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Abstract: Under uncertain environments, how to characterize individual preferences more naturally
and aggregate parameters better have been hot research topics in multiple attribute decision making
(MADM). Fuzzy set theory provides a better mathematical tool to deal with uncertain data, which
promotes substantial extended studies. In this paper, we propose a hybrid fuzzy set model by
combining a linguistic interval-valued spherical fuzzy set with a soft set for MADM. The emergence of
a linguistic interval-valued spherical fuzzy soft set (LIVSFSS) not only handles qualitative information
and provides more freedom to decision makers, but also solves the inherent problem of insufficient
parameterization tools for fuzzy set theory. To tackle the application challenges, we introduce the
basic concepts and define some operations of LIVSFSS, e.g., the “complement”, the “AND”, the “OR”,
the “necessity”, the “possibility” and so on. Subsequently, we prove De Morgan’s law, associative law,
distribution law for operations on LIVSFSS. We further propose the linguistic weighted choice value
and linguistic weighted overall choice value for MADM by taking parameter weights into account.
Finally, the MADM algorithm and parameter reduction algorithm are provided based on LIVSFSS,
together with examples and comparisons with some existing algorithms to illustrate the rationality
and effectiveness of the proposed algorithms.

Keywords: fuzzy set; linguistic interval-valued spherical fuzzy soft set; multiple attribute decision-
making; parameter reduction

1. Introduction

In real life, we often encounter uncertain and fuzzy data when dealing with decision-
making problems in various fields such as economics, engineering, etc. How to deal with
imprecise information is always a huge challenge. Many scholars are committed to opti-
mizing the description of uncertainty by constructing different models or representations,
such as fuzzy set theory [1], rough set theory [2], vague set theory [3] and so on. Fuzzy set
describes the uncertainty in the data nicely by utilizing membership functions. It provides
a better mathematical tool for decision-making problems with uncertainty. In order to
optimize the problems of single membership degree of a fuzzy set, more scholars have ex-
tended their theories on the basis of the fuzzy set. Atanassov [4] proposed an intuitionistic
fuzzy set (IFS), which described more uncertainty in terms of the membership degree and
non-membership degree. Atanassov and Gargov [5] developed an interval-valued intu-
itionistic fuzzy set, which described the membership degree and non-membership degree
by interval values. Yager [6] developed the Pythagorean fuzzy set as a generalization of
the intuitionistic fuzzy set, which ensured that the square summation of the membership
degree and non-membership degree was less than or equal to 1. This development has been
beneficial for decision makers in solving attribute problems where the sum of the member-
ship degree and non-membership degree exceeds 1. Cuong and Kreinovich [7] initiated the
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picture fuzzy set, which dealt with the situation where the neutral membership degree was
considered independently in real decision-making problems. Hesitation of the decision
maker plays a significant role in practical decision-making problems. To enhance decision
makers’ flexibility when dealing with situations where the sum of the membership degree,
hesitancy and non-membership degree exceeds 1, Gündoğdu and Kahraman [8] proposed
the concept of the spherical fuzzy set. This concept is a generalization of the picture fuzzy
set and ensures that the square summation of the membership degree, non-membership
degree and hesitancy is less than or equal to 1. As a result, spherical fuzzy sets have been
extensively explored by various scholars and applied in diverse fields [9–11].

In the real word, it is always more natural for people to use natural language to express
their preferences than to use numerical values. In light of this, Zadeh proposed linguistic
variables [12] to enable people to solve problems through qualitative evaluation. Further-
more, Herrera et al. [13] proposed the linguistic-term set (LTS) to describe all the discrete
linguistic variables. Xu [14] studied aggregation operators based on probabilistic linguistic
information. Thereafter, increasing numbers of studies have begun to explore hybrid mod-
els that combine LTS with extensions of fuzzy sets. Ünever et al. [15] proposed the linguistic
single- and interval-valued hybrid intuitionistic fuzzy multi-set and linguistic single- and
interval-valued hybrid intuitionistic fuzzy multi-value, which provided a qualitative and
sensitive assessment tool for multi-criterion group decision making. Liu et al. [16] proposed
the linguistic interval-valued spherical fuzzy set (LIVSFS), which was the extension of
the interval-valued spherical fuzzy set and linguistic term set to address the difficulty of
obtaining quantitative evaluation in decision making. Gurmani et al. [17] proposed the
linguistic interval-valued T-spherical fuzzy set, which allowed decision makers to provide
their evaluations in a wider space and to deal with vague information better. However, an
inherent limitation of all these fuzzy set theories is the inadequacy of the parametrization
tools associated with them, that is, the inability to capture information in the form of
approximations by different parameters.

Molodtsov [18] pointed out the inherent difficulties of the above theories and intro-
duced a new model called a soft set, which aimed to overcome the lack of parametrization
tools in traditional uncertainty theories. The soft set is a parameterized family of sub-
sets defined over a universe and can allow us to use any parameterization, which gives
us more flexibility in practical application. Because of the advantages of the soft set as
parametrization tools, it provides many excellent methods in different fields [19–21]. Since
hybrid models combine the advantages of each model, researchers have conducted in-depth
studies on the combined models of soft set theory and other mathematical models. Maji
et al. [22] presented the fuzzy soft set by combining a fuzzy set with a soft set, which helped
decision makers to deal with fuzzy data better. The main advantage of the fuzzy soft set
is that it can solve MADM better when fuzzy data arise in the form of approximations by
different parameters. Hence, more and more scholars studied and proposed new hybrid
models, such as the interval-valued fuzzy soft set [23], spherical fuzzy soft set [24], in-
tertemporal hesitant fuzzy soft set [25], possibility fermatean fuzzy soft set [26], generalized
interval-valued intuitionistic fuzzy soft set [27] and so on [28–30]. These hybrid models
effectively combine the description of imprecise and ambiguous data by different fuzzy
sets with the advantage of the soft set as parametrization tools, and achieve promising
results in some tasks, such as MADM [31–34], parameter reduction [35–37], approximate
reasoning [38,39] and so on [40]. The geometric representations of the intuitionistic fuzzy
set, Pythagorean fuzzy set, picture fuzzy set, spherical fuzzy, linguistic interval-valued
spherical fuzzy set and LIVSFSS are given in Figure 1.
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Figure 1. Geometric representations of intuitionistic fuzzy set, Pythagorean fuzzy set, picture fuzzy
set, spherical fuzzy, linguistic interval-valued spherical fuzzy set and LIVSFSS [4,6–9,13,16].

The purpose of this paper is to propose a new hybrid model: the linguistic interval-
valued spherical fuzzy soft set (LIVSFSS), which can not only achieve the preferences of
decision makers by using linguistic terms and provide a greater degree of freedom for the
decision makers, but also captures fuzzy information better in the form of approximations
by different parameters under MADM. Hence, we first define the basic concepts of LIVSFSS.
Then, we discuss various operational laws and the proofs of properties about LIVSFSS,
such as the “AND” operation, the “OR” operation, the possibility operation, the necessity
operation and so on. Subsequently, we redefine the linguistic weighted choice value
and the linguistic soft weighted overall choice value after analyzing the decision-making
algorithms based on different interval-valued fuzzy soft set models. Finally, we propose
the MADM algorithm and the parameter reduction algorithm. Furthermore, we illustrate
the algorithms’ rationality and effectiveness by examples and comparative analysis. The
main contributions of this paper are summarized as follows.

(1) LIVSFSS is proposed for the first time by combining the linguistic interval-valued
spherical fuzzy set with the soft set, and its basic concepts, operations and properties
are discussed.

(2) In order to solve MADM problems and consider the influence of the parameter weight,
the linguistic weighted choice value and the linguistic soft weighted overall choice
value are redefined by analyzing other models. Then the MADM algorithm and
parameter reduction algorithm are proposed.

(3) We apply the MADM algorithm and parameter reduction algorithm to examples
and compare them with some existing algorithms to illustrate their rationality
and effectiveness.

The remainder of this paper is organized as follows. In Section 2, we recall the basic
concepts required for this paper. In Section 3, we introduce the proposed concepts and
operations of LIVSFSS. In Section 4, we introduce the multi-attribute decision-making
algorithm and parameter reduction algorithm based on LIVSFSS. The conclusions and
directions for future work are outlined in Section 5.

2. Preliminaries

In this section, we review some basic concepts briefly, including the linguistic interval-
valued spherical fuzzy set and fuzzy soft set, which are very helpful in the remaining study
of the paper.
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2.1. Linguistic Interval-Valued Spherical Fuzzy Set

Definition 1. [13] Let S = {st|t = 0, 1, 2, . . . , g} be a finite linguistic term set (LTS) with an odd
number of linguistic terms, where g is a positive integer. The LTS S satisfies the following characteristics.

(1) order relation: si ≥ sk, if i ≥ k;
(2) negation operator: Neg(si) = sk, where k = g − i;
(3) maximization operator: max{si, sk} = si, if i ≥ k;
(4) minimization operator: max{si, sk} = sk, if i ≥ k.

For example, an LTS with five linguistic terms can be represented as S = {s0 = none,
s1 = low, s2 = medium, s3 = high, s4 = per f ect}.

Definition 2. [14] Let S = {st|t = 0, 1, 2, . . . , g} be an LTS. The discrete LTS S is extended to a
continuous linguistic term set S = {sα|s0 ≤ sα ≤ sh, α ∈ [0, h]}, where h (h > g) is a sufficiently
large positive integer. Consider any linguistic terms si, sk ∈ S, and λ, λ1, λ2 ∈ [0, 1], some
operation rules are as follows.

si ⊕ sk = sk ⊕ si = si+k (1)

si ⊗ sk = sk ⊗ si = si∗k (2)

λsi = sλi (3)

(λ1 + λ2)si = λ1si ⊕ λ2si (4)

λ(si ⊕ sk) = λsi ⊕ λsk (5)

Definition 3. [16] Let U ̸= ∅ be an initial universe and S = {sα|s0 ≤ sα ≤ sh, α ∈ [0, h]} be a
continuous linguistic term set. An LIVSFS A in U is defined as

A = {⟨x, (s̃uA(x), s̃πA(x), s̃vA(x))⟩|x ∈ U} (6)

where s̃uA(x) =
[
sL

uA(x), sU
uA(x)

]
⊆ [s0, sh], s̃πA(x) =

[
sL

πA(x), sU
πA(x)

]
⊆ [s0, sh],

s̃vA(x) =[s̃L
vA(x), s̃U

vA(x)] ⊆ [s0, sh] are the membership degree, the hesitancy degree and the
non-membership degree of x to A such that, for all x ∈ U, respectively,

0 ≤ (s̃U
uA(x))2 +

(
s̃U

πA(x)
)2

+ (s̃U
vA(x))2 ≤ h2 (7)

then s̃rA(x) =
[
s̃L

rA(x), s̃U
rA(x)

]
is the waiver degree of x to U, where s̃L

rA(x) =
s√

h2−(uAL(x))
2
+(πAL(x))

2
+(vAL(x))

2
)
, s̃U

rA(x) = s√
h2−(uAU (x))

2
+(πAU (x))

2
+(vAU (x))

2
)
. The set

of all LIVSFS on U is denoted by LIVSF(U).
For notational simplicity, the linguistic interval-valued spherical fuzzy number (LIVSFN) is denoted

by α = ([sa, sb], [sc, sd], [se, so]), where [sa, sb] ⊆ [s0, sh], [sb, sc] ⊆ [s0, sh], [ se, so] ⊆ [s0, sh],
0 ≤ b2 + d2 + o2 ≤ h2 and sa, sb, sc, sd, se, so ∈ S. The basic operations of LIVSFS are defined
as follows.

Let A = {⟨x, (s̃uA(x), s̃πA(x), s̃vA(x))⟩|x ∈ U}, B = {⟨x, (s̃uB(x), s̃πB(x), s̃vB(x))⟩|x ∈ U}
∈ LIVSF(U), then

(1) A ⊆ B ⇔ s̃L
uA(x) ≤ s̃L

uB(x), s̃U
uA(x) ≤ s̃U

uB(x), s̃L
πA(x) ≤ s̃L

πB(x), s̃U
πA(x) ≤ s̃U

πB(x),
s̃L

vA(x) ≥ s̃L
vB(x), s̃U

vA(x) ≥ s̃U
vB(x);

(2) A = B ⇔ A ⊆ B, B ⊆ A ;
(3) A ∪ B = {< x, ([max{s̃L

uA(x), s̃L
uB(x)}, max{s̃U

uA(x), s̃U
uB(x)}], [min{s̃L

πA(x), s̃L
πB(x)},

min{s̃U
πA(x), s̃U

πB(x)}], [min{s̃L
vA(x), s̃L

vB(x)}, min{s̃U
vA(x), s̃U

vB(x)}]) > |x ∈ U};
(4) A ∩ B = {< x, ([min{s̃L

uA(x), s̃L
uB(x)}, min{s̃U

uA(x), s̃U
uB(x)}], [min{s̃L

πA(x), s̃L
πB(x)},

min{s̃U
πA(x), s̃U

πB(x)}], [max{s̃L
vA(x), s̃L

vB(x)}, max{s̃U
vA(x), s̃U

vB(x)}]) > |x ∈ U};
(5) AC = {< x, (s̃vA(x), s̃πA(x), s̃uA(x)) > |x ∈ U}.
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2.2. Fuzzy Soft Set

Definition 4. [18] Let U be an initial universe set, Ebe a set of parameters, A ⊆ E and P(U) be
the power set of U. A pair < F, A > is called a soft set on U, where F is the mapping given by

F : A → P(U) (8)

In other words, a soft set can be regarded as a parameterized family of subsets over
the universe U.

Definition 5. [22] Let U be an initial universe, E be a set of parameters, F(U) be the set of all
fuzzy sets of U. A pair < F̃, E > is called a fuzzy soft set on U, where F̃ is the mapping given by

F̃ : E → F(U) (9)

Obviously, the combination of a fuzzy set and a soft set is a fuzzy soft set, i.e., the
fuzzy soft set is a mapping from parameters to F(U). It is a parameterized family of fuzzy
subsets over the universe U.

3. Linguistic Interval-Valued Spherical Fuzzy Soft Set

By combining the linguistic interval-valued spherical fuzzy set with a soft set, it is
natural to define the linguistic interval-valued spherical fuzzy soft set (LIVSFSS) model. In
this section, we introduce the concepts of LIVSFSS.

3.1. Basic Concept of LIVSFSS

Definition 6. Let U be an initial universe, E be a set of parameters,LIVSF(U) be the set of all
LIVSFS of U . A pair < F̃, E > is called a linguistic interval-valued spherical fuzzy soft set on U,
where F̃ is the mapping given by

F̃ : E → LIVSF(U) (10)

An LIVSFSS is a parameterized family of linguistic interval-valued spherical fuzzy
subsets of U, thus, its universe is the set of all LIVSFS on U. In other words, because
LIVSFSS is still a mapping from parameters to LIVSF(U), it is regarded as a powerful
extention of soft set.

For ∀ε ∈ E, F̃(ε) is referred to as the LIVSFS with parameter ε, and it is actually an
LIVSFS on U. For x ∈ U and ε ∈ E, it can be written as follows.

F̃(ε) =
{〈

x,
(

s̃uF̃(ε)(x), s̃πF̃(ε)(x), s̃vF̃(ε)(x)
)〉∣∣∣x ∈ U

}
(11)

where F̃xi (ε) = ([sL
uF̃(ε)(xi), sU

uF̃(ε)(xi)], [sL
πF̃(ε)(xi), sU

πF̃(ε)(xi)], [sL
vF̃(ε)(xi), sU

vF̃(ε)(xi)]) are the
membership degree, the hesitancy degree and the non-membership degree of object xi
respectively.

Example 1. Under uncertain environments, how do we deal with the situation where the sum
of membership degree, hesitancy and non-membership degree exceeds 1 after the experts evaluate
each parameter? And experts prefer to evaluate each parameter in natural language. LIVSFSS
can facilitate the handing of the above situations. Let U = {x1, x2, x3, x4} be a set of teachers and
E = {e1, e2, e3} = {teaching quality, blackboard writing, research ability} be a set of parame-
ters for evaluation indicators of teachers. Experts assign a value to each parameter according to a
continuous LTS S defined as S = {s0 = “extremely poor”, s1 = “very poor”, s2 = “poor”,
s3 = “slightly poor”, s4 = “medium”, s5 = “slightly good”, s6 = “good”, s7 = “very good”,
s8 = “extremely good”}. The result described by the LIVSFSS (F̃, E) is presented in Table 1 and
(F̃, E) is defined as follows.
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F̃(e1) = {< x1, ([s3, s5], [s0, s3], [s2, s3]) >,< x2, ([s3, s5], [s0, s3], [s2, s3]) >,< x3, ([s5, s6],
[s0, s2], [s1, s2]) >,< x4, ([s4, s5], [s0, s2], [s2, s3])>};

F̃(e2) = {< x1, ([s5, s6], [s0, s2], [s1, s2]) >,< x2, ([s4, s5], [s0, s2], [s2, s3]) >,< x3, ([s3, s4],
[s1, s3], [s2, s3]) >,< x4, ([s4, s5], [s0, s2], [s2, s3])>};

F̃(e3) = {< x1, ([s5, s6], [s0, s2], [s1, s2]) >,< x2, ([s2, s4], [s0, s3], [s3, s4]) >,< x3, ([s3, s4],
[s1, s3], [s2, s3]) >,< x4, ([s4, s5], [s0, s2], [s1, s3])>}.

Table 1. LIVSFSS (F̃, E) of Example 1.

U e1 e2 e3

x1 ([s3, s5], [s0, s3], [s2, s3]) ([s5, s6], [s0, s2], [s1, s2]) ([s5, s6], [s0, s2], [s1, s2])
x2 ([s3, s5], [s0, s3], [s2, s3]) ([s4, s5], [s0, s2], [s2, s3]) ([s2, s4], [s0, s3], [s3, s4])
x3 ([s5, s6], [s0, s2], [s1, s2]) ([s3, s4], [s1, s3], [s2, s3]) ([s3, s4], [s1, s3], [s2, s3])
x4 ([s4, s5], [s0, s2], [s2, s3]) ([s4, s5], [s0, s2], [s2, s3]) ([s4, s5], [s0, s2], [s1, s3])

Definition 7. Let U be an initial universe set, E be a set of parameters and suppose that A, B ⊂ E,
(F̃, A) and (G̃, B) are two linguistic interval-valued spherical fuzzy soft sets; (F̃, A) is a linguistic
interval-valued spherical fuzzy soft subset of (G̃, B), which can be denoted by (F̃, A)⊂̃(G̃, B), if
and only if

(1) A ⊂ B;
(2) ∀ε ∈ A,F̃(ε) is a linguistic interval-valued spherical fuzzy subset of G̃(ε).

Definition 8. Let (F̃, A) and (G̃, B) be two linguistic interval-valued spherical fuzzy soft
sets; (F̃, A) and (G̃, B) are said to be a linguistic interval-valued spherical fuzzy soft equal, which
can be denoted by (F̃, A)=̃(G̃, B), if and only if

(1) (F̃, A) is a linguistic interval-valued spherical fuzzy soft subset of (G̃, B);
(2) (G̃, B) is a linguistic interval-valued spherical fuzzy soft subset of (F̃, A).

3.2. Operations on LIVSFSS

Definition 9. The complement of a linguistic interval-valued spherical fuzzy soft set (F̃, A) is
denoted by (F̃, A)C. It is defined by

(F̃, A)C = (F̃C,¬A) (12)

where ∀α ∈ A, ¬ α = not α, is the not set of parameters α, which holds the opposite meanings to
parameter α;

F̃C : ¬A → LIVSF(U) (13)

is a mapping given by F̃C(ε) = (F̃(ε))C for all x ∈ U and ε ∈ ¬A.

Definition 10. Alinguistic interval-valued spherical fuzzy soft set (F̃, A) over U is said to be
a null linguistic interval-valued spherical fuzzy soft set if F̃xi (ε) = ([s0, s0], [s0, s0], [sh, sh]) for
∀ε ∈ A, x ∈ U.

Definition 11. A linguistic interval-valued spherical fuzzy soft set (F̃, A) over U is said to be an
absolute linguistic interval-valued spherical fuzzy soft set if F̃xi (ε) = ([sh, sh], [s0, s0], [s0, s0]) for
∀ε ∈ A, x ∈ U.

Definition 12. The union of two linguistic interval-valued spherical fuzzy soft sets (F̃, A) and
(G̃, B) over U is a linguistic interval-valued spherical fuzzy soft set (H̃, C), where C = A ∪ B,
∀ε ∈ C,
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H̃(ε) =


F̃(ε), ε ∈ A − B;

G̃(ε), ε ∈ B − A;

F̃(ε) ∪ G̃(ε), ε ∈ A ∩ B;

(14)

where ε ∈ A∩ B, then, H̃(ε) = F̃(ε)∪ G̃(ε) = {< x, ([max{s̃L
uF̃(ε)(x), s̃L

uG̃(ε)
(x)}, max{s̃U

uF̃(ε)(x),

s̃U
uG̃(ε)

(x)}], [min{s̃L
πF̃(ε)(x), s̃L

πF̃(ε)(x)}, min{s̃U
πF̃(ε)(x), s̃U

πG̃(ε)
(x)}], [min{s̃L

vF̃(ε)(x), s̃L
vG̃(ε)

(x)},

min{s̃U
vF̃(ε)(x), s̃U

vG̃(ε)
(x)}]) > |x ∈ U}. We denote it by (F̃, A)∪̃(G̃, B) = (H̃, C).

Definition 13. The intersection of two linguistic interval-valued spherical fuzzy soft sets (F̃, A)
and (G̃, B) over U is a linguistic interval-valued spherical fuzzy soft set (H̃, C), where C = A ∩ B,
∀ε ∈ C, H̃(ε) = F̃(ε) ∩ G̃(ε) = {< x, ([min{s̃L

uF̃(ε)(x), s̃L
uG̃(ε)

(x)}, min{s̃U
uF̃(ε)(x), s̃U

uG̃(ε)
(x)}],

[min{s̃L
πF̃(ε)(x), s̃L

πF̃(ε)(x)}, min{s̃U
πF̃(ε)(x), s̃U

πG̃(ε)
(x)}], [max{s̃L

vF̃(ε)(x), s̃L
vG̃(ε)

(x)},

max{s̃U
vF̃(ε)(x), s̃U

vG̃(ε)
(x)}]) > |x ∈ U}. We denote it by (F̃, A)∩̃(G̃, B) = (H̃, C).

Theorem 1. Let (F̃, A), (G̃, B) and (M̃, C) be three linguistic interval-valued spherical fuzzy soft
sets over U, then we have the following properties.

(1) Transitive law: If (F̃, A)⊂̃(G̃, B) and (G̃, B)⊂̃(M̃, C), then (F̃, A)⊂̃(M̃, C);
(2) Commutative law: (F̃, A)∪̃(G̃, B) = (G̃, B)∪̃(F̃, A) and (F̃, A)∩̃(G̃, B) = (G̃, B)∩̃(F̃, A);
(3) Idempotent law: (F̃, A)∪̃(F̃, A) = (F̃, A) and (F̃, A)∩̃(F̃, A) = (F̃, A);
(4) Associative law: (F̃, A)∪̃((G̃, B)∪̃(M̃, C)) = ((F̃, A)∪̃(G̃, B))∪̃(M̃, C) and (F̃, A)∩̃

((G̃, B)∩̃(M̃, C)) = ((F̃, A)∩̃(G̃, B))∩̃(M̃, C);
(5) Distributive law: (F̃, A)∪̃((G̃, B)∩̃(M̃, C)) = ((F̃, A)∪̃(G̃, B))∩̃((F̃, A)∪̃(M̃, C)) and

(F̃, A)∩̃((G̃, B)∪̃(M̃, C)) = ((F̃, A)∩̃(G̃, B))∪̃((F̃, A)∩̃(M̃, C));
(6) Absorption law: ((F̃, A)∪̃(G̃, B))∩̃(F̃, A) = (F̃, A) and ((F̃, A)∩̃(G̃, B))∪̃(F̃, A) = (F̃, A);
(7) De Morgan’s law: ((F̃, A)∪̃(G̃, B))C = (F̃, A)C∩̃(G̃, B)C and ((F̃, A)∩̃(G̃, B))C =

(F̃, A)C∪̃(G̃, B)C .

Proof. We can obtain (1)–(4) easily according to Definitions 7, 12 and 13. And we prove the
other properties as follows.

Suppose that, for (F̃, A), ∀α ∈ A, F̃(α) = {⟨x, (s̃uF̃(α)(x), s̃πF̃(α)(x), s̃vF̃(α)(x))⟩|x ∈ U},
for (G̃, B), ∀β ∈ B, G̃(β) = {⟨x, (s̃uG̃(β)(x), s̃πG̃(β)(x), s̃vG̃(β)(x))⟩|x ∈ U} and, for (M̃, C),
∀γ ∈ C, M̃(γ) = {⟨x, (s̃uM̃(γ)(x), s̃πM̃(γ)(x), s̃vM̃(γ)(x))⟩|x ∈ U}. For convenience,
we denote F̃(α) = ([sa1, sb1], [sc1, sd1], [se1, so1]), G̃(β) = ([sa2, sb2], [sc2, sd2], [se2, so2]) and
M̃(γ) = ([sa3, sb3], [sc3, sd3], [se3, so3]), respectively.

(5). Suppose that (G̃, B)∩̃(M̃, C) = (Q̃, Y), where Y = B ∩ C, Y ̸= ∅ and ∀φ ∈ Y,
Q̃(φ) = G̃(φ) ∩ M̃(φ) = ([min{sa2, sa3}, min{sb2, sb3}], [min{sc2, sc3}, min{sd2, sd3}],
[max{se2, se3},max{so2, so3}]). Then we have (F̃, A)∪̃((G̃, B)∩̃(M̃, C)) = (F̃, A)∪̃(Q̃, Y). Ac-
cording to Definition 12, (F̃, A)∪̃(Q̃, Y) = (L̃, Z), where Z = A ∪ Y and ∀ω ∈ Z,

L̃(ω) =


F̃(ω), ω ∈ A − Y = A − B ∩ C;
Q̃(ω), ω ∈ Y − A = B ∩ C − A;

F̃(ω) ∪ Q̃(ω), ω ∈ A ∩ Y = A ∩ B ∩ C;

where F̃(ω) ∪ Q̃(ω) = ([max{sa1, min{sa2, sa3}}, max{sb1, min{sb2, sb3}}], [min {sc1,
min { sc2, sc3}} , min{sd1, min{sd2, sd3}}] , [min{se1, max{se2, se3}}, min{so1, max{so2, so3}}]).

Assume that (F̃, A)∪̃(G̃, B) = (Ñ, D) and (F̃, A)∪̃(M̃, C) = ( Ĩ, E). According to
Definition 12, for (Ñ, D), where D = A ∪ B and ∀ρ ∈ D,

Ñ(ρ) =


F̃(ρ), ρ ∈ A − B;
G̃(ρ), ρ ∈ B − A;

F̃(ρ) ∪ Ñ(ρ), ω ∈ A ∩ B;
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where F̃(ρ) ∪ G̃(ρ) = ([max{sa1, sa2}, max{sb1, sb2}], [min{sc1, sc2}, min{sd1, sd2}],
[min{ se1, se2},min{so1, so2}]). For ( Ĩ, E), we have E = A ∪ C and ∀σ ∈ E,

Ĩ(σ) =


F̃(σ), σ ∈ A − C;

M̃(σ), σ ∈ C − A;

F̃(σ) ∪ M̃(σ), σ ∈ A ∩ C;

where F̃(σ) ∪ M̃(σ) = ([max{sa1, sa3}, max{sb1, sb3}], [min{sc1, sc3}, min{sd1, sd3}],
[min{se1, se3},min{so1, so3}]). Hence ((F̃, A)∪̃(G̃, B))∩̃((F̃, A)∪̃(M̃, C)) = (Ñ, D)∩̃( Ĩ, E),
suppose (Ñ, D)∩̃( Ĩ, E)= ( J̃, F), where F = D ∩ E and F ̸= ∅, then

J̃(z) =


F̃(z), ∀z ∈ D ∩ E = ρ ∩ σ = (A − C) ∩ (A − B) = A − B ∩ C;

G̃(z), ∀z ∈ B ∩ C − A;

Ñ(z) ∩ Ĩ(z), ∀z ∈ D ∩ E = ρ ∩ σ = (A ∩ B) ∩ (A ∩ C) = A ∩ B ∩ C;

where Ñ(z) ∩ Ĩ(z) = ([min{max{sa1, sa2}, max{sa1, sa3}}, min{max{sb1, sb2}, max {sb1,sb3}}],
[min{min{sc1, sc2}, min{sc1, sc3}}, min{min{sd1, sd2}, min{sd1, sd3}}], [max{min {se1, se2},
min{se1, se3}}, max{min{so1, so2}, min{so1, so3}}]).

Consequently, we can obtain (L̃, Z) = ( J̃, F). Thus (F̃, A)∪̃((G̃, B)∩̃(M̃, C)) =
((F̃, A)∪̃(G̃, B))∩̃((F̃, A)∪̃(M̃, C)).

Similarly, (F̃, A)∩̃((G̃, B)∪̃(M̃, C)) = ((F̃, A)∩̃(G̃, B))∪̃((F̃, A)∩̃(M̃, C)).
(6). The proof is similar to that of (5).
(7). Suppose that (F̃, A)∪̃(G̃, B) = (H̃, C), where C = A ∪ B and ∀ε ∈ C,

H̃(ε) =


F̃(ε), ε ∈ A − B;

G̃(ε), ε ∈ B − A;

F̃(ε) ∪ G̃(ε), ε ∈ A ∩ B;

where F̃(ε) ∪ G̃(ε) = ( [max{sa1, sa2}, max{sb1, sb2}], [min{sc1, sc2}, min{sd1, sd2}],
[min{ se1, se2} , min{so1, so2}]). Then we have ((F̃, A)∪̃(G̃, B))C = (H̃, C)C, where ∀ε ∈ C,

(H̃(ε))C =


(F̃(ε))C = ([se1, so1], [sc1, sd1], [sa1, sb1]), ε ∈ A − B;

(G̃(ε))C = ([se2, so2], [sc2, sd2], [sa2, sb2]), ε ∈ B − A;

(F̃(ε) ∪ G̃(ε))C, ε ∈ A ∩ B;

where (F̃(ε)∪ G̃(ε))C = ([min{se1, se2}, min{so1, so2}], [min{sc1, sc2}, min{sd1, sd2}], [max{sa1, sa2},
max{sb1, sb2}]).

Assume that (F̃, A)C∩̃(G̃, B)C = ( Ĩ, D), where D = A ∩ B, D ̸= ∅ and ∀ε ∈ D,
then Ĩ(ε) = (F̃, A)C∩̃(G̃, B)C = ([min{se1, se2}, min{so1, so2}], [min{sc1, sc2}, min{sd1, sd2} ],
[max{sa1, sa2} , max{sb1, sb2}]).

Consequently, (H̃, C) = ( Ĩ, D). Thus ((F̃, A)∪̃(G̃, B))C = (F̃, A)C∩̃(G̃, B)C.
Similarly, we can obtain ((F̃, A)∩̃(G̃, B))C = (F̃, A)C∪̃(G̃, B)C. □

Definition 14. The “AND” operation on the two linguistic interval-valued spherical fuzzy soft
sets (F̃, A) and (G̃, B) is defined by

(F̃, A) ∧ (G̃, B) = (H̃, A × B) (15)

where H̃(α, β) = F̃(α) ∩ G̃(β), ∀(α, β) ∈ A × B.
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Definition 15. The “OR” operation on the two linguistic interval-valued spherical fuzzy soft
sets (F̃, A) and (G̃, B) is defined by

(F̃, A) ∨ (G̃, B) = (H̃, A × B) (16)

where H̃(α, β) = F̃(α) ∪ G̃(β), ∀(α, β) ∈ A × B.

Theorem 2. Let (F̃, A), (G̃, B) and (M̃, C) be three linguistic interval-valued spherical fuzzy soft
sets over U, then we have the following properties.

(1) Associative law: (F̃, A) ∨ ((G̃, B) ∨ (M̃, C)) = ((F̃, A) ∨ (G̃, B)) ∨ (M̃, C) and (F̃, A) ∧
((G̃, B) ∧ (M̃, C)) = ((F̃, A) ∧ (G̃, B)) ∧ (M̃, C);

(2) Distributive law: (F̃, A) ∨ ((G̃, B) ∧ (M̃, C)) = ((F̃, A) ∨ (G̃, B)) ∧ ((F̃, A) ∨ (M̃, C))
and (F̃, A) ∧ ((G̃, B) ∨ (M̃, C)) = ((F̃, A) ∧ (G̃, B)) ∨ ((F̃, A, A) ∧ (M̃, C));

(3) De Morgan’s law: ((F̃, A)∨ (G̃, B))C = (F̃, A)C ∧ (G̃, B)C and ((F̃, A)∧ (G̃, B))C = (F̃, A)C ∨
(G̃, B)C.

Proof. We can obtain (1) easily according to Definitions 14 and 15. And we prove the other
properties as follows.

(2). Suppose (G̃, B) ∧ (M̃, C) = (H̃, B × C), where ∀(β, γ) ∈ B × C, H̃(β, γ) = G̃(β) ∩
M̃(γ). Then we have (F̃, A) ∨ ((G̃, B) ∧ (M̃, C)) = (F̃, A) ∨ (H̃, B × C). And suppose
(F̃, A) ∨ (H̃, B × C) = ( Ĩ, A × (B × C)), ∀(α, (β, γ)) ∈ A × (B × C), Ĩ(α, (β, γ)) = F̃(α) ∪
(G̃(β) ∩ M̃(γ)).

Assume that (F̃, A) ∨ (G̃, B) = ( J̃, A × B) and (F̃, A) ∨ (M̃, C) = (K̃, A × C), where
∀(α, β) ∈ A× B, J̃(α, β) = F̃(α)∪ G̃(β) and ∀(α, γ) ∈ A×C, K̃(α, γ) = F̃(α)∪ M̃(γ). Then
we have ((F̃, A) ∨ (G̃, B)) ∧ ((F̃, A) ∨ (M̃, C)) = ( J̃, A × B) ∧ (K̃, A × C).

Suppose ( J̃, A × B)∧ (K̃, A ×C) = (L̃, (A × B)× (A×C)), where ∀(α, γ) ∈ A × C × B,
then, L̃((α, β), (α, γ)) = (F̃(α) ∪ G̃(β)) ∩ (F̃(α) ∪ M̃(γ)). According to Theorem 1(5),
(F̃, A)∪̃((G̃, B)∩̃(M̃, C)) = ((F̃, A)∪̃(G̃, B))∩̃((F̃, A)∪̃(M̃, C)).
Consequently, (F̃, A) ∨ ((G̃, B) ∧ (M̃, C)) = ((F̃, A) ∨ (G̃, B)) ∧ ((F̃, A) ∨ (M̃, C)).

Similarly, (F̃, A) ∧ ((G̃, B) ∨ (M̃, C)) = ((F̃, A) ∧ (G̃, B)) ∨ ((F̃, A) ∧ (M̃, C)).

(3). Suppose (F̃, A) ∨ (G̃, B) = (H̃, A × B), where ∀(α, β) ∈ A × B, H̃(α, β) = F̃(α) ∪ G̃(β).
Then we have ((F̃, A) ∨ (G̃, B))C = (H̃, A × B)C. According to Definition 15, ∀(α, β) ∈
A × B, (H̃(α, β))C = (F̃(α) ∪ G̃(β))C.

Assume that (F̃, A) ∧ (G̃, B) = ( Ĩ, A × B), where ∀(α, β) ∈ A × B, Ĩ(α, β) = F̃(α) ∩
G̃(β). According to Definition 9, (F̃, A)C = (F̃C,¬A), (G̃, B)C = ( ˜̃G

C
,¬B). Then we have

(F̃, A)C ∧ (G̃, B)C = ( ĨC,¬(A × B)), where ∀(α, β) ∈ ¬(A × B), H̃C(α, β) = (F̃(α))C ∩
(G̃(β))C. According to Theorem 1(7), (F̃(α) ∪ G̃(β))C = (F̃(α))C ∩ (G̃(β))C.

Consequently, ((F̃, A) ∨ (G̃, B))C = (F̃, A)C ∧ (G̃, B)C.
Similarly, we can obtain ((F̃, A) ∧ (G̃, B))C = (F̃, A)C ∨ (G̃, B)C. □

Definition 16. The necessity operation on a linguistic interval-valued spherical fuzzy soft
set (F̃, E) is denoted as □(F̃, E), ∀ε ∈ E,

□F̃(ε) =
{〈

x,
(

s̃□uF̃(ε)(x), s̃□πF̃(ε)(x), s̃□vF̃(ε)(x)
)〉∣∣∣x ∈ U.

}
(17)

Here, s̃□uF̃(ε)(x) = [s̃L
uF̃(ε)(x), s̃U

uF̃(ε)(x)] is the necessary membership degree that object

x holds on parameter ε, s̃□πF̃(ε)(x) = [s0, s0] is the empty hesitancy degree that object x
holds on parameter ε, s̃□vF̃(ε)(x) = [s̃√

(h)2−((uF̃(ε))U
)

2(x), s̃√
(h)2−((uF̃(ε))L

)
2(x)] is the possi-

ble non-membership degree that object x does not hold on parameter ε.

Theorem 3. Let (F̃, A) and (G̃, B) be two linguistic interval-valued spherical fuzzy soft sets
over U, then we have following properties.
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(1) □□(F̃, A) = □(F̃, A);
(2) □((F̃, A)∪̃(G̃, B)) = □(F̃, A)∪̃□(G̃, B);
(3) □((F̃, A)∩̃(G̃, B)) = □(F̃, A)∩̃□(G̃, B);
(4) □((F̃, A) ∧ (G̃, B)) = □(F̃, A) ∧□(G̃, B);
(5) □((F̃, A) ∨ (G̃, B)) = □(F̃, A) ∨□(G̃, B).

Proof. We can obtain (1) easily according to Definition 16. And we prove the other
properties as follows.

Suppose that, for (F̃, A), ∀α ∈ A, F̃(α) = ([sa1, sb1], [sc1, sd1], [se1, so1]) and for (G̃, B),
∀β ∈ B, G̃(β) = ([sa2, sb2], [sc2, sd2], [se2, so2]).

(2). Suppose that (F̃, A)∪̃(G̃, B) = (H̃, C), where C = A ∪ B and ∀ε ∈ C,

H̃(ε) =


F̃(ε) = ([sa1, sb1], [sc1, sd1], [se1, so1]), ε ∈ A − B;
G̃(ε) = ([sa2, sb2], [sc2, sd2], [se2, so2]), ε ∈ B − A;

F̃(ε) ∪ G̃(ε), ε ∈ A ∩ B;

where F̃(ε) ∪ G̃(ε) = ([max{sa1, sa2}, max{sb1, sb2}], [min{sc1, sc2}, min{sd1, sd2}],
[min{se1, se2}, min{so1, so2}]). Then we have □((F̃, A)∪̃(G̃, B)) = □(H̃, C). According
to Definition 16, we have

□H̃(ε) =


□F̃(ε) =

(
[sa1, sb1], [s0, s0],

[
s√

(h)2−(b1)2 , s√
(h)2−(a1)2

])
, ε ∈ A − B;

□G̃(ε) =
(
[sa2, sb2], [s0, s0],

[
s√

(h)2−(b2)2 , s√
(h)2−(a2)2

])
, ε ∈ B − A;

□(F̃(ε) ∪ G̃(ε)), ε ∈ A ∩ B;

where □(F̃(ε)∪ G̃(ε)) = ([max{sa1, sa2}, max{sb1, sb2}], [s0, s0], [min{s√
(h)2−(b1)2 ,.s√

(h)2−(b2)2},

min{s√
(h)2−(a1)2 , s√

(h)2−(a2)2}]).
According to Definitions 12 and 16, □(F̃, A)∪̃□(G̃, B) = (Õ, C), C = A ∪ B and

∀ε ∈ C,

Õ(ε) =


□F̃(ε) =

(
[sa1, sb1], [s0, s0],

[
s√

(h)2−(b1)2 , s√
(h)2−(a1)2

])
, ε ∈ A − B;

□G̃(ε) =
(
[sa2, sb2], [s0, s0],

[
s√

(h)2−(b2)2 , s√
(h)2−(a2)2

])
, ε ∈ B − A;

□F̃(ε) ∪□G̃(ε), ε ∈ A ∩ B;

where□F̃(ε)∪□G̃(ε) = ([max{sa1, sa2}, max{sb1, sb2}], [s0, s0], [min{s√
(h)2−(b1)2 ,.s√

(h)2−(b2)2},

min{s√
(h)2−(a1)2 , s√

(h)2−(a2)2}]).
Consequently, □(H̃, C) = (Õ, C). Thus □((F̃, A)∪̃(G̃, B)) = □(F̃, A)∪̃□(G̃, B).
(3). The proof is similar to that of (2).
(4). Suppose that (F̃, A)∧ (G̃, B) = (H̃, A×B), where ∀(α, β) ∈ A× B, H̃(α, β) = F̃(α)∩

G̃(β) = ([min{sa1, sa2}, min{sb1, sb2}], [min{sc1, sc2}, min{sd1, sd2}],[max{se1, se2}, max{so1, so2}]).
Then we have (F̃, A)∧ (G̃, B) = (H̃, A×B). According to Definition 16, ∀ε ∈ A× B, □H̃(ε) =
([min{sa1, sa2}, min{sb1, sb2}], [s0, s0], [s√(h)2−(min{sb1,sb2})2, s√

(h)2−(min{sa1,sa2})2]).

According to Definition 14 and Definition 16, assume that □(F̃, A)∧□(G̃, B) = (Ĩ, A×B),
where ∀(α, β) ∈ A × B, Ĩ(α, β) = □F̃(α) ∩□G̃(β) = ([min{sa1, sa2}, min{sb1, sb2}], [s0, s0],
[max{s√

(h)2−(b1)2 , .s√
(h)2−(b2)2}, max{s√

(h)2−(a1)2 , s√
(h)2−(a2)2}]) = ([min{sa1, sa2},

min{sb1, sb2}], [s0, s0], .[s√
(h)2−(min{sb1,sb2})2 , s√

(h)2−(min{sa1,sa2 })2 ]) = □((F̃, A) ∧ (G̃, B)).

(5). The proof is similar to that of (4). □

Definition 17. The possibility operation on a linguistic interval-valued spherical fuzzy soft
set (F̃, E) is denoted as ◦(F̃, E), ∀ε ∈ E,

◦F̃(ε) =
{〈

x,
(

s̃◦uF̃(ε)(x), s̃◦πF̃(ε)(x), s̃◦vF̃(ε)(x)
)〉∣∣∣x ∈ U

}
(18)
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Here, s̃◦uF̃(ε)(x) = [s̃√
(h)2−((vF̃(ε))U

)
2(x), s̃√

(h)2−((vF̃(ε))L
)

2(x)] is the possible member-

ship degree that object x holds on parameter ε, s̃◦πF̃(ε)(x) = [s0, s0] is the empty hesitancy
degree that object x holds on parameter ε, s̃◦vF̃(ε)(x) = [s̃L

vF̃(ε)(x), s̃U
vF̃(ε)(x)] is the necessary

non-membership degree that object x does not hold on parameter ε.

Theorem 4. Let (F̃, A) and (G̃, B) be two linguistic interval-valued spherical fuzzy soft sets
over U, then we have the following properties.

(1) ◦ ◦ (F̃, E) = ◦(F̃, E);
(2) ◦((F̃, A)∪̃(G̃, B)) = ◦(F̃, A) ∪̃ ◦ (G̃, B);
(3) ◦((F̃, A)∩̃(G̃, B)) = ◦(F̃, A) ∩̃ ◦ (G̃, B);
(4) ◦((F̃, A) ∧ (G̃, B)) = ◦(F̃, A) ∧ ◦(G̃, B);
(5) ◦((F̃, A) ∨ (G̃, B)) = ◦(F̃, A) ∨ ◦(G̃, B).

Proof. We can obtain (1) easily according to Definition 17. And we prove the other
properties as follows.

(2). Suppose that (F̃, A)∪̃(G̃, B) = (H̃, C), where C = A ∪ B and ∀ε ∈ C,

H̃(ε) =


F̃(ε) = ([sa1, sb1], [sc1, sd1], [se1, so1]), ε ∈ A − B;
G̃(ε) = ([sa2, sb2], [sc2, sd2], [se2, so2]), ε ∈ B − A;

F̃(ε) ∪ G̃(ε), ε ∈ A ∩ B;

where F̃(ε)∪ G̃(ε) = ([max{sa1, sa2}, max{sb1, sb2}], [min{sc1, sc2}, min{sd1, sd2}], [min{.se1, se2},
min{so1, so2}]). Then we have ◦((F̃, A)∪̃(G̃, B)) = ◦(H̃, C). According to Definition 17, we have

◦H̃(ε) =


◦F̃(ε) =

([
s√

(h)2−(o1)2 , s√
(h)2−(e1)2

]
, [s0, s0], [se1, so1]

)
, ε ∈ A − B;

◦G̃(ε) =
([

s√
(h)2−(o2)2 , s√

(h)2−(e2)2

]
, [s0, s0], [se2, so2]

)
, ε ∈ B − A;

◦(F̃(ε) ∪ G̃(ε)), ε ∈ A ∩ B;

where ◦(F̃(ε) ∪ G̃(ε)) = ([max{s√
(h)2−(o1)2 , s√

(h)2−(o2)2}, max{s√
(h)2−(e1)2 , s√

(h)2−(e2)2}],
[s0, s0], [min{se1, se2}, min{so1, so2}]).

According to Definitions 12 and 17, suppose ◦(F̃, A)∪̃ ◦ (G̃, B) = (Õ, C), where C = A∪B
and ∀ε ∈ C,

Õ(ε) =


◦F̃(ε) =

([
s√

(h)2−(o1)2 , s√
(h)2−(e1)2

]
, [s0, s0], [se1, so1]

)
, ε ∈ A − B;

◦G̃(ε) =
([

s√
(h)2−(o2)2 , s√

(h)2−(e2)2

]
, [s0, s0], [se2, so2]

)
, ε ∈ B − A;

◦F̃(ε) ∪ ◦G̃(ε), ε ∈ A ∩ B;

where ◦F̃(ε) ∪ ◦G̃(ε) = ([max{s√
(h)2−(o1)2 , s√

(h)2−(o2)2}, max{s√
(h)2−(e1)2 , s√

(h)2−(e2)2}],
[s0, s0], [min{se1, se2}, min{so1, so2}]).

Consequently, ((F̃, A)∪̃(G̃, B)) = ◦(F̃, A) ∪̃ ◦ (G̃, B).
(3). The proof is similar to that of (2).
(4). Suppose that (F̃, A) ∧ (G̃, B) = (H̃, A × B), where ∀(α, β) ∈ A × B, H̃(α, β) =

([min{sa1, sa2}, min{sb1, sb2}], [min{sc1, sc2}, min{sd1, sd2}], [max{se1, se2}, max{so1, so2}]).
Then we have ◦((F̃, A) ∧ (G̃, B)) = ◦(H̃, A × B). According to Definition 17, we have

◦H̃(ε) =
([

s√
(h)2−(max{o1,o2})2 , s√

(h)2−(max{e1,e2})2

]
, [s0, s0], [max{se1, se2}, max{so1, so2}]

)
.

According to Definitions 14 and 17, assume that ◦(F̃, A) ∧ ◦(G̃, B) = ( Ĩ, A × B),
where ∀(α, β) ∈ A × B, Ĩ(α, β) = ◦F̃(α) ∩ ◦G̃(β) = ([min{s√

(h)2−(o1)2 , s√
(h)2−(o2)2},

min{s√
(h)2−(e1)2 , s√

(h)2−(e2)2}],[s0, s0], [max{se1, se2}, max{so1, so2}]) = ([s√
(h)2−(max{o1,o2})2 ,

(s√
(h)2−(max{e1,e2})2 ], [s0, s0],[max{se1, se2}, max{so1, so2}] ) = ◦((F̃, A) ∧ (G̃, B)).

(5). The proof is similar to that of (4). □
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Theorem 5. Let (F̃, A) be a linguistic interval-valued spherical fuzzy soft set over U, then we have
the following properties.

(1) □(F̃, A)⊂̃(F̃, A);
(2) ◦□(F̃, A) = □(F̃, A);
(3) □ ◦ (F̃, A) = ◦(F̃, A).

Proof. (1). According to Definitions 16 and 17, we have □F̃(α) = ([sa, sb],[s0, s0],
[s√

(h)2−(b)2 , s√
(h)2−(a)2 ]) and ◦F̃(α) = ([s√

(h)2−(o)2 , s√
(h)2−(e)2 ], [s0, s0], [se, so ]).

Since 0 ≤ b2 + d2 + f 2 ≤ h2, then we have s√
(h)2−(b)2 ≥ so. Thus, s√

(h)2−(a)2 ≥
s√

(h)2−(b)2 ≥ so≥ se. Since sa ≤ sa, sb ≤ sb, s0 ≤ sc, s0 ≤ sd, hence □(F̃, A)⊂̃(F̃, A).

(2). Assume that ∀α ∈ A, □F̃(α) = ([sa, sb], [s0, s0], [s√(h)2−(b)2 , s√
(h)2−(a)2 ]). Then

◦□F̃(α) = ([s√
(h)2−(

√
(h)2−(a)2)

2 , s√
(h)2−(

√
(h)2−(b)2)

2 ], [s0, s0], [s√(h)2−(b)2 , s√
(h)2−(a)2 ])

= □F̃(α).
(3). The proof is similar to that of (2). □

4. Application of Linguistic Interval-Valued Spherical Fuzzy Soft Set

Inspired by the work of [23,32], we first define some of the necessary concepts we used.
And then we introduce the decision-making and parameter reduction algorithms based
on LIVSFSS. We apply the proposed algorithms to examples and we apply the MADM
algorithm and parameter reduction algorithm to examples and compare them with some
existing algorithms to illustrate their rationality and effectiveness.

4.1. Multi-Attribute Decision Making

Definition 18. For a linguistic interval-valued spherical fuzzy soft set (F̃, E), U = {x1, x2, . . . , xn},
E = {e1, e2, . . . , em}, S = {sα|s0 ≤ sα ≤ sh, α ∈ [0, h]}, ω= {ω1, ω2, . . . , ωm} contains the
weighted values of every parameter ej. ∀ej ∈ E, F̃xi (ej) = ([saj, sbj], [scj, sdj],

[
sej, soj

]
),

i ∈ [1, n], j ∈ [1, m], which represents the membership degree of object xi for parameter ej. The
linguistic weighted choice value (ωc i) for each object xi is defined as

ωci =
[
ωcL

i , ωcU
i
]

= [
m
∑

j=1
ωj

√
h2+ (a j

)2
− (e j

)2

3

,
m
∑

i=1
ωj

√
h2+(b j

)2
− ( f j

)2

3

]
(19)

where ωcL
i is the lower linguistic weighted choice value for xi and ωcU

i is the upper linguistic
weighted choice value for xi.

Definition 19. For a linguistic interval-valued spherical fuzzy soft set (F̃, E), U = {x1, x2, . . . , xn},
E = {e1, e2, . . . , em}, S = {sα|s0 ≤ sα ≤ sh, α ∈ [0, h]}. ωci =

[
ωcL

i , ωcU
i
]

is the linguistic
weighted choice value for xi. The linguistic weighted overall choice value ωcoverall

i for xi is defined as

ωcoverall
i = ωcL

i +ωcU
i (20)

That is to say, ωcoverall
i , as the linguistic weighted overall choice value for xi is the sum

of the lower linguistic weighted choice value and the upper linguistic weighted choice
value for xi.

Based on the above given definitions, we describe our proposed MADM Algorithm 1
as follows.
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Algorithm 1: MADM algorithm based on LIVSFSS

Step1 : Input an LIVSFSS(F̃, E) and ω = {ω1,ω2, . . . ,ωm}, ∑m
i=1 ωi = 1.

Step2 : ∀xi ∈ U and ∀ej ∈ A , compute the linguistic weighted choice value (ωc i) for hi by
Formula (19).
Step3 : ∀xi ∈ U, compute the linguistic weighted overall choice value ωcoverall

i for xi by
Formula (20).
Step4 : Obtain k such that xk = maxxi∈U

{
ωcoverall

i

}
.

Step5 : Return xk ∈ U as the best choice candidate.

The flow chart of the MADM algorithm is shown in Figure 2.
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Example 2. We use (F̃, E), U = {h1, h2, h3, h4}, E = {e1, e2, e3} shown in Table 1 and
set ω = {ω1, ω2, ω3} = {1/3, 1/3, 1/3} to demonstrate how Algorithm 1 chooses the best
teacher considering three parameters. For each xi ∈ U, the algorithm determines the linguistic
weighted choice value using Formula (19), the linguistic weighted overall choice value using Formula
(20). It then returns xk =

{
xk ∈ U

∣∣∣maxxk∈U

{
ωcoverall

i

}
, 1 ≤ k ≤ n

}
. Table 2 shows the results

of Algorithm 1 based on the above settings. The algorithm returns x1 as the best teacher.

Table 2. LIVSFSS (F̃, E) of Example 2.

U e1 e2 e3 ωci ωcoverall
i

x1 ([s3, s5], [s0, s3], [s2, s3] ) [s5, s6], [s0, s2], [s1, s2]) ([s5, s6], [s0, s2], [s1, s2]) [4.214,4.562] 8.776
x2 ([s3, s5], [s0, s3], [s2, s3] ([s4, s5], [s0, s2], [s2, s3]) ([s2, s4], [s0, s3], [s3, s4]) [3.637,3.931] 7.568
x3 ([s5, s6], [s0, s2], [s1, s2]) ([s3, s4], [s1, s3], [s2, s3]) ([s3, s4], [s1, s3], [s2, s3]) [3.955,4.111] 8.066
x4 ([s4, s5], [s0, s2], [s2, s3]) ([s4, s5], [s0, s2], [s2, s3]) ([s4, s5], [s0, s2], [s1, s3]) [4.040,4.164] 8.204

4.2. Parameter Reduction

In the process of decision making, some redundant parameters are not necessary.
Thus, the parameter reduction becomes important. According to Algorithm 1, we can
obtain a descending queue based on the linguistic weighted overall choice value. In real
life, not all decision-making problems require only one choice, sometimes they require
several choices. Therefore, it is necessary to consider multiple scenarios in the context of
parameter reduction.
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Definition 20. Let (F̃, E) be a linguistic interval-valued spherical fuzzy soft set over U,
U = {x1, x2, . . . , xn}, E = {e1, e2, . . . , em}, S = {sα|s0 ≤ sα ≤ sh, α ∈ [0, h]}, DE =

{
xi, ......xj

∣∣
i, j ∈ [1, n]} be the set of all objects sorted in descending order by linguistic weighted overall choice
values, λ ∈ [1, n] be called decision-making number, Dλ

E be the set of λ objects sorted in descending
order by linguistic weighted overall choice values. If a subset A = {e

′
1, e

′
2, . . . , e

′
n} ⊂ E satis-

fies Dλ
E−A = Dλ

E, A is called the unnecessary parameter set in E with λ candidates, otherwise A is
called the necessary parameter set in E with λ candidates.

In other words, if A is the unnecessary parameter set with λ candidates, it means
that A can be reduced, otherwise A cannot be reduced. Based on the above definition,
the parameter reduction algorithm of keeping λ candidates (PRKAC) (Algorithm 2) is
proposed as follows.

Algorithm 2: PRAKC

Step1: Input an LIVSFSS(F̃, E), ω = {ω1,ω2, . . . ,ωm}, ∑m
i=1 ωi = 1, and λ ∈ [1, n].

Step2: ∀xi ∈ U and ∀ej ∈ A , compute the linguistic weight choice value (ωc i) for hi by
Formula (19).
Step3: ∀xi ∈ U, compute the linguistic weighted overall choice value ωcoverall

i for xi by
Formula (20).
Step4: Obtain a descending set Dλ

E according to the ωcoverall
i .

Step5 : Find A, where A =
{

e
′
1, e

′
2, . . . , e

′
n

}
⊂ E ∧ Dλ

E−A = Dλ
E.

Step6 : Return E − A as the parameter reduction with λ candidates.

The flow chart of the PRAKC algorithm is shown in Figure 3.
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Example 3. We use (F̃, E), U = {h1, h2, h3, h4}, E = {e1, e2, e3}, ω = {ω1, ω2, ω3} =
{1/3, 1/3, 1/3} shown in Table 2 and set λ = 4 to demonstrate how PRAKC reduces unnecessary
parameters whilst maintaining the four candidates as invariable. We obtain that x1, x4, x3, x2 are
the four choice candidates from Example 2. So, D4

E = {x1, x4, x3, x2}. We can find A = {e1} sat-
isfies D2

E−A = D2
E. Therefore, E − A = {e2, e3} is the parameter reduction with two candidates,

which is given in Table 3.
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Table 3. LIVSFSS (F̃, E) of Example 3.

U e2 e3 ωci ωcoverall
i

x1 ([s5, s6], [s0, s2], [s1, s2]) ([s5, s6], [s0, s2], [s1, s2]) [2.981,3.174] 6.155
x2 ([s4, s5], [s0, s2], [s2, s3]) ([s2, s4], [s0, s3], [s3, s4]) [2.405,2.543] 4.948
x3 ([s3, s4], [s1, s3], [s2, s3]) ([s3, s4], [s1, s3], [s2, s3]) [2.465,2.524] 4.989
x4 ([s4, s5], [s0, s2], [s2, s3]) ([s4, s5], [s0, s2], [s1, s3]) [2.707,2.776] 5.483

4.3. Comparative Analysis

In this subsection, we compare the MADM algorithms presented by Yang et al. [23]
and Ma et al. [32]. for an interval-valued fuzzy soft set with our proposed algorithm. In [23],
Yang selected the best choice by calculating the score. The idea of our MADM algorithm
is similar to [32]. We use Example 1 to demonstrate how these three MADM algorithms
choose the best choice. Since each parameter is weighted equally, it does not affect the
results. Orderings of the alternatives for each method are given in Table 4.

Table 4. Orderings of the alternatives according to four MADM algorithms.

MADM Algorithms Orderings of the Alternatives

Yang et al. [23] x1 > x4 > x3 > x2
Ma et al. [32] x1 > x4 > x3 > x2
Our proposed algorithm x1 > x4 > x3 > x2

We see that the proposed algorithm is comparable to other algorithms in terms of
the selection of optimal elements, which illustrates the rationality and effectiveness of our
proposed algorithm. The main difference between the proposed algorithm and previous
algorithms is the use of linguistic interval-valued spherical fuzzy numbers to evaluate
parameters. And we also consider the influence of parameter weight. Hence, in real life,
we can deal with MADM problems described by linguistic interval-valued spherical fuzzy
numbers according to our proposed algorithm.

Since the goal of parameter reduction algorithms based on different fuzzy soft set
models is to maintain the decision results unchanged, we compare with the parameter
reduction algorithms presented by Ma et al. [31]. Ma proposed the Keeping optimal choice
parameter reduction algorithm (KOCPR), the Keeping top three choice parameter reduction
algorithm (KTTCPR) and the Standard parameter reduction algorithm (SPR) to reduce
parameters. We also compare our proposed PRAKC with the above three algorithms in
terms of the number of objects that keep the decision choice result unchanged (KDCRU)
and the case of retaining parameters after reducing (RPR) using Example 1. The comparison
results are shown in Table 5.

Table 5. Comparison of four parameter reduction algorithms.

Algorithms KDCRU RPR

KOCPR keep the decision result of the top
choices {e2}, {e3}, {e1, e2}, {e1, e3}, {e2, e3};

KTTCPR keep the decision result of the top
three choices {e3}, {e2, e3};

SPR keep the decision result of all
objects choices {e2, e3};

PRAKC keep the decision result of the top λ
choices, λ ∈ [1, 4]

λ = 1, we can obtain {e2}, {e3},
{e1, e2}, {e1, e3}, {e2, e3};
λ = 2, we can obtain {e3}, {e2, e3};
λ = 3, we can obtain {e3}, {e2, e3};
λ = 4, we can obtain {e2, e3}.
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In real life, not all decision-making problems require a certain number of choices, but
sometimes different numbers are required according to different problems. We find that
PRAKC can deal with parameter reduction more flexibly than other algorithms by setting a
different λ.

5. Conclusions

The soft set theory is a general mathematical tool to deal with uncertainty. In this
paper, firstly, we have proposed the concept of the linguistic interval-valued spherical fuzzy
soft set. It is a combination of a linguistic interval-valued spherical fuzzy set and a soft
set. It optimizes the problem where the linguistic interval-valued spherical fuzzy set is
tedious due to the lack of parameterization tools in the decision process. Then, we have
defined the basic concepts and discussed various operational laws, related properties and
their proofs. In addition, in order to deal with multi-attribute decision-making problems,
we have proposed a multi-attribute decision-making algorithm and a parameter reduction
algorithm. Finally, the effectiveness and rationality of the algorithms have been verified
and illustrated by examples and comparisons with some existing algorithms.

The method proposed in this paper favors theoretical research. In the future, we intend
to further explore not only the application of the linguistic interval-valued spherical fuzzy
soft set in group decision making, but also its practical applications in combination with
machine learning and deep learning such as forecasting and data analysis.
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