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Abstract: Large-scale low Earth orbit (LEO) remote satellite constellations have become a brand new,
massive source of space data. Federated learning (FL) is considered a promising distributed machine
learning technology that can communicate optimally using these data. However, when applying FL
in satellite networks, it is necessary to consider the unique challenges brought by satellite networks,
which include satellite communication, computational ability, and the interaction relationship between
clients and servers. This study focuses on the siting of parameter servers (PSs), whether terrestrial
or extraterrestrial, and explores the challenges of implementing a satellite federated learning (SFL)
algorithm equipped with client selection (CS). We proposed an index called “client affinity” to measure
the contribution of the client to the global model, and a CS algorithm was designed in this way. A
series of experiments have indicated the advantage of our SFL paradigm—that satellites function as
the PS—and the availability of our CS algorithm. Our method can halve the convergence time of both
FedSat and FedSpace, and improve the precision of the models by up to 80%.

Keywords: federated learning; client selection; satellite edge computing

1. Introduction

As a resurgence in the space industry, the declining cost of producing and launching
nanosatellites has stimulated exponential growth in low Earth orbit (LEO) constellations
over the past two decades [1,2]. The volume of space-native raw data increases exponen-
tially with constellation size, and due to the bandwidth constraints of the satellite–ground
link, timely downloads of all the updated data are not achievable [3]. Therefore, as a dis-
tinctive distributed learning method, federated learning (FL) [4–6] holds immense potential
for broad deployment in satellites. This system avoids transmitting training data between
satellites, thereby preserving the data security of satellite data [7] and reducing costly traffic
in satellite communication [8–10].

In traditional Earth observation missions, the ground users must wait for all satellites
to send back data, typically requiring two to three days [11]. In contrast, FL can harness the
local computational resources of satellites to decentralize the model training tasks among
them, thereby eliminating the need for data transmission to ground stations (GSs) or other
satellites [12].

FL has been widely used in terrestrial networks, where the Google team has developed
a basic FL algorithm called FedAvg [13]. Chen et al. [14] applied this to the LEO constellation
to verify the effectiveness of SFL. However, as a synchronous approach, FedAvg forces all
satellites to complete local training and transmit their parameters to servers in a global
training round, resulting in several days to converge a model. Therefore, Razmi et al. [15]
applied an asynchronous approach and proposed FedSat, where servers no longer need to
wait for parameters from all satellites before starting the next round of training. Although
the asynchronous-based approach has some benefits, it can also lead to a new problem:
model aging, because a few satellites fall too far behind the global rounds. Then, So et
al. [16] proposed the FedSpace algorithm, which balances the idle connections of satellites
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and the obsolescence of local models. They calculated the variable satellite connectivity
based on the satellite orbits and Earth’s rotation to determine the global model aggregate
schedule. On this basis, Razmi et al. [17] proposed FedISL, which uses inter-satellite links to
reduce the delay of FL. Furthermore, they considered whether satellites can complete local
model training during the communication window and designed a scheduling algorithm,
FedSatSchedule [18]. Due to the intermittent connectivity between satellites and GSs, stale
gradients and unstable learning in SFL are challenges. Hence, Wu et al. [19] proposed
FedGSM, a novel asynchronous FL algorithm that introduces a compensation mechanism
to mitigate gradient staleness.

The introduction of FL to satellite networks has brought many new opportunities.
For example, Al-Hawawreh et al. [20] proposed a new FL-assisted distributed intrusion
detection system using a mesh satellite net to protect autonomous vehicles. Li et al. [21]
developed a FL module for multi-satellite, multi-modality in-orbit data fusion, which
compressed communication costs by a factor of 4 and significantly reduced the training
time by 48.4 min (15.18%). Salim et al. [22] proposed a novel threat detection FL model for
proactively identifying intrusions in satellite communication networks. This model utilizes
decentralized on-device data while preserving data privacy.

However, the applications of FL in satellite networks still face many unique challenges.
The mobility of satellites usually makes satellite communication unstable, which relies
on the predictability of satellite visits to create a system design [23]. One limitation of
LEO satellites is their brief visibility period with GSs. While their orbit period typically
ranges from 90 to 120 min, they are only in direct contact with a GS for 5 to 20 min per
orbit [19]. Moreover, failures from the network, hardware, software, etc., make SFL face
more challenges than terrestrial FL [12].

It is necessary for FL to make a client selection (CS), and this problem in terrestrial
networks has been fully studied [24]. However, to the best of our knowledge, this was
lacking in satellite networks. This problem needs to consider the orbital characteristics of
the client satellites, data value, computing capabilities, etc., to improve the performance of
the model in satellite federated learning (SFL).

In this paper, we firstly investigate the characteristics of satellites links, and discuss the
positioning of a parameter server (PS) in two distinct scenarios: deployment at a GS and
deployment on an LEO satellite. Secondly, we consider these specific attributes of satellites
in the context of SFL, and propose an index called “client affinity” for client satellites to
gauge their contribution to the global model. Finally, we validated the efficacy of our
methods by conducting experiments based on two benchmark methods—FedSat [15] and
FedSpace [16].

The contributions of this paper can be summarized as follows:

• We demonstrate a SFL paradigm where LEO satellites act as PSs, and conduct simula-
tions based on a constellation of 120 low-orbit satellites.

• We demonstrate in detail the communication and mobility models of SFL, and model
the CS problem in SFL as a 0–1 knapsack problem.

• We establish a model quality evaluation function for client satellites, and use affinity
to describe the contribution of the client to global training. Then, we combine client
access and communication to establish a CS mechanism.

• Simulation results are presented which verify that the proposed method can effectively
improve the convergence speed and accuracy of the model in SFL.

2. Motivation

In this section, we demonstrate how SFL performance can be improved when the LEO
satellite plays the role of the PS. One of the benefits of LEO satellites is their short orbital
period. For example, the period of a satellite in a circular orbit with an altitude of 500 km is
approximately one hour. However, the restricted communication range between the GSs
and satellites inherently limits the access time. The communication window between an
LEO satellite and a GS is typically only a few minutes long.
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We simulated a LEO satellite constellation with a total of 120 satellites. We separately
counted the number and duration of accesses for the two cases: an LEO satellite as the PS
and a GS as the PS. We constructed Walker delta constellations at three different orbital
heights of 400 km, 500 km, and 600 km, whose inclinations are 40◦, 45◦, and 50◦, respectively.
At each height, five orbits were placed, each with eight satellites.

In the satellite-to-ground scenario (a GS as the PS), we placed a GS at a location in
Shanghai, China, and counted the number and duration of all 120 satellites’ visits to the GS
within 24 h. In the satellite-to-satellite scenario (an LEO satellite as the PS), we monitored
visit numbers and durations from other satellites to the PS.

As Figure 1 shows, although the PS satellite cannot access all other satellites, some
of them can establish a very long communication window with the PS, which is difficult
for GSs to achieve. The statistical results show that the average access duration when the
satellite is the PS is 6571.9 s, while it is only 555.3 s for the GS. Similarly, Figure 2 shows
the number of times the satellite accesses when the GS and the satellite, respectively, are
the PSs. When a GS is the PS, each satellite has a relatively equal chance of access, but the
access frequency is much lower than when the satellite is the PS. Specifically, when the PS
is a satellite, the average number of accesses is 30, while for the GS it is only 8. Furthermore,
Figure 3 illustrates the numbers, durations, and temporal relationships of accesses between
the clients and the PS. When a GS is the PS, the access in different satellites has no significant
differences. However, when a satellite is the PS, some satellites can establish a stable and
continuous connection, while others can access the server intermittently, and still others
cannot access the server during the simulation period.

S
A
T1

SAT4
SAT8
SAT12
SAT16
SAT20
SAT24
SAT28
SAT32
SAT36
SAT40
SAT44
SAT48
SAT52
SAT56
SAT60
SAT64
SAT68
SAT72
SAT76
SAT80
SAT84
SAT88
SAT92
SAT96
SAT100
SAT104
SAT108
SAT112
SAT116
SAT120

0

10k

20k

30k

40k

50k

60k

70k

Satellites

D
ur

at
io

 (
se
co
nd
s)

Method
Sat2Ground
Sat2Sat

Figure 1. Comparison of the duration of satellites-to-ground and satellites-to-satellites visits.

In summary, in FL, we hope that clients have longer connection windows and more
frequent access to the PS, but the accessibility performance in the satellite–ground scenario
is far less than in the satellite–satellite scenario. Moreover, the revisit time of some satellites
is too long in both the satellite–ground and satellite–satellite scenarios, which produces
performance loss in both synchronous SFL and asynchronous SFL. Therefore, it is necessary
to filtrate clients to improve the overall training performance.
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Figure 2. Comparison of the number of satellites-to-ground and satellites-to-satellites visits.
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Figure 3. The access comparison between the satellite and GS acts as the PS. The horizontal axis
represents the simulation time, and each horizontal line on the vertical axis represents the status of
the connection between the client satellites and the PS.

3. System Model

This section begins with the model assumptions and, secondly, the communication
model is introduced. Then, an overview of the general framework of FL algorithms is given.
Finally, we introduce the CS in SFL.

3.1. Model Assumption

Our study focuses on comparing the SFL performance between a GS as the PS and an
LEO satellite as the PS, verifying the effectiveness of CS for SFL. We ignore some conditions
and constraints, differing from real physical systems. Therefore, we list our assumptions in
our model as follows:

(1) All satellites are run in the standard circular orbits and ignore perturbation.
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(2) We exclude the potential effects of the harsh space environment on satellites, such as
satellite failures caused by cosmic rays. We assume that the satellite’s communication
and computing will not be adversely affected.

(3) Inter-satellite links and ground–satellite links share the same communication channel
model, which ignores most of the complex effects such as atmospheric absorption,
antenna misalignment, and Doppler shift.

(4) The queuing delay in communication is ignored.
(5) The computation ability is constant for a satellite; it is not affected by radiation,

overheat, low power, etc.
(6) All satellites’ hardware remain healthy, and always have enough energy to complete

communication and computation tasks.
(7) The time the PS takes to make decisions is ignored.
(8) When the link is established, the communication parameters remain stable.
(9) The PS knows all the clients’ orbit information, and can forecast their position during

the whole simulation.

3.2. Coverage and Access Time Model
3.2.1. Satellites to GS

Figure 4 explains the space geometric relationship between LEO satellites and the
GS [25], where L is the arc length that the GS can communicate with a satellite, and vs is the
satellite’s speed (uniform on the circle orbit). Then, we have the visibility time T between
the GS and a satellite:

T =
L
vs

(1)

In addition, vs and L can be calculated as follows:

vs =

√
µ

1
(Re + h)

(km/s) (2)

L = 2× (Re + h)× γ (3)

where µ = 3.986013 ×105 km3/s2 is the Kepler constant, Re ≈ 6371 km is the earth’s radius,
and h is the distance between the orbit plane and the Earth’s surface.

Re

h s

θ 

γ 

Edge satellite

Center of the Earth

Ground 

station

L
vs

Subastral 

point

Figure 4. Space geometric relationship between the LEO satellite and the GS [25].

3.2.2. Satellites to Satellites

As Figure 5 shows, we assume that two satellites can communicate with each other
only if the line connecting them is not obstructed by the Earth. Then, we demonstrate
how to calculate the visibility between satellites. A space Cartesian coordinate system is
established with the Earth’s center as the origin, the line connecting the South and North
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poles as the Z-axis, and the X-axis pointing to the 0◦ longitude line. We assume that the
orbit inclination of satellite A is θ and B is φ, and that the orbit heights are hA and hB,
respectively. At a certain moment, the projection points of satellites A and B on the plane
where the Earth’s equator is located are M and N, respectively. Then, we set α and β to
express ∠MOX and ∠NOX. It is worth noting that α and β are constant because they
are orbit inclinations, while the θ and φ are parameters that change uniformly over time.
Hence, we can obtain the coordinates of these two satellites:

√
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Figure 5. Space geometric relationship between the LEO satellites in circle orbit.

{ −→
OA = (hA cos α cos θ, hA sin α cos θ, hA sin θ)
−→
OB = (hB cos β cos φ, hB sin β cos φ, hB sin φ)

(4)

−→
AB =

−→
OA−−→OB (5)

and the minimum distance between origin point O and line AB can be expressed by OP,
which is perpendicular from point O to line AB and can be calculated as follows:

|−→OP| = |
−→
OA×−→OB|
|−→AB|

(6)

Finally, we can determine whether the link is obstructed by the earth based on the
comparison of OP and Re: {

|−→OP| > Re link connected
|−→OP| ≤ Re link disconnected

(7)

3.3. Communication Model

In the simulation, we only consider a set of clients I with only one server (a GS or an
LEO satellite). In our model, the satellites use wide beams in the Ka band (receiver between
20.1–21.2 GHz and transmitter between 29.9–31 GHz [26]) for inter-satellite communica-
tion. Mutual interference exists because the PS receives multiple clients at the same time.
Considering large-scale fading and shadowed-Rician fading [27], we denote the channel
power gain from client i to the server as gi. Hence, the transmission rate Ri for parameter
aggregation can be calculated as follows:

Ri = B log2

(
1 +

gi pi

∑j∈I\{i} gj pj + σ2

)
, i ∈ I (8)
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where B is the available spectrum bandwidth, pi is the transmit power of client i, and σ2 is
the additive white Gaussian noise (AWGN) power.

Factually, the satellite communication model is more complex and there are differences
between satellite-to-GS and satellite-to-satellite. However, in this simulation, we ignore
many of the communication details such as atmospheric absorption loss and antenna
pointing loss [28]. We only give a rough model, since the amount of data we are transmitting
is not large and communication has a relatively minor impact on overall performance.

4. Algorithm

In this section, we explain the algorithm flow of SFL and introduce the method of CS.

4.1. Federated Learning

As Figure 6 shows, we consider a PS with N satellite clients. A typical implementation
of federate learning is FedAvg [13]; the PS will randomly choose K clients from I to
participate in training, which is denoted as set K. The parameters of the global model are
aggregated by these clients. Every client has a local dataset (xk, yk) ∈ A, where xk is the
sample data and yk is the label data, and the size ofA is Dk. For a client that can participate
in the learning, the loss function can be denoted as fk(ω), where ω is the model parameter.

The goal of FL is finding the ω that can minimize the global average loss, and the
optimization function is given by

min
ω∈R

F(ω) =
Dk
D

|K|

∑
k=1

Fk(ω) (9)

Fk(ω) =
1

Dk
∑

i∈Dk

fi(ω) (10)

where the D is the data size of the total dataset. For client k, it updates the model parameters
by stochastic gradient descent:

ωk
t+1 = ωk

t − η∇ fk(ω
k) (11)

where η is the learning rate.
The PS aggregates the parameters and updates the global model from clients K by

ωt+1 =
Dk
D

|K|

∑
k=1

ωk
t+1 (12)
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Figure 6. Architecture of SFL.
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The pseudo-code of FedAvg is given in Algorithm 1.

Algorithm 1 FedAvg [13]. The chosen K clients are indexed by k; B is the local minibatch
size and E is the number of local epochs

Server Process
1: Initialize model parameter ω0 randomly from a uniform or normal distribution, and

send to clients.
2: for each round t = 1, 2,×s do
3: select K clients as set K
4: for each client k ∈ K in parallel do
5: ωk

t+1 ← Client Update(k, wt)
6: end for

7: ωt+1 ←
K
∑

k=1

Dk
D ωk

t+1

8: end for
Client Process For client k, update ωk

9: for i ∈ E do
10: for b ∈ B do
11: ωk

b+1,i ← ωk
b,i − η∇l

(
ωk

b,i; b
)

12: end for
13: end for
14: return ωk

4.2. Client Selection

We design a CS algorithm for SFL. We evaluate a client from the delay (which includes
the communication delay and computational time cost), orbit characteristics, and data
quality. These data can be provided directly in the form of hyper-parameters or calculated
through a program. For example, the communication and computational ability is repre-
sented by channel rate and CPU frequency, respectively. They can be assigned reasonable
values directly in the simulation. In this paper, we gave each client a random value range
from 1 Gbytes/s to 10 Gbytes/s. The orbit characteristics include the satellites’ position,
direction, and velocity, all of which can be computed easily by STK. Data quality is a unique
designed index in this study, and it is also a variate that is evaluated and updated in every
round of training.

4.2.1. Delay

We set ck as the computation capability of satellite k [29]. If the client is selected, it
will obtain the global model parameter ωt from the PS. We denote W as the data size of the
parameter that client k downloads from the PS, and Qk as the size of the updated parameter
uploaded to the PS. After finishing the local computing, the new local model parameter ωk

is sent to the server. The time cost of this process TS
k consists of the propagation delay, the

transmission delay, and the computing delay, which can be calculated by

TS
k =

sk
c
+

W
Rk

+
Xk
ck

(13)

where sk is the distance from the client to the server, and c = 3.0× 108 m/s is the speed of
light; Xk is the required CPU cycles of one round of local training.

If the PS is the GS, sk can be calculated by

sk =
√

R2
e + (Re + h)2 − 2Re(Re + h) cos γ (14)

or if the PS is the satellite, sk is |−→AB|, which can be calculated by Equations (4) and (5).
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Hence, the time cost of a round training process in FL, that consists of a K client and
one server, can be expressed as:

Tagg = max
k∈K

[
TS

k

]
+

K

∑
k=0

QkDagg/cs (15)

where cs is the computation ability of the PS, and Dagg is the number of CPU cycles required
for the average size of each parameter datum to aggregate.

4.2.2. Orbit Characteristic

Unlike FL on the ground, one of the challenges of SFL is the orbital characteristics of
satellites. In CS methods that do not consider orbital characteristics, it is highly likely that
client satellites will disconnect from the server after completing local training, resulting
in client resource waste. In extreme cases, the PS may not have immediate access to any
available client satellites for some time, thereby being unable to distribute the global model
immediately. In such cases, it is necessary to consider the orbital characteristics in CS.

According to Section 3.2, we can calculate the duration of satellite access. Actually,
we can assign the task of orbit simulation to the Systems Tool Kit (STK) (https://www.
ansys.com/products/missions/ansys-stk, accessed on 1 December 2023), a professional
satellite-to-simulation tool. We can easily obtain the status of any satellite by this simulator.
As shown in Figure 7, a satellite could be in two statuses; one is that it has Tpre time left
to connect to the PS, and the other is that it has been connected, but has Tin time left to
disconnect. In addition, once the client connects to the PS, Tpre will refresh as the remaining
time until the next server access.

The orbital period of satellite A

The orbital period of satellite B

The coverage scope of the server 

Tpre 

Tin 

Motion direction of the satellite

The orbital period of satellite A

The orbital period of satellite B

The coverage scope of the server 

Tpre 

Tin 

Motion direction of the satellite

The server

Figure 7. Two statuses between the client satellite and the server.

We represent the maximum duration for a satellite to access the server at once as
Tcov(Tcov ≥ Tin), and denote Twait as the time that the PS will wait for the client. Then, we
have Twait according to Algorithm 2, where Twait = 1 expresses that the client is unusable.

https://www.ansys.com/products/missions/ansys-stk
https://www.ansys.com/products/missions/ansys-stk
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Algorithm 2 Calculate Twait

1: if The client has connected to the server then
2: if Tin ≥ TS then
3: Twait = 0
4: else
5: Twait = Tpre
6: end if
7: else
8: if Tcov ≤ TS then
9: Twait = −1

10: else
11: Twait = Tpre
12: end if
13: end if

4.2.3. Data Quality

Ensuring data quality poses challenges in FL because of the diverse range of client
devices. Randomly selecting clients as a strategy could result in global model deterioration
as a result of the inclusion of poor data samples, leading to sluggish convergence or even
failure to converge.

We propose a method for measuring the degree of anomaly in local models and
determine the affinity of clients to assess the quality of data maintained by them. In doing
so, we consider the impact of local data when designing the CS mechanism.

This method determines whether the client’s data have deteriorated the global model
by comparing the distance from the updated local model to the global model, and other
clients’ models. We define the abnormality of the model as Abk for client k in global round t:

Abt
k = σ∥ωt −ωk

t+1∥2 +
(1− σ)

|K| − 1 ∑
j∈K\{k}|

∥ωk
t+1 −ω

j
t+1∥2 (16)

where σ is the proportionality factor, a hyper-parameter that can adjusted according to need.
We evaluate the quality of the client’s data according to its historical performance, and

determine the client affinity A f to indicate the impact of the client’s data on the global model
during the training process. For a selected client k, its A fk can be calculated as follows:

A fk =
x=t

∑
x=0

ex−t

Abx
k

(17)

4.2.4. Optimization Model

We have proposed the optimization object of CS towards SFL:

min
K

(
Tagg +

1
K

K

∑
k=0

Tk
wait

A fk

)
s.t. ∑

k

(
Tk

wait + TS
k

)
≤ Tm

K ⊆ I
0 ≤ K ≤ I

(18)

We cannot exclude the possibility of having no eligible clients at one moment. There-
fore, in the constraints, we allow K equal to 0, which means the server will keep waiting
until a suitable client becomes available. In addition, we set a threshold Tm for the total
waiting time, which is a hyper-parameter that will be manually adjusted based on the
experimental results.
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The above problem can be regarded as a 0-1 knapsack combinatorial optimization
problem, where the capacity of the knapsack is Tm, the weight of the item i is denoted by
Wi = TS

i + Ti
wait, and its value is denoted by Vi = A fk. Then, we can solve the optimal CS

problem by using Algorithm 3:

Algorithm 3 CS algorithm based on 0-1 knapsack problem

1: initialize a 2-dimensional array dpi,j to storage the max value.
2: for each client i = 0, 1, 2,×s, I do
3: for each j = 0, 1, 2,×s, Tm do
4: if i = 0 or w = 0 then
5: dpi,j = 0
6: else
7: if Wi−1 ≤ j then
8: dpi,j = max

[
Vi−1 + dpi−1,(j−Wi−1)

, dpi−1,j

]
9: else

10: dpi,j = dpi−1,j
11: end if
12: end if
13: end for
14: end for

5. Simulation

We simulated an LEO constellation with 120 satellites by STK, and imported the
information on links between clients and PS as a JSON file. Hence, our program checked
the connections between clients and the PS every time slot (0.1 s) based the JSON file, so we
can know which clients were connected to the PS at any time. Then, we compared the SFL
between satellite-to-ground and inter-satellite communication, and validated effectiveness
of our CS algorithm.

5.1. LEO Constellation

We consider an LEO Walker constellation consisting of 120 satellites, distributed at
400 km, 500 km, and 600 km, respectively. Five orbital planes are evenly deployed at
each altitude, with each orbital plane having eight satellites. The details of constellation
simulation parameters are listed in Table 1, and the results of the Walker configuration
constellation simulated using the STK based on these parameters are shown in Figure 8.

Table 1. The constellation simulation parameters.

Height Inclination Number of Orbital
Planes

Number of Satellites
in Each Plane

400 km 40◦ 5 8
500 km 45◦ 5 8
600 km 50◦ 5 8

Figure 8. The simulated constellation with 120 satellites.
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In the simulation, we established a GS in Shanghai, situated at latitude 31.25◦ and
longitude 121.48◦, to serve as the ground PS. Additionally, we selected a satellite orbiting
at an altitude of 500 km to serve as the space PS.

5.2. Experimental Environment, Datasets, and Hyper-Parameters

The construction and simulation of constellations in this study were carried out
using STK 12.2 and Python 3.9, and client access times (start and end) were obtained via
the generation of files in JSON format. We built the SFL using Python 3.9, Pytorch 2.0
with CUDA 11.7. The experiment was executed on a personal computer equipped with
Windows 11-64 bit system (Microsoft, Washington, DC, USA), and 64 GB of memory, a 36-
thread Intel-i9-10980XE CPU (Intel, Shanghai, China), and an NVIDIA RTX 3090 graphics
card (ASUS, Taipei, China) with 24 GB of memory.

The ResNet-50 [30] model was applied as the backbone network in this experiment,
which consists of five stages each with a convolution and identity block. Each convolution
block has three convolution layers and each identity block also has three convolution layers.
The ResNet-50 has over 23 million trainable parameters, which is challenging to train but is
capable of providing highly accurate results.

The Fashion-MINIST [31] and CIFAR-100 [32] datasets were applied during the ex-
perimental phase. Fashion-MINIST is a dataset comprising 28 × 28 grayscale images of
70,000 fashion products from 10 categories, with 7000 images per category, whose training
set has 60,000 images and the test set has 10,000 images. CIFAR-100 has 100 classes con-
taining 600 images each and there are 500 training images and 100 testing images per class,
which include animals, foods, vehicles, flowers, etc.

In the experiment, the training set was randomly distributed across the clients after
being shuffled, and an overlap coefficient ζ was set to allow for the possibility of identical
data among different clients. The test set was deployed on the server side for evaluating
the aggregated model. The term ζ = 1 signifies that all clients possessed identical datasets,
whereas ζ = 0 implies that no client datasets overlapped. In one of our experiments, the ζ
was set at 0.2, indicating that each client contained 20% of the data common to one or more
other clients.

We have established 5 epochs for local training and a total of 200 epochs for global
training. When clients have finished the five epochs of local learning, they immediately
send their results to the PS. For model evaluation, the ratio coefficient σ was set to 0.2. In
a single-round of training, the maximum number of client systems that can be selected is
capped at 40. On the client side, there were three rounds of localized training, with the
learning rate being fixed at η = 0.01 and the batch size configured to 32.

5.3. Experiment Results

We measured the accuracy and convergence speed in different scenarios, that is, we
compared the impact of server deployment on the GS or the satellite, and FedSat [15] and
FedSpace [16] were applied as two benchmark methods. We compared the impact of CS
mechanisms on these SFL methods.

Firstly, we considered the impact of the CS mechanism on both methods when the
PS is located is the GS. As shown in Figure 9, in 200 rounds of iterations, the algorithms
equipped with a CS mechanism not only exhibited a faster convergence speed but also
significantly improved the accuracy of the model. Amid the stringent visitation conditions,
both FedSpace and FedSat, devoid of CS, faced arduous endeavors in reaching model
convergence within a span of 48 h. Consequently, the final precision obtained stood at
38.4% and 37.5% for each, respectively. Fortunately, the CS mitigated this situation and
significantly improved the convergence speed and accuracy rate; both methods achieved
more than 80% model accuracy within 48 h.
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Figure 9. The result of experiment in satellite–GS scenario with Fashion-MINIST.

What we wanted to illustrate next is that, in SFL, deploying the PS on the satellite is a
better choice. We used the same training parameters and configurations as on the GS, but
changed the location of the PS to a satellite at a height of 500 km. As shown in Figure 10,
the benchmark method significantly improved the convergence speed and accuracy rate.
This reveals the potential of inter-satellite FL. Compared to the traditional methods, we
achieved more than a 30% improvement in accuracy. Moreover, using CS can shorten the
model convergence time to less than 16 h, with FedSpace achieving an accuracy of 85.5%
and FedSat achieving an accuracy of 79.8%. A detailed comparison of the results is shown
in Table 2.

We attempted to further validate the effectiveness of the algorithm on the CIFAR-100
dataset. As shown in Figure 11, although the increase in dataset variety indeed presents
challenges for satellite federal learning, our method was still able to achieve convergence
within 24 h and attain accuracies of 82.3% and 77.4%.
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Figure 10. The result of experiment in inter-satellites scenario with Fashion-MINIST.
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Table 2. Comparison of experimental results (Fashion-MINIST).

Method Scenario Time for Convergence Accuracy

FedSat Satellites-to-GS >48 h 38.4
FedSat + CS Satellites-to-GS 36 h 80.5

FedSat Satellites-to-satellite >48 h 71.2
FedSat + CS Satellites-to-satellite 20 h 79.8

FedSat Satellites-to-GS >48 h 37.5
FedSpace + CS Satellites-to-GS 24 h 85.8

FedSat Satellites-to-satellite 48 h 72.1
FedSpace + CS Satellites-to-satellite 16 h 85.5
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Figure 11. The result of experiment in inter-satellites scenario with CIFAR-100.

6. Conclusions

Federated learning (FL) is a communication-efficient machine learning framework that
is well-suited for satellite applications, where communication capabilities are often limited.
Additionally, satellite data transmission via wireless broadcasting inherently poses privacy
and security risks. FL, however, has strong privacy protection capabilities, which can
help to ensure the privacy of remote sensing data. This study investigates the positioning
of parameter servers (PSs) and the problem of client selection (CS) within the context
of satellite federated learning (SFL). We examined and contrasted the access times and
duration from client satellites to both the ground station (GS) and the server satellite. It has
been observed that a satellite, when functioning as a PS, possesses a better ability to receive
client parameters within its field of view compared to a GS. Both the communication and
mobility models for SFL were demonstrated. The CS is modeled as a 0–1 knapsack problem
to be solved. A comparative analysis with two benchmark methods, FedSat and FedSpace,
was conducted to establish the advancements of inter-satellite FL. Then, Fashion-MINIST
and CIFAR-100 were applied as datasets to test the models. Notably, the experimental
results indicate that the CS mechanism can expedite the convergence speed of SFL up to
12 h, and it achieved an accuracy surpassing 80%.

We have not yet conducted experiments in a larger-scale constellation. In fact, fu-
ture constellations may expand to the scale of tens of thousands of low Earth orbit (LEO)
satellites, such as Starlink (https://www.starlink.com/, accessed on 1 December 2023).
Therefore, the CS mechanism proposed in this paper may bring about very high computa-
tional overheads in the large-scale constellation scenario. This is a problem worth studying
in future work. At the same time, we used a general dataset in the simulation. In the real
satellite scenario, the remote sensing data of satellites may be different. The impact of the

https://www.starlink.com/
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long-tail distribution of data on SFL and client selection has not yet been considered. In the
future, we will explore more diverse paradigms of SFL for applications, as well as consider
more comprehensive CS mechanisms.
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Abbreviations

N The number of clients
I The set of all clients
K The number of clients chosen
K The chosen set of clients
L The arc length that GS can communicate with a satellite
vs The satellite’s speed
T The visible time between GS and a satellite
µ Kepler constant
Re Earth’s radius
h The distance between the orbit plane and Earth’s surface
γ The satellite’s depression angle
B The available spectrum bandwidth
Ri The transmission rate of the client i
pi The channel power of the client i
gi The channel power gain of the client i
σ2 The AWGN power
xk The sample data of the client k
yk The label data of the client k
ωk

t The model parameter of the client k in t-th round training
fk(ω) The loss function of the client k
D The size of the total dataset with all clients
Dk The size of the dataset in the client k
A The dataset of the client k
ck The computation ability of the client k
W The data size of global model parameters
Qk The data size of local model parameters for the client k
sk The distance between the client and the server
c The speed of light
Xk The abnormality of the model; the required CPU cycles for client k to train a round
Abi

k The abnormality of the local model for client k in round i
A f i

k The affinity of the client k in round i
Tm The threshold of the total waiting time for all selected clients.
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