3.4. Flexible Attribute Definitions and Vertical Correlation Partitioning Attribute Groupings

In our investigation, we concentrated on a set of flexible attributes, each of which
contributed distinct insights to our vertical correlation partitioning methodology. These
attributes, accompanied by their respective abbreviations and brief descriptions are shown

Appl. Sci. 2024, 14, 1270 12 of 21

in Table 1. Collectively, these attributes contributed to the dendrogram visualizations
in Figure 3 that played a crucial role in determining flexible attribute groupings. These
visualizations provide insights into the intricate relationships and patterns, enhancing our
understanding of the vertical correlation partitioning process.

Table 1. List of Attribute Abbreviations with Corresponding Names and Descriptions.

Abbreviation Attribute Name and Description

DC BenchmarkAllDealerCommunication: Evaluates communication effectiveness
within the dealer network.

RC BenchmarkAllLikelihoodtobeRepeatCustomer: Measures the likelihood of
customer repeat business.

OS BenchmarkAllOverallSatisfaction: Assesses overall customer satisfaction levels.

ECP BenchmarkPartsEaseofCompletingPartsOrder: Gauges the ease of completing
parts orders.

PA BenchmarkPartsPartsAvailability: Examines component availability for
order fulfillment.

TPO BenchmarkPartsTimeitTooktoPlaceOrder: Measures the time taken for
order processing.

EDOC BenchmarkPartsExplanationofDeliveryOptionsCosts: Explores the elucidation of
delivery options and related costs.

OA BenchmarkPartsOrderAccuracy: Scrutinizes the accuracy of order processing.

NBO BenchmarkPartsPromptNotificationofBackOrders: Examines the timeliness of
back-order notifications.

KP BenchmarkPartsKnowledgeofPersonnel: Assesses personnel knowledge about
parts and their applications.

RB BenchmarkReferralBehavior: Explores referral behaviors.

HOP BenchmarkPartsHowOrdersArePlaced: Examines the methods of placing orders.

4.3.5. Evaluation Metrics

To facilitate the method comparison, we assessed various metrics including the run
time (in seconds), the number of generated rules, precision, and the lightness. The run
timerefers to the duration it takes for a method or process to complete its execution. In the
context of our study, the run time is measured in seconds and indicates how long it takes
for each method to run. This metric provides insights into the efficiency and computational
speed of the method being evaluated. The computational efficiency of our method is
paramount, especially when dealing with large datasets. By evaluating the run time,
we ensure that our approach not only produces accurate results but also does so in a
time-efficient manner, making it feasible for real-world applications.

The precision is previously defined in Equation (12) in Section 4.1.1. Precision provides
information on the quality of the generated rules by reflecting both their support and
confidence. A higher precision ensures that the rules are not only widely applicable but
also reliable, making them invaluable for decision-making processes.

The number of generated rules represents the count of distinct rules produced by each
method. In the context of this work, this metric reflects the richness and complexity of
the rule set derived from each dataset. The quantity of generated rules can offer valuable
information about the comprehensiveness and granularity of the rule-based system being
analyzed. A greater number of rules offers a richer set of insights and actionable items.
This directly corresponds with the lightness metric, further described below, wherein a
higher value signifies more options for actionable insights.

Appl. Sci. 2024, 14, 1270 13 of 21

(a) Dataset A Dendrogram

(b) Dataset B Dendrogram

(c) Dataset C Dendrogram

Figure 3. Dendrograms for Flexible Attribute Groupings used for Vertical Correlation Partition-
ing Method.

The lightness is a ratio that serves as a measure of how evenly the coverage is dis-
tributed across the set of rules. By representing the average number of action rules that
apply to each object, lightness helps distinguish between random and correlation-based
partitioning. In business and healthcare, where actionable insights are vital, a lightness

Appl. Sci. 2024, 14, 1270 14 of 21

value between five and ten is considered ideal. The lightness for a generated set of action
rules is defined in Equation (14) below:

Lightness =
∑ Coverage of each action rule

Coverage of entire set of action rules
(14)

The Coverage for each individual action rule is defined as the number of tuples or
items that the action rule encompasses in the dataset. In other words, it represents the
support of that particular action rule. The coverage for a set of action rules is determined
by the unique support of all the rules within the set, shown in Equation (15) below.

coverage(R) =

∣∣∣∣∣⋃
r∈R

support(r)

∣∣∣∣∣, (15)

where R is a set of action rules,
⋃

represents the union operation, and |·| represents the
cardinality (or size) of a set. For example, if we consider rule ‘a’ with support for items
indexed at [0, 1, 2, 3], and rule ‘b’ with support for items at [0, 1, 3, 4, 5], the aggregate
coverage is 6. The individual coverage of rule ‘a’ is 4, while the individual coverage of rule
‘b’ is 5.

5. Results

The primary objective of this study was to address the following research questions:
How does our novel approach to action rule generation compare with existing methods in
terms of the time needed to generate rules for a given dataset? Additionally, how does the
performance of our proposed method compare with that of the established approaches?

5.1. Comparative Insights

Table 2 presents the results of two different vertical partitioning methods for action
rule discovery along with the default (no vertical partitioning applied). These methods
are applied to multiple datasets (A, B, and C). The methods evaluated are “No Partition”,
representing the default approach with no vertical partitioning method, “Random”, which
involves random vertical partitioning of flexible attributes, and “Correlation”, the proposed
method utilizing correlation-based vertical partitioning through hierarchical clustering.
The Random and Correlation methods iterate through different numbers of groupings of
flexible attributes. The “Level” column illustrates this. For each dataset, method, and level,
the table then shows the execution time (in seconds), the number of generated rules, the pre-
cision, and the lightness metrics. Note that the “Random” method results are averaged
across ten different iterations. Methods for both “No Partition” and “Correlation” methods
are only run once, as results are consistent each time. It can be observed that the “Correla-
tion” method achieves varying performance across different datasets, outperforming both
the “No Partition” and “Random” methods in some cases. These results highlight the im-
portance of considering correlation-based vertical partitioning for improved performance
in certain scenarios.

Our analysis of the ‘Random’ method and the correlation-based partitioning method
on datasets A, B, and C revealed interesting insights into their respective performances.
The ’Random’ method, with its random vertical partitioning of flexible attributes, demon-
strated faster individual runs compared to the correlation-based method. However, achiev-
ing reliable and meaningful results required a relatively high number of extracted action
rules, high confidence, and high lightness. In all three of these measures, the correlation-
based method outperformed the random partitioning method.

The random-based method required extensive iterations (in our examples we used
10 iterations to get the averages). In contrast, the correlation-based partitioning method
consistently produced results in each run without the need for extensive iterations. Al-
though the correlation-based method generally exhibited slightly longer execution times
than the ‘Random’ method, the time spent on obtaining averages was significantly reduced.

Appl. Sci. 2024, 14, 1270 15 of 21

The correlation-based partitioning method’s ability to generate consistent results enabled
us to achieve reliable performance metrics in a single run, leading to a more efficient
overall analysis.

Table 2. Comparison of Method Performance Metrics Across Datasets and Feature Groupings.

Dataset Method Level Time
(Seconds) Rules Precision Lightness

A No Partition 1 1883.783 10.000 0.774 6.200
Random 2 8.331 2.400 0.454 2.170
Correlation 76.361 10.000 0.774 6.200
Random 3 4.826 3.800 0.530 2.960
Correlation 76.500 10.000 0.774 6.200
Random 4 4.616 1.000 0.226 1.000
Correlation 26.385 10.000 0.774 6.200
Random 5 4.391 0.200 0.077 0.200
Correlation 12.405 10.000 0.774 6.200
Random 6 4.281 0.600 0.151 0.600
Correlation 3.894 2.000 0.768 2.000

B No Partition 1 966.701 19.000 0.797 10.477
Random 2 5.970 9.600 0.786 6.367
Correlation 5.657 14.000 0.789 7.277
Random 3 3.930 6.100 0.615 4.029
Correlation 4.124 14.000 0.789 7.277
Random 4 3.618 3.500 0.466 2.311
Correlation 4.117 7.000 0.765 3.873
Random 5 3.533 1.900 0.544 1.467
Correlation 3.884 1.000 0.779 1.000

C No Partition 1 623.870 34.000 0.819 12.196
Random 2 6.225 14.600 0.794 7.099
Correlation 151.448 46.000 0.812 16.217
Random 3 4.205 9.200 0.783 4.534
Correlation 16.231 26.000 0.809 10.634
Random 4 3.614 5.500 0.766 3.984
Correlation 7.606 12.000 0.784 6.088
Random 5 3.494 5.000 0.761 3.924
Correlation 2.779 7.000 0.766 3.719
Random 6 3.566 4.700 0.758 3.929
Correlation 2.964 4.000 0.754 4.000
Random 7 3.411 5.200 0.761 3.924
Correlation 2.918 4.000 0.754 4.000
Random 8 3.504 4.000 0.754 4.000
Correlation 2.795 4.000 0.754 4.000
Random 9 3.528 4.100 0.756 3.986
Correlation 2.645 4.000 0.754 4.000

Table 3 shows the results of the action rule generation method described in Section 4.1.2.
The RSES-based action rule generation method produced significantly more rules compared
to the approach utilizing Sykora’s package. For instance, in Dataset A, the RSES-based
method extracted 1933 rules compared to only 10 rules by Sykora’s package. However,
this increase in rule generation came at the cost of increased execution time, as seen in
the longer runtime for the RSES-based method for Datasets A and C. Extracting action
rules using the RSES-based method was faster for Dataset B. Notably, for Dataset A when
employing the vertical partitioning method, the execution time was 193.552 seconds at
level 2. However, with the correlation vertical partitioning, we observed faster runtimes.

Our findings here underscore the importance of considering not only execution time
but also the quality, and consistency of results when evaluating vertical partitioning meth-
ods for action rule discovery tasks. The correlation-based partitioning’s capacity to yield

Appl. Sci. 2024, 14, 1270 16 of 21

reliable outcomes in a single run, a relatively large number of extracted action rules, their
high confidence, and high lightness (in comparison to “random” methods) present a prefer-
able alternative, particularly when dealing with large datasets or applications where the
quality and diversity of discovered action rules are essential.

Table 3. Comparison of Preliminary Performance Metrics for Secondary RSES-Based Action Rule
Generation Method.

Dataset Method Level Time
(Seconds) Rules Precision Lightness

A No Partition 1 2726.625 1933.0 0.908 164.268
Correlation 2 193.552 130.0 0.945 12.895

B No Partition 1 58.101 36.0 0.843 12.958
Correlation 2 20.484 22.0 0.855 5.099

C No Partition 1 2019.907 4042.0 0.855 786.190
Correlation 2 1158.997 602.0 0.893 70.293

5.2. Individual Action Rules

In this section, we present several examples of the generated action rules. Our focus is
specifically on the rules generated for Dataset C and at level 2. We chose this particular level
because it yielded the most extensive set of rules using the vertical correlation partitioning
method. When referring to the dendrograms in Figure 3, we can observe the feature
groupings established by the flexible vertical correlation partitioning method.

5.2.1. Illustrating Vertical Correlation Method Combinations

In this section, we focused on utilizing the Vertical Correlation Method to generate
action rules to illustrate instances of action rules being generated within one dendrogram
level and making their combinations. This iteration employed a confidence threshold
of 50% and a support threshold of two for rule generation. Our analysis centered on
Dataset C and exploreed results obtained from examining “Level 5” of the dendrogram.
Refer to Figure 3 for the Dataset C dendrogram and how flexible attributes were clustered.
Within this level, distinct clusters emerged, with attributes such as OA, DC, TPO, and ECP
forming one cluster, and OS and RC forming another. By showcasing these specific configu-
rations, we aim to offer insights into the patterns and relationships revealed by the vertical
correlation approach.

Example 1. In one of the instances of generated action rules, we examined one rule at level 5.
This rule, shown in Equation (16) reads as follows: if the division attribute equals “parts” and
simultaneously experiences changes in the TPO attribute from “high” to “very high”, changes in
ECP from “high” to “very high”, and changes in RC from “high” to “very high”, the resulting
implication is a shift in PromoterStatus from “Passive” to “Promoter”. In other words, we want to
increase the company’s ratings for the time it took to place the parts order, the ease of completing the
parts order, and the customer’s rating to be a likely repeat customer. If all of these change from high
to very high, we can infer a change in the promoter status from passive to a promoter. This rule had
a support of 15 and a confidence of 0.755.

(Division, parts) ∧ (TPO, high → very high) ∧ (ECP, high → very high)

∧(RC, high → very high)

⇒ (PromoterStatus, Passive → Promoter)

(16)

This rule represented a synthesis of two distinct rules from each of the clusters at this
level. As we can see in our earlier Figure 3, one cluster for Dataset C at level 5 consists of the
flexible attributes OA, DC, TPO, and ECP while the other consists of OS, and RC. The first
rule, shown in Equation (17) entails: “if division = parts, TPO changes from high to very high,

Appl. Sci. 2024, 14, 1270 17 of 21

ECP changes from high to very high, the implication is a transition in promoter status from passive
to promoter”. This first rule had a support of 22 and a confidence of 0.499. The second
rule, shown in Equation (18), contributing to this combination is: “if division = parts and RC
changes from high to very high, we infer a change in promoter status from passive to promoter”.
This rule had a support of 39 and a confidence of 0.7211.

(Division, parts) ∧ (TPO, high → very high) ∧ (ECP, high → very high)

⇒ (PromoterStatus, Passive → Promoter)
(17)

(Division, parts) ∧ (RC, high → very high)

⇒ (PromoterStatus, Passive → Promoter)
(18)

Example 2. In this second example, also from level 5, our rule is shown in Equation (19). It shows
that if our division is in parts, the accuracy of order processing (OA) changes from high to very
high, the communication effectiveness within the dealer network (DC) changes from high to very
high, and the likelihood of customer repeat business (RC) changes from high to very high, it implies
a change in our promoter status from a passive to a promoter. This rule had a support of 11 and a
confidence of 0.755.

(Division, parts) ∧ (OA, high → very high) ∧ (DC, high → very high)

∧(RC, high → very high)

⇒ (PromoterStatus, Passive → Promoter)

(19)

The rules that were combined to form the above one are shown in Equations (20) and (21).
The first one describes that if our division is in parts and we change both OA and DC
from high to very high, we then infer an increase in promoter status from passive to
promoter. This rule had a support of 17 and a confidence of 0.507. The second rule states
that if our division is in parts and we increase RC from high to very high, we also imply
an improvement in promoter status from passive to promoter, with a support of 39 and
confidence of 0.721.

(Division, parts) ∧ (OA, high → very high) ∧ (DC, high → very high)

⇒ (PromoterStatus, Passive → Promoter)
(20)

(Division, parts) ∧ (RC, high → very high)

⇒ (PromoterStatus, Passive → Promoter)
(21)

Here, we delved into the application of the Vertical Correlation Method to generate
actionable insights through synthesis of action rules. By using a confidence threshold of 50%
and support threshold of two, we specifically explored the patterns emerging at level 5 of the
dendrogram within Dataset C. Through this, we provided specific instances of how action
rules were generated for different clusters of flexible attributes and then combined together.
These insights help contribute to a deeper understanding of the interconnections within
the dataset, revealing potential strategies for enhancing the PromoterStatus transitions.

5.2.2. Vertical Correlation Partitioning Method

For Dataset C and Level/Groupings 2, this method generated 46 rules with a precision
of 0.812 and lightness of 16.217.

Some action rules generated by this method are as follows:

(Division, parts) ∧ (OS, high → very high) ∧ (RC, high → very high)

⇒ (PromoterStatus, Passive → Promoter)
(22)

(Division, parts) ∧ (RC, high → very high) ∧ (PA, high → very high)

⇒ (PromoterStatus, Passive → Promoter)
(23)

Appl. Sci. 2024, 14, 1270 18 of 21

(Division, parts) ∧ (RC, high → very high) ∧ (TPO, high → very high)

⇒ (PromoterStatus, Passive → Promoter)
(24)

(Division, parts) ∧ (RC, high → very high) ∧ (EDOC, no response → very high)

⇒ (PromoterStatus, Passive → Promoter)
(25)

5.2.3. Random Partitioning Method

For Dataset C and Level/Groupings 2, this method generated an average of 3.686 rules
with a precision of 0.460 and lightness of 2.538, averaged across 10 iterations. Examples of
rules from one iteration returning 22 different rules include:

(Division, parts) ∧ (RC, high → very high) ∧ (OS, high → very high)

⇒ (PromoterStatus, Passive → Promoter)
(26)

(Division, parts) ∧ (PA, high → very high) ∧ (RC, high → very high)

⇒ (PromoterStatus, Passive → Promoter)
(27)

(Division, parts) ∧ (RC, high → very high) ∧ (EDOC, high → very high)

⇒ (PromoterStatus, Passive → Promoter)
(28)

Another iteration provides 13 rules, including those shown in Equations (26) and (27),
but did not have the rule shown in Equation (28). One rule unique to this iteration is:

(Division, parts) ∧ (DC, high → very high) ∧ (OS, high → very high)

∧(PA, high → very high) ⇒ (PromoterStatus, Passive → Promoter)
(29)

Note that we have pulled some rules for examples from the random iterations that
had a higher number of generated rules.

6. Discussion and Conclusions

This paper addresses action rule extraction from large datasets, a task that can be
approached using two methods: rule-based and object-based. In the rule-based approach,
the first step involves discovering classification rules, followed by examining their pairs
to check if action rules can be constructed. There are known software packages available
for generating these rules, such as Lisp-Miner [24] and SCARI [37]. However, a limitation
of current action rule discovery packages, including Lisp-Miner and SCARI, is that they
generate only small subsets of all classification rules, resulting in a much smaller set of
action rules. Consequently, achieving sufficient coverage for the resulting action rules
classifiers becomes problematic. Moreover, when the number of discovered action rules is
limited, their lightness decreases. By lightness, we refer to the average number of action
rules that support objects in a dataset. For instance, if the lightness is two, only two action
rules can be applied to reclassify objects. It can happen that both of these options are either
too costly or,for various reasons, unacceptable to users. Therefore, in such cases, they can
not be applied. In the domain we tested, business owners expected to have a lightness
measure of about ten. If the lightness measure exceeds this value, they prefer to see the top
ten best action rules (using the visibility measure [36]).

In the object-based approach, action rules are discovered directly from a dataset, re-
sulting in a larger number of rules than following a rule-based approach. However, we are
unaware of any software package discovering almost all action rules. One possibility is
system ARED, which generates action schemas covering all action rules (see [41]). The ques-
tion arises as to how to generate all or almost all action rules from these action schemas.
Many datasets are large or very large. One potential strategy for extracting action rules
from them is to begin by splitting the dataset vertically and/or horizontally, extracting
action rules from these splits, and subsequently merging them.

Appl. Sci. 2024, 14, 1270 19 of 21

In this paper, we focused on knowledge discovery methods based on splitting dataset
schemas into vertical clusters, comparing our proposed correlation vertical partitioning to
both random vertical partitioning and the base (no partitioning) method. Our comprehen-
sive evaluations on subsets of the NPS dataset highlight crucial differences between these
methodologies. Specifically, the results in Table 2 demonstrate that the random partition
generally yields fewer action rules compared to methods based on attribute correlation.

Furthermore, when examining metrics such as precision and lightness across the
datasets, methods grounded in attribute correlations consistently outperformed those
based on random vertical partitioning, producing results comparable to the base method.
For instance, the precision achieved using the correlation-driven approach exhibited either
a notably higher or comparable precision compared to its random counterpart. This trend
was similarly observed in terms of lightness across all datasets, indicating the broader
applicability of the correlation-based technique.

High lightness, as observed in our results, indicates the presence of a more extensive set
of action rules, and therefore options for a user to explore. From a business standpoint, this
is invaluable. Business stakeholders often require diverse options to weigh against varying
costs, safety concerns, and potential outcomes of action rule suggestions. The fact that
correlation-based partitioning offers this versatility, coupled with its consistent performance
and reduced need for iterative runs, establishes it as a preferred method, particularly in
scenarios with extensive datasets or where the quality and diversity of discovered action
rules are crucial.

In conclusion, our research highlights the advantages of leveraging attribute correla-
tions in vertical partitioning for action rule discovery. Beyond just considering execution
time, it is important to account for the quality, consistency, and business applicability of
results, areas where correlation-driven partitioning excels.

Author Contributions: A.C.B.: Conceptualization, Software, Investigation, Formal analysis, Val-
idation, Visualization, Writing, Writing—review & editing. Z.W.R.: Conceptualization, Supervi-
sion, Writing—review & editing. All authors have read and agreed to the published version of
the manuscript.

Funding: This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets presented in this article are not readily available due to
privacy policy.

Acknowledgments: The data used in this paper were provided by the Daniel Group.

Conflicts of Interest: The authors declare that they have no known conflict of interests or personal
relationships that could have appeared to influence the work reported in this paper.

References
1. Kuang, J.; Daniel, A.; Johnston, J.; Raś, Z.W. Hierarchically structured recommender system for improving nps of a company.

In Proceedings of the Rough Sets and Current Trends in Computing: 9th International Conference, RSCTC 2014, Granada and
Madrid, Spain, 9–13 July 2014; Proceedings 9; Springer: Berlin/Heidelberg, Germany, 2014; pp. 347–357.

2. Tarnowska, K.; Ras, Z. NLP-based customer loyalty improvement recommender system (CLIRS2). Big Data Cogn. Comput. 2021,
5, 4. [CrossRef]

3. Duan, Y.; Ras, Z. Developing customer attrition management system: Discovering action rules for making recommendations to
retain customers. Appl. Intell. 2023, 53, 10485–10499. [CrossRef]

4. Al-Mardini, M.; Hajja, A.; Clover, L.; Olaleye, D.; Park, Y.; Paulson, J.; Xiao, Y. Reduction of hospital readmissions through
clustering based actionable knowledge mining. In Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web
Intelligence (WI), Omaha, NE, USA, 13–16 October 2016; pp. 444–448.

5. Mardini, M.; Ras, Z. Extraction of actionable knowledge to reduce hospital readmissions through patients personalization. Inf.
Sci. 2019, 485, 1–17. [CrossRef]

http://doi.org/10.3390/bdcc5010004
http://dx.doi.org/10.1007/s10489-022-03614-0
http://dx.doi.org/10.1016/j.ins.2019.02.006

Appl. Sci. 2024, 14, 1270 20 of 21

6. Ras, Z. Reduction of hospital readmissions. Adv. Clin. Exp. Med. 2022, 31, 5–8. [CrossRef]
7. Ras, Z.; Dardzinska, A. From data to classification rules and actions. Int. J. Intell. Syst. 2011, 26, 572–590. [CrossRef]
8. Powell, L.; Gelich, A.; Ras, Z. How to raise artwork prices using action rules, personalization and artwork visual features. J. Intell.

Inf. Syst. 2021, 57, 583–599. [CrossRef]
9. Powell, L.; Gelich, A.; Ras, Z. The Construction of Action Rules to Raise Artwork Prices. In Foundations of Intelligent Systems;

Springer: Cham, Switerland, 2020; Volume 12117, pp. 11–22.
10. Agency for Healthcare Research and Quality, Healthcare Cost and Utilization Project (HCUP). Available online: https://www.

hcup-us.ahrq.gov/ (accessed on 1 September 2023).
11. Ciecierski, K.; Ras, Z.; Przybyszewski, A. Foundations of automatic system for intrasurgical localization of subthalamic nucleus

in Parkinson patients. Web Intell. Agent Syst. Int. J. 2014, 12, 63–82. [CrossRef]
12. Lewis, R.; Ras, Z. Rules for processing and manipulating scalar music theory. In Proceedings of the 2007 International Conference

on Multimedia and Ubiquitous Engineering (MUE’07), Seoul, Republic of Korea, 26–28 April 2007; pp. 819–824. [CrossRef]
13. Gelich, A.; Ellinger, J. Towards Smart Building: Visualization of Indoor CO2 Concentration. Adapting Modern Computational

Tools for Informing Design Building Decisions. In Human Interaction & Emerging Technologies (IHIET 2023): Artificial Intelligence &
Future Applications; AHFE International: San Francisco, CA, USA, 2023; Volume 111; pp. 71–79. [CrossRef]

14. Kembellec, G.; Chartron, G.; Saleh, I. Recommender Systems; John Wiley & Sons: Hoboken, NJ, USA, 2014.
15. Alyari, F.; Jafari Navimipour, N. Recommender systems: A systematic review of the state of the art literature and suggestions for

future research. Kybernetes 2018, 47, 985–1017. [CrossRef]
16. Jannach, D.; Manzoor, A.; Cai, W.; Chen, L. A survey on conversational recommender systems. ACM Comput. Surv. (CSUR) 2021,

54, 1–36. [CrossRef]
17. Felfernig, A.; Polat-Erdeniz, S.; Uran, C.; Reiterer, S.; Atas, M.; Tran, T.N.T.; Azzoni, P.; Kiraly, C.; Dolui, K. An overview of

recommender systems in the internet of things. J. Intell. Inf. Syst. 2019, 52, 285–309. [CrossRef]
18. Isinkaye, F.O.; Folajimi, Y.O.; Ojokoh, B.A. Recommendation systems: Principles, methods and evaluation. Egypt. Inform. J. 2015,

16, 261–273. [CrossRef]
19. Aggarwal, C.C.; Recommender Systems; Springer: Berlin/Heidelberg, Germany, 2016; Volume 1.
20. Ras, Z.; Wieczorkowska, A. Action-rules: How to increase profit of a company. In Proceedings of the European Conference

on Principles of Data Mining and Knowledge Discovery, Lyon, France, 13–16 September 2000; Springer: Berlin/Heidelberg,
Germany, 2000; pp. 587–592.

21. Tsay, L.S.; Ras, Z. Discovering extended action-rules (System DEAR). In Proceedings of the Intelligent Information Processing
and Web Mining, Advances in Soft Computing, Zakopane, Poland, 2–5 June 2003; Springer: Berlin/Heidelberg, Germany, 2003;
Volume 22, pp. 293–300.

22. Tsay, L.S.; Ras, Z. Action rules discovery: System DEAR2, method and experiments. J. Exp. Theor. Artif. Intell. 2005, 17, 119–128.
[CrossRef]

23. Rauch, J.; Simunek, M. Action rules and the GUHA method: Preliminary considerations and results. In Foundations of Intelligent
Systems. ISMIS 2009; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5722, pp. 76–87.

24. Rauch, J.; Simunek, M.; Chudan, D.; Masa, P. Ac4ft-Miner Action Rules. In Mechanizing Hypothesis Formation Principles and Case
Studies; CRC Press: Boca Raton, FL, USA, 2022; pp. 1–362.

25. Rauch, J.; Tomeckova, M. System of analytical questions and reports on mining in health data —A case study. In Proceedings
of the IADIS European Conference on Data Mining 2007, Lisbon, Portugal, 3–8 July 2007; IADIS Press: Lisbon, Portugal, 2007;
pp. 176–181.

26. Ras, Z.; Dardzinska, A. Action rules discovery based on tree classifiers and meta-actions. In Foundations of Intelligent Systems,
Proceedings of ISMIS’09, Springer: Berlin/Heidelberg, Germany, 2009; Volume 5722, pp. 66–75.

27. Pawlak, Z.; Grzymala-Busse, J.; Slowinski, R.; Ziarko, W. Rough sets. Commun. ACM 1995, 38, 88–95. [CrossRef]
28. Ras, Z.; Dardzinska, A.; Tsay, L.S.; Wasyluk, H. Association Action Rules. In Proceedings of the 2008 IEEE International

Conference on Data Mining Workshops, Pisa, Italy, 15–19 December 2008; pp. 283–290.
29. Kalanat, N. An overview of actionable knowledge discovery techniques. J. Intell. Inf. Syst. 2022, 58, 591–611. [CrossRef]
30. Kalanat, N.; Khanjari, E. Action extraction from social networks. J. Intell. Inf. Syst. 2020, 54, 317–339. [CrossRef]
31. Dardzinska, A. Action Rules Mining. Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2013; Volume 468.
32. Hajja, A.; Ras, Z.; Wieczorkowska, A. Hierarchical object-driven action rules. J. Intell. Inf. Syst. 2014, 42, 207–232. [CrossRef]
33. Tarnowska, K.; Dispoto, B.; Conragan, J. Explainable AI-based clinical decision support system for hearing disorders. AMIA Jt.

Summits Transl. Sci. Proc. 2021, 2021, 595–604.
34. Tarnowska, K.; Ras, Z.; Jastreboff, P. A data-driven approach to clinical decision support in tinnitus retraining therapy. Front.

Neuroinformatics 2022, 16, 934433. [CrossRef]
35. Tarnowska, K.; Bagavathi, A.; Ras, Z. High-Performance Actionable Knowledge Miner for Boosting Business Revenue. Appl. Sci.

2022, 12, 12393. [CrossRef]
36. Tarnowska, K.; Ras, Z.; Daniel, L. Recommender system for improving customer loyalty. In Studies in Big Data; Springer:

Berlin/Heidelberg, Germany, 2020; p. 130. Available online: https://www.springer.com/gp/book/9783030134372 (accessed on 1
August 2023).

http://dx.doi.org/10.17219/acem/144413
http://dx.doi.org/10.1002/int.20485
http://dx.doi.org/10.1007/s10844-021-00660-x
https://www.hcup-us.ahrq.gov/
https://www.hcup-us.ahrq.gov/
http://dx.doi.org/10.3233/WIA-140286
http://dx.doi.org/10.1109/MUE.2007.184
http://dx.doi.org/10.54941/ahfe1004011
http://dx.doi.org/10.1108/K-06-2017-0196
http://dx.doi.org/10.1145/3453154
http://dx.doi.org/10.1007/s10844-018-0530-7
http://dx.doi.org/10.1016/j.eij.2015.06.005
http://dx.doi.org/10.1080/09528130512331315855
http://dx.doi.org/10.1145/219717.219791
http://dx.doi.org/10.1007/s10844-021-00667-4
http://dx.doi.org/10.1007/s10844-019-00551-2
http://dx.doi.org/10.1007/s10844-013-0291-2
http://dx.doi.org/10.3389/fninf.2022.934433
http://dx.doi.org/10.3390/app122312393
https://www.springer.com/gp/book/9783030134372

Appl. Sci. 2024, 14, 1270 21 of 21

37. Sikora, M.; Matyszok, P.; Wrobel, L. SCARI: Separate and conquer algorithm for action rules and recommendations induction.
Inf. Sci. 2022, 607, 849–868. [CrossRef]

38. Bagavathi, A.; Tripathi, A.; Tzacheva, A.A.; Ras, Z.W. Actionable pattern mining-a scalable data distribution method based on
information granules. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications
(ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 32–39.

39. Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [CrossRef] [PubMed]
40. Dython Documentation. Available online: http://shakedzy.xyz/dython/modules/nominal/ (accessed on 1 December 2022).
41. Im, S.; Raś, Z.W. Action rule extraction from a decision table: ARED. Found. Intell. Syst. 2008, 4994, 160–168. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ins.2022.06.026
http://dx.doi.org/10.1016/j.tjem.2018.08.001
http://www.ncbi.nlm.nih.gov/pubmed/30191186
http://shakedzy.xyz/dython/modules/nominal/
http://dx.doi.org/10.1007/978-3-540-68123-6_18

	Introduction
	Background
	Recommender Systems
	Action Rules

	Related Works
	Materials and Methods
	Methods for Distributed Action Rule Generation
	Vertical Partitioning Based on Attribute Correlation
	Random Partitioning

	Additional RSES-Based Method for Action Rule Discovery
	Experimental Setup
	Dataset Source and Background
	Data Preprocessing
	Dataset Descriptions and Experimental Parameters
	Flexible Attribute Definitions and Vertical Correlation Partitioning Attribute Groupings
	Evaluation Metrics

	Results
	Comparative Insights
	Individual Action Rules
	Illustrating Vertical Correlation Method Combinations
	Vertical Correlation Partitioning Method
	Random Partitioning Method

	Discussion and Conclusions
	References

