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Abstract: Meteorological time series, such as rainfall data, show spatiotemporal characteristics
and are often faced with the problem of containing missing values. Discarding missing values or
modeling data with missing values causes negative impacts on the accuracy of the final predictions.
Hence, accurately estimating missing values by considering the spatiotemporal variations in data
has become a crucial step in eco-hydrological modeling. The multi-layer perceptron (MLP) is a
promising tool for modeling temporal variation, while spatial kriging (SK) is a promising tool for
capturing spatial variations. Therefore, in this study, we propose a novel hybrid approach combining
the multi-layer perceptron method and spatial kriging to impute missing values in rainfall data.
The proposed approach was tested using spatiotemporal data collected from a set of nearby rainfall
gauging stations in the Ratnapura area, Sri Lanka. Missing values are present in collected rainfall
data consecutively for a considerably longer period. This pattern has scattered among stations
discontinuously over five years. The proposed hybrid model captures the temporal variability and
spatial variability of the rainfall data through MLP and SK, respectively. It integrates predictions
obtained through both MLP and SK with a novel optimal weight allocation method. The performance
of the model was compared with individual approaches, MLP, SK, and spatiotemporal kriging. The
results indicate that the novel hybrid approach outperforms spatiotemporal kriging and the other
two pure approaches.

Keywords: machine learning; spatial kriging; optimal weight allocation; spatiotemporal data

1. Introduction
1.1. Background

Rainfall is a natural phenomenon that shows spatiotemporally varying behavior. These
characteristics with chaotic dynamic patterns make it difficult to predict its future behavior.
Moreover, a common shortcoming of rainfall data is the inherent inclusion of missing
values. This is because the data are collected from different gauging stations located in a
widespread geographical area. The malfunctioning of equipment, relocation of gauging
stations, network interruptions, natural hazards, and emergencies like pandemics may
disturb the continuous measurement of this natural phenomenon [1].

Ignoring the stations with missing data leads to an information loss due to the strong
spatial correlation between meteorological stations. On the other hand, modeling rainfall
data with missing values negatively impacts the accuracy of rainfall models due to the
discontinuity of the time sequence [2]. Hence, identification of a suitable mechanism to
address this issue is a crucial step in an effective rainfall forecasting.

When the missing values occur at random, modeling them to estimate their values
is not required. However, if the missing values are not random, then the missingness
cannot be ignored and must be modeled and predicted [3]. This is known as missing value
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imputation and it is carried out as a data preprocessing step. Much research has been
conducted using different types of missing value imputation methods. However, studies
on imputing the missing values for spatiotemporal data (including meteorological records)
are rare [4–7]. This study presents a novel and more efficient spatiotemporal methodology
to impute missing values in rainfall data for a few rain gauging stations. The proposed
methodology was tested using rainfall data collected from six neighbouring rain gauging
stations (which are considered reference stations) of Ratnapura, which was identified as
the target rain gauging station in our main study of rainfall forecasting. The reason for our
choice is that Ratnapura is a flood-prone area in Sri Lanka due to its frequent exposure to
heavy rainfall throughout the year [8,9]. In 2003, flash flood events in Ratnapura accounted
for financial damage of LKR 50.6 million [9].

1.2. Related Work

Much past research has accompanied traditional statistical and/or machine learning
techniques in missing value imputation of meteorological data. Some studies only captured
the spatial variations (e.g., [10–13]) using spatial interpolation methods such as the inverse
distance method (ID), normal ratio method (NR), geographical co-ordinates method (GC),
and spatial kriging, also known as Gaussian process regression, while others only focused
on their variation over time (e.g., [14–16]). The most common temporal method used is the
autoregressive integrated moving average (ARIMA) models.

Some studies (e.g., [17]) pointed out that the predictions obtained from spatiotemporal
methods are more accurate than those of purely spatial predictions. This is mainly because
spatiotemporal interpolation can be applied to geo-referencing positions over a space–
time grid. Some researchers have used the traditional spatial kriging model after some
modifications to model the spatiotemporal behavior of the data [4,5].

There have been several spatiotemporal kriging-based studies conducted with weather
variables. The study in [18] developed a spatiotemporal kriging model to predict wind
speed and compared the results with the autoregressive moving average (ARMA) and
Monte Carlo methods. Spatiotemporal kriging modeling gave a better fit for the data.

Moreover, the authors stated a few advantages of kriging models in comparison
with other regression methods. Providing estimates with the mean squared error of the
estimation (kriging variance), non-requirement of any distributional assumption related
to the data, the ability to use a complete set of spatial and temporal information, and the
ability to use a limited number of sampled data points to estimate the value of a variable
over a continuous spatial field are some of them.

Due to these prominent advantages of kriging, recent studies have integrated kriging
with conventional methods (e.g., regression and time series models) to gain fair and more
accurate predictions for the missing observations. Nevertheless, a few research studies
that use such hybrid approaches were found. The study [17] applied a spatiotemporal
kriging method to model total monthly rainfall data among 269 rain gauge stations, of
which nearly 80% of stations had missing data. The deterministic trend component was
estimated with multiple linear regression, taking several covariates, including latitude,
longitude, and quadratic effect of the corresponding longitude and latitude pairs. Since
it only captured 29% of the temporal variability in rainfall, the residuals produced by the
model were analyzed using a generalized product-sum spatiotemporal variogram and
the interpolation was carried out with spatiotemporal kriging. The final predictor was
obtained by combining trend estimate and interpolated value with kriging. In another
study [5], spatial association of atmospheric temperature data was modeled with universal
kriging and temporal variability was captured with autoregressive (AR) techniques. Then,
they were spatiotemporally combined to predict k-steps (days) ahead temperature in a
given spatial domain. A comparison of forecasted values with those obtained from ARIMA
model indicated that the novel hybrid model performed better than the ARIMA model.

The recent advancements in machine learning (ML) and deep learning (DL) can
be utilized effectively to predict missing cases in meteorological data. Both approaches
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have a great ability to handle large-scale problems and provide a flexible architecture in
capturing spatial and temporal features [1,2]. In addition, they do not rely on hand-crafted
feature engineering and prior assumptions on input data. Moreover, the aptness of deep
neural networks on large volumes of spatiotemporal data compared to statistical and other
classical machine learning techniques has been recognized.

A convolution bidirectional long short-term memory (LSTM) model was applied to
capture spatial and temporal patterns in traffic flow data in the study [2]. This model
outperformed state-of-the-art missing data imputation models. Some studies, including
the study carried out in [19], demonstrated the effectiveness and efficiency of deep learning
(DL) methods compared to the ARIMA model and back propagation neural network
model. A convolutional neural network (CNN)-based DL model was proposed in [14] for
imputing missing values in weather data of an individual weather station on a temporal
basis. The performance of the model was evaluated using various stations nearest to the
stations without missing values. This study used five optimizers (Rmsprop, Adam, Nadam,
Stochastic Gradient Descend, (SGD), and Adagrad) and found that the SGD optimizer
provides the most accurate results in predicting missing values.

Past studies reveal that the application of spatial kriging and DL methodology in
missing value imputation of weather data has promising results. However, studies that
impute missing values in spatiotemporal weather data using hybrid models are extremely
rare, especially when there is a lower number of weather gauging stations. The existing
research [5,17,20], which applies hybrid models, used more than 50 weather stations
when interpolating spatiotemporal missing data. Most importantly, so far, no study has
applied a spatiotemporal hybrid model to impute missing values among rainfall data at
the Ratnapura gauging station. Therefore, to reduce this gap in the literature and to utilize
the potential of spatial kriging, machine learning, and deep learning techniques in dealing
with missing values, this study proposes a hybrid model by integrating them. Our target
is to verify its appropriateness when the periods with missing values of rainfall gauging
stations are different and discontinuous. Our focus is also given to the scenario where data
are available only for a few rainfall stations.

The rest of this paper is organized as follows. The next section describes the adopted
missing values imputation methods and the development of the new approach. The results
and discussion section, followed by the conclusion are lined up last.

2. Materials and Methods
2.1. Proposed Methodology

This study introduces a hybrid method by integrating multi-layer perceptron (MLP)
with spatial kriging as a tool for imputing sequential missing values of spatiotemporal
data. The performance of the new model was evaluated against each of the two individual
models as well as the spatiotemporal kriging model, since many past studies [17,18,20]
have identified the spatiotemporal kriging model as a promising tool for estimating missing
values in spatiotemporal data.

The methodology behind this study will be illustrated using the rainfall data set
gathered across several neighbouring weather stations for a sufficiently longer period.

The target variable in this study represents rainfall measurements and each data
point has a timestamp (day) and 2D spatial location (longitude and latitude). Our initial
experiments performed for missing value imputation using machine learning methods
(MLP, long short-term memory (LSTM), convolutional neural network (CNN), CNN-LSTM,
ConvLSTM, random forest (RF), and nonlinear autoregressive network with exogenous
inputs (NARX)) revealed that MLP can capture the temporal variation of the same set of
rainfall data better than the other methods (see Table S1). Therefore, in this study, we chose
MLP to capture the temporal variation of rainfall data in our hybrid model. The spatial
kriging was used to model spatial variation due its promising behavior in capturing the
spatial variations of the weather data and incorporation into a hybrid model [4,17,18,20–22].
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2.1.1. Multi-Layer Perceptron Neural Network

Multi-layer perceptron (MLP) is a feed-forward neural network consisting of three
types of layers: input layer, hidden layer (s), and output layer. In an MLP, the data flow in
the forward direction from the input to the output layer, and the MLPs are trained with the
backpropagation learning algorithm, which allows nonlinear mapping between the input
and the output layer [23]. Its fast operation, ease of implementation, and requirement of a
smaller training set (compared to radial basis neural networks) lead it to be popular among
researchers [24].

In MLP, each neuron in a layer is connected to all neurons in the succeeding layer and
connection strength is called weight. The output of each neuron of hidden layers as well as
the output layer is a function of the sum of the inputs to the node modified by applying
a linear or nonlinear transfer or an activation function [25,26]. The input layer passes the
input vector to the network. An MLP can have one or more hidden layers.

Figure 1 illustrates an example of an MLP model with two hidden layers. Here, Xi

is the input to the ith neuron in the input layer. w(1)
ij is the weight associated with the ith

neuron of the input layer to the jth neuron of the first hidden layer, w(2)
ij is the weight of

the link connecting the ith neuron of the first hidden layer to the jth neuron of the second
hidden layer, and w(3)

ij is the weight associated with the ith neuron of the second hidden

layer to the jth neuron of the output layer. b(1)i and b(2)i are the bias values associated
with the ith neuron of the first hidden layer and the ith neuron of the second hidden layer,
respectively. bj is the bias associated with the jth neuron of the output layer. ∅(1), ∅(2), and
∅(3) are the activation functions associated with the first hidden layer, second hidden layer,
and the output layer, respectively.
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Figure 1. A multilayer perceptron model with two hidden layers. The nodes in Input Layer are
represented in green colour. The nodes in Hidden Layer are represented in blue colour, and the node
in Output Layer is coloured in red.

Then, the net output from the ith neuron of the first hidden layer is given by h(1)i and the

net output from the jth neuron of the second hidden layer is h(2)j (see Equations (1) and (2)).

The output of the jth neuron of the output layer will be ŷj (in our study, j = 1). This is also
noted as the imputed rainfall value at Ratnapura by MLP.

Finally, the MLP network computations can be written as follows:

h(1)i = ∅(1)(∑j w(1)
ij Xi + b(1)j ) where i = 1, 2, 3 and j = 1, 2, 3, 4 (1)

h(2)j = ∅(2)(∑i w(2)
ij h(1)i + b(2)i ) where i = 1, 2, 3, 4 and j = 1, 2, 3 (2)
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ŷj = ∅(3)

(
∑

i
w(3)

ij h(2)j + bj

)
where i = 1, 2, 3 and j = 1 (3)

2.1.2. Spatial Kriging

Spatial kriging is an optimal interpolation technique that uses the theory of regression
to predict the value at an unobserved location using values of observed neighborhood
locations. Here, observed values of neighborhood locations are weighted according to the
covariance values. As depicted in Figure 2, consider the location of interest, X0, that is
surrounded by the neighboring observed locations, Xi.
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The value at location X0, Z(X 0), is estimated through the values of n neighboring
sample locations taken as a linear combination of observed location values. Let the weight
be associated with the observed value at location Xi, i.e., Z(X i) is wi. Then, the spatial
kriging estimate of Z(X 0) can be computed as follows:

Ẑ(X0) = k +
n

∑
i=1

wiZ(Xi) = k + wTZ (4)

where w ≡ (w1, w2, . . . , wn )T , Z ≡ (Z(X1), Z(X2), . . . , Z(Xn)). The values of k and w
are calculated by minimizing the mean squared prediction error [18].

The optimal linear predictor of Z(X 0), Ẑ(X 0
)
, is given by:

Ẑ(X0) = µ(X0) + cT ∑−1
(Z − µ) (5)

where µ is the Lagrange multiplier, µ ≡ (µ(X1), µ(X2), . . . , µ(Xn))
T , (Xi) = E(Z(Xi)),

i = 0, 1, 2, . . . , n, c ≡ (Cov(X0, X1), . . . , Cov(X0, Xn))
T , and ∑ is the n × n matrix whose

(i, j)th element is Cov
(
Xi, Xj

)
.

Then, the minimum value of MSE(X0, w, k) for a fixed location X0, σ2(X0) (spatial
kriging variance) is given by [18]:

σ2(X0) = Cov(X0, X0)− cT ∑−1 c (6)

The values of c and ∑ are calculated through the variogram or a covariance function.
The different kriging models (simple, ordinary, or universal) can be obtained by changing
the way of modeling E(Z(X)).

2.1.3. Hybrid Model for Missing Value Estimation

In the proposed hybrid model, the spatial kriging estimate and the MLP estimate are
integrated with optimal weights. The optimal weights must be estimated using a sample of
artificially created missing cases. Suppose the spatial kriging estimate of that sample is ŷk
(which was produced as Ẑ(X 0

)
in Section 2.1.2) and the MLP estimate is ŷm (which was
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produced as ŷj in Section 2.1.1), weights from each estimate are wk and wm, respectively,
the actual value is ya, and the final estimate is ŷ f . In order to find the final prediction closer
to the actual value, the optimal weights from each prediction should be found such that the
prediction error is minimized. Therefore, the optimization problem can be defined as mean
squared error (MSE) loss function ( floss) between predicted and actual values:

floss(wk, wm) =
n

∑
i=1

(wk ŷki + wmŷmi − yai)
2 (7)

with respect to the following constraints that provide a convex combination of two edge
points ŷki and ŷmi:

wk + wm = 1, 0 ≤ wk ≤ 1, 0≤ wm ≤ 1 (8)

Following the study [27], it would be logical to consider the case when the weights
wk and wm are greater than 1 or less than 0. Considering this assumption and denoting
w = wk, Equations (7) and (8) can be formulated as an unconstrained optimization problem
with respect to w in the form:

Minimize : floss(w) = ∑n
i=1(w ŷki + (1 − w) ŷmi − yai)

2 (9)

The objective function floss(w) in this problem is convex and smooth; therefore, opti-
mization Equation (9) can be easily solved. We have:

1
dw

floss(w) =
n

∑
i=1

2(w ŷki + (1 − w) ŷmi − yai)(ŷki − ŷmi) = 0 (10)

Solving Equation (10) with respect to w, we find optimal weight w and, therefore,
weights wk = w and wm in the form:

wk = (∑n
i=1(ŷ

2
mi + ŷkiyai − ŷmiyai − ŷki ŷmi))/(∑n

i=1(ŷ
2
ki + ŷ2

mi − 2ŷki ŷmi)) (11)

and wm = 1 − wk (12)

The found optimal weights were used to obtain the final prediction ŷf at the point i
where the particular value is missing:

ŷf = wm ∗ ŷm + wk ∗ ŷk (13)

The imputed missing values using the proposed method were compared with those
obtained from spatial kriging, MLP as well as spatiotemporal kriging. The reason for
considering spatiotemporal kriging is that it is a widely used spatiotemporal missing value
imputation method in past studies.

2.1.4. Spatiotemporal Kriging

The spatial kriging can be extended to obtain spatiotemporal predictions by incorpo-
rating an additional temporal dimension, t, to the spatial kriging [4,17,18,20].

The spatiotemporal set of observed data are given by {Z(X1, t1), Z(X2, t2), . . . ,
Z(Xn, tn)}, and let Zi = Z(X i, ti) be the value of the variable Z at location Xi and time ti.
The spatiotemporal kriging prediction at an unobserved location X0 at time t is defined by:

ŷf = Ẑ(X0, t) = ∑n
i=1 wi(X, t)(Z(Xi, ti)) subject to ∑n

i=1 wi(X, t) = 1 (14)

where wi are weights for Z(X i, ti), i = 1, 2, . . . n. Following the study in [18], the
optimal prediction is taken by minimizing the mean squared prediction error subject to
the constraint:

E
[

Ẑ(X 0, t
)
− Z(X0, t)

]
= 0 (15)
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The kriging weights can be computed through the covariance function or by means of
a semivariogram. Once the covariance values are calculated, the optimal weights of the
kriging estimator can be computed through Lagrange multiplier application. Finally, the
optimal value of Ẑ(X 0, t

)
is calculated for spatiotemporal location (X 0, t) [18].

The spatiotemporal covariance function has different models such as linear, expo-
nential, spherical, Gaussian, or logistic. Capturing the spatial and temporal variability
is difficult for the variogram due to their dissimilarities. Therefore, the two-dimensional
kriging is modified to incorporate the time component. The type of variogram (metric,
separable, SumMetric, and product sum models) varies according to the way it combines
and models the temporal and spatial dependencies. The best-fitting model can be iden-
tified by comparing the mean squared errors (MSE) between the sample variogram and
fitted variogram.

2.1.5. Model Evaluation

In order to evaluate the performance of the fitted MLP, spatial kriging and spatiotem-
poral kriging models, mean absolute error (MAE), root mean squared error (RMSE), and
coefficient of determination (R2) metrics were used.

The MAE, RMSE, and R2 are calculated as below.

MAE =
1
n

n

∑
i=1

|yai − ŷ f i| (16)

RMSE =

√
1
n

n

∑
i=1

(yai − ŷ f i)2 (17)

R2 = 1 −
∑n

i=1(yai − ŷ f i)
2

∑n
i=1(yai − yai)

2 (18)

where ŷ f i is the predicted value, yai is the actual value, and yai is the mean value of yai. The
smaller the values of MAE and RMSE and larger the R2 value, the better the forecasting is.

The hybrid model, which integrates MLP and spatial kriging, was implemented in
python and the spatiotemporal kriging model was fitted using R software (version 4.3) and
the related packages. In the spatiotemporal model, the data were represented as Space
Time Full Data Frame (STFDF) object before fitting the variogram since data considered in
this study were with complete space time grid with s substations and t time intervals of
their observations.

2.2. Description of Data

For this study, daily rainfall readings gathered by nine rainfall neighbouring gauging
stations, including the target station (Ratnapura), were considered. The other eight stations
are Balangoda (St1_Bal), Detanagalla (St2_Det), Elston (St3_Els), llumbuluwa (St4_Ill),
Keragala (St5_Ker), Moralioya (St6_Mor), Nivithigala (St7_Niv), and Ulinduwawa (St8_Uli).
These eight stations are considered as reference stations.

The total number of days accounted for in this study is 1826. As mentioned earlier,
these reference stations consist of various discontinuous missing patterns within the study
period (1 January 2015–31 December 2019). The following heatmap (Figure 3) depicts the
missing patterns in the data of eight reference stations and Table 1 summarizes percentages.

Figure 3 depicts the data availability with blue color and inconsistent missingness
with white blocks along the time and space. With respect to the figure, it can be noted
that, in most cases, the missingness has occurred as a block (i.e., a sequence of missing
values). The percentage of missing values of the last two sub-stations, as indicated in
Table 1, are 68.4% and 73.55%, respectively. Since more than half of the data values are
missing, these two sub-stations were excluded from the analysis. The stations St1_Bal,
St2_Det and St5_Ker had random missing cases (noncontinuous missing values). Those
were interpolated using the average values of the neighbouring rainfall values of the
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corresponding station. Finally, there were six reference stations considered for assessing
the suitability of the proposed methodology.
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Table 1. Missing percentages of sub-stations’ rainfall data.

Sub Station Missing Count Missing Percentage

St1_Bal 32 1.75
St2_Det 1 0.05
St3_Els 519 28.42
St4_Ill 491 26.89
St5_Ker 123 6.74
St6_Mor 183 10.02
St7_Niv 1249 68.4
St8_Uli 1343 73.55

3. Results and Discussion
3.1. Preliminary Analysis

The correlation between the rainfall values of different stations may be either linear
or nonlinear. Therefore, to capture any type of correlations, the Spearman correlation
coefficients were calculated (refer to Figure 4).

The correlation between all the considered sub-stations and the target station Ratna-
pura and among sub-stations are significant at 5% significance level (i.e., p value < 0.05).
A strong correlation (>0.6) can be seen between Ratnapura and sub-stations Keragala,
Moralioya, and Elston. The results indicate that all six sub-stations are important in model-
ing rainfall at Ratnapura station. Thus, it confirms the need for imputing missing values of
the reference stations.

3.2. The Hybrid Model Formation

The structure of the performed hybrid model with MLP and spatial kriging can be
depicted as in Figure 5. In the notation, ŷk and ŷm refers to the spatial kriging and the MLP
estimates corresponding to the missing rainfall value of the ith station, for instance, St2
(there are situations where the rainfall values of more than one station are missing on the
same day).
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Note that MLP (for multivariate time series data) was trained using the parameter
values tuned with grid search approach (selected from a range of values) tabularized
in Table 2.
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Table 2. Common parameter settings in MLP models.

Parameters Value

Activation function ReLU
Epochs 80
Number of hidden layers 1
Number of neurons in hidden layer 20
Batch size 72
Learning rate 0.01
Optimizer Adam
Loss Function MAE

The regularization parameters and number of training/testing samples were modified
to obtain a convergent model in each MLP model. As depicted in Figure 5, in order to
integrate the two estimates obtained from spatial kriging and MLP, the optimal weights
from each estimate should be found.

For this, a data set without missing values needs to be used. Therefore, the following
procedure was applied:

(a) From the original data set, three complete subsets (with no missing cases for all the
stations) were selected. Consequently, subsets from the years 2015, 2016, and 2019
were selected.

(b) Consecutive missing periods were artificially created randomly within the three
subsets to capture the missing pattern of the original data set.

(c) The spatial kriging and MLP were applied to estimate the missing cases.
(d) Those estimated rainfall values were combined to form a single data set of 120 esti-

mated rainfall values.
(e) Then, from the final data set mentioned in (d), 100 simple random samples (with

replacement) with a moderate sample size of 60 were drawn.
(f) For each sample, the optimal values of two weights, wk and wm, were calculated by

applying Equations (11) and (12) as described in Section 2.1.3. The procedure resulted
in 100 optimal pairs of weights.

(g) Then, the first optimal weight pair was used to calculate the weighted estimates (ŷf)
of the rest of the samples (99). For each sample, the RMSE values (including the first
sample considered) were calculated. Using these RMSE values, the average RMSE
was computed.

(h) Likewise, steps (a) to (g) were repeated using the second optimal weight pair, then
third optimal weight pair, and so on.

Finally, there were 100 average RMSE values. Out of them, the pair of weights that
produced the lowest average RMSE value was selected as the best optimal pair of weights
for spatial kriging and MLP (Table S2). The results indicated that the 11th random sample
produced the final optimal weights, wk = 0.50013 and wm = 0.49987. Those weights were
taken to obtain optimal weighted estimates for the missing values.

3.3. The Spatiotemporal Kriging Model (SPTK Model)

Figure 6 summarizes the steps followed in applying the spatiotemporal kriging model.
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In this approach, a variogram for each missing sequence was fitted using the available
rainfall values of stations. For example, according to Figure 6, the first gap of the above data
set can be seen in station St2. Then, the data from the remaining stations were employed
to fit a variogram. Similarly, the missing blocks of St4 and St6 were estimated using the
available rainfall values of the other stations and so on.

Four variogram types (metric, separable, sum metric, and product sum) were com-
pared in terms of RMSE values. Using the variogram with the lowest RMSE, the spatiotem-
poral kriging was applied to estimate the missing values in a substation(s) that was/were
in the created grid. Table 3 provides the outputs resulting from 11 blocks of missing values.

Table 3. Comparison of prediction errors of variogram types.

Gap no Metric Separable SumMetric Product Sum

1 13.79 23.16 64.75 23.33
2 38.56 22.871 52.43 22.868
3 15.46 16.19 31.14 16.25
4 30.31 30.86 71.54 30.82
5 136.15 132.79 128.77 132.79
6 17.53 10.03 31.8 9.99
7 11.02 9.67 9.13 9.66
8 88.75 89.13 110.29 89.28
9 21.58 21.95 41.33 22.13
10 81.02 81.03 118.85 81.04
11 34.95 13.54 58.8 13.63

According to Table 3, it can be noticed that, in most of the cases, the metric variogram
has become the best fit and Figure 7 depicts a sample of figures (out of 11 figures), which
illustrates the comparison between variograms. In each case, the sample variogram and
fitted four types of variograms are given.
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In fitting the spatiotemporal model for the rainfall data, the empirical variogram
surface (or sample variogram) based on space and time is computed and used as inputs for
fitting different models: metric, separable, sum metric, and product sum models. Out of
them, the best fitting model can be selected, comparing with the surface of the empirical
variogram. When considering Missing Gap 01 in Figure 7, the metric-type variogram shows
the most similar surface shape with respect to distance and time lags as that of the original
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sample. Nevertheless, in Missing Gap 02, the product sum variogram is more similar to the
pattern of the actual sample. Likewise, in 11 gaps, the optimal variogram type deferred
with the missing pattern of the data.

Through optimal variograms the covariances of the data were calculated and, thereby,
the optimal weights to predict the missing value at the targeted location (see Section 2.1.4).

3.4. Model Evaluation

To validate the models, a two-way evaluation mechanism was carried out.

3.4.1. Model Evaluation along with Actual Missing Data

Assume that the rainfall values of a station are missing from t to t + k1 (see Figure 8).
The hybrid model was fitted, and these missing values were estimated using the available
values from 1 to t. To check the validity of the fitted model, rainfall values from (t + k1)
to (t + k1 + k2) were estimated based on the same fitted model (refer to Section 3.2) and
compared with the actual values. This validation data set was with size 55 (here, the
total number of observations in all k2 periods). The value k2 was chosen according to the
continuous availability of data within the considered time period.
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Spatiotemporal kriging (SPTK) was applied to the same validation set. Finally, a
comparison of RMSE, MAE, and R2 (Table 4) was conducted using the results produced by
individual approaches and the hybrid approach.

Table 4. Comparison of prediction error of all models.

Method Spatial Kriging MLP Hybrid SPTK

RMSE 12.76 11.68 10.72 15.97
MAE 7.12 4.01 5.12 10.25

R2 13% 3% 13% 0%

Among the considered four models, the minimum RMSE is produced by the hybrid
weighted method. It also has an MAE close to its lowest value, which is produced by MLP,
and the highest R2 value as of the spatial kriging (although it still needs to be improved).
Thus, in the first phase of model comparison, it was proved that the hybrid model out-
performed the other individual models. Moreover, the hybrid model outperformed the
spatiotemporal kriging model with respect to all validation measurements.

3.4.2. Model Evaluation on Artificially Generated Missing Data

Since the previous evaluation could not capture all the actual missing gaps (due to
the inconsistency of the data set), we thought to generalize the validation using another
validation set that could capture all the missing patterns (which are and are not in the
original data set) that could be found in an original data set of six rainfall gauging stations.

In year 2016, for 6 months (from January to June), there were no missing observations.
Therefore, we took the data of that period to create 56 subsets with different sequential
missing patterns, as shown in Table 5.
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Table 5. Types of missing gaps within six sub-stations.

Number Stations with Missing Observations (M) Number of Combinations (of Stations)

01 6C1 = 6
02 6C2 = 15
03 6C3 = 20
04 6C4 = 15
Total number of data sets 56

When two stations have missing observations in the same period (consider one in-
cident out of 15 combinations in case 02), each station was modeled separately. Thus, it
resulted in two trials. Finally, all combinations of two stations with missing observations
(i.e., 15) generated 30 trials (15 × 2). This was the same for the rest of the cases where
there were at least two stations with missing data. The case where the number of stations
with missing observations, M = 5, was not considered because there should be at least two
stations without missing observations in the spatiotemporal grid to model those gauging
stations with missing values using spatial kriging (a model requirement). In each subset,
missingness was created with the last 20 observations (without breaking the time sequence
and allocating enough data points for training) of the relevant sub-station. The rest of the
data were used to train and test the models and, hence, identify the best-fit model for a
selected sample of data.

The estimated values from each model were compared with the actual values and
tabularized in Table S3. In terms of the lowest values of RMSE and MAE and the highest
values of R2, the hybrid model has outperformed the other approaches. Moreover, it is
important to point out that, when kriging performs better than other individual methods
in terms of three validation measurements, the hybrid model has performed approximately
equally in most of the cases.

The outperformance with respect to the total (where lowest RMSE and MAE val-
ues and highest R2 value occur) shows the hybrid method could gain the score of 41%
(see Table 6).

Table 6. Final comparison of model performance.

Method Kriging MLP Hybrid SPTK
No. of times that each approach produced best
results (as a percentage with respect to the
sum of trials)

30 20 41 9

In addition to the above outcome, all the cases (in Table S3) were taken to obtain the
graphs shown in Figure 9.

Figure 9 illustrates that kriging produced most cases within the lowest value range of
MAE and within the highest value range of R2, whereas the MLP gained the majority of
cases within the lowest value range of RMSE. In all these occurrences, the hybrid model
has shown approximately the same performance as the optimal model.

This study demonstrated that the spatial and temporal variations should not be
neglected in missing value imputation in spatiotemporal data. Further, considering the two-
way evaluation, we could confirm that the hybrid model had the ability to outperform other
pure approaches or almost equally performed compared to the best approach whenever it
was selected as the second-best approach.
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4. Conclusions

In this paper, we proposed a novel approach for spatiotemporal missing value impu-
tation. Furthermore, this approach was illustrated by applying it to impute rainfall data
in six reference stations to compile a complete data set that could be used in building a
rainfall forecasting model for a target station. The proposed approach is a hybrid approach
combining MLP that captures the temporal variability and spatial interpolation (spatial
kriging) that captures the spatial variations. This hybrid model was designed for imputing
missing values when the missingness of reference stations was spread discontinuously
and not uniformly over the given period and a few rainfall gauging stations are spatially
correlated. Moreover, the results obtained by the hybrid model were compared with those
resulting from spatiotemporal kriging. The study supported the claim that the proposed
hybrid approach provided the lowest prediction error when estimating a sequence of
missing values.

Only a single published research study that imputes the missing rainfall values of
Ratnapura gauging stations is available. The accuracy measurements of the proposed
method are far better than those of said study [28].

The availability of a few rain gauging stations around Ratnapura station and unavail-
ability of data in some stations for a considerable period due to relocation or other reasons
were the challenging limitations confronted during this study.

In order to verify the optimality of weight estimates and the outperformance of the
hybrid method, the data for an extended period need to be gathered and tested.

While considering the aforesaid limitations, the future direction of this research will
be the development of more hybrid models combining other missing value imputation
methods and applying this approach to estimate missing values of spatiotemporal data
obtained from other fields.
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