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Abstract: In this paper, the Merkle-Transformer model is introduced as an innovative approach
designed for financial data processing, which combines the data integrity verification mechanism of
Merkle trees with the data processing capabilities of the Transformer model. A series of experiments
on key tasks, such as financial behavior detection and stock price prediction, were conducted to vali-
date the effectiveness of the model. The results demonstrate that the Merkle-Transformer significantly
outperforms existing deep learning models (such as RoBERTa and BERT) across performance metrics,
including precision, recall, accuracy, and F1 score. In particular, in the task of stock price prediction,
the performance is notable, with nearly all evaluation metrics scoring above 0.9. Moreover, the
performance of the model across various hardware platforms, as well as the security performance of
the proposed method, were investigated. The Merkle-Transformer exhibits exceptional performance
and robust data security even in resource-constrained environments across diverse hardware config-
urations. This research offers a new perspective, underscoring the importance of considering data
security in financial data processing and confirming the superiority of integrating data verification
mechanisms in deep learning models for handling financial data. The core contribution of this work
is the first proposition and empirical demonstration of a financial data analysis model that fuses data
integrity verification with efficient data processing, providing a novel solution for the fintech domain.
It is believed that the widespread adoption and application of the Merkle-Transformer model will
greatly advance innovation in the financial industry and lay a solid foundation for future research on
secure financial data processing.

Keywords: financial computation model; Merkle tree; secure data handling; deep learning; artificial
intelligence

1. Introduction

In the digital era, the financial industry is experiencing rapid transformation, with an
increasing number of financial services and transactions being conducted online. This shift
has made financial data security an increasingly critical concern [1]. Financial transaction
data not only hold significant economic value but also carry personal privacy and corporate
secrets, making it crucial to ensure the security and integrity of such data. In order to
enhance the guidance for investors interested in financial transactions or for analysts at-
tempting deception, the establishment of a more transparent and trustworthy information
system is first required. This can be achieved by ensuring that data and information in
financial markets are made publicly available, accurate, and promptly accessible to both
investors and analysts. Secondly, regulatory authorities need to intensify their supervi-
sion and enforcement efforts in financial markets to deter potential fraudulent activities.
Furthermore, investors and analysts should receive high-quality financial education to
comprehend the fundamental principles and risks of financial markets, enabling them to
better grasp and address market fluctuations. Simultaneously, they also need to acquire
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the knowledge of identifying potential fraudulent activities and speculative operations to
safeguard their investments. Lastly, the development of technological and data analysis
tools can assist investors and analysts in making more informed decisions. By employing
advanced algorithms and big data analysis techniques, they can gain a better understand-
ing of market trends, identify potential risks, and consequently, formulate investment
strategies with greater confidence. Traditional security measures, such as encryption and
access control, provide protection to a certain extent, but their effectiveness is often limited
in the face of complex cyber-attacks and internal threats [2]. Moreover, with the rapid devel-
opment of financial technology, new security challenges continue to emerge, necessitating
the development of more advanced and reliable security technologies.

Wu et al. [3] proposed an enhanced blockchain-based secure sharing (EBSS) scheme
for real estate financial certificates that protects shared vouchers and allows for anonymous
authentication; however, it is costly. Zhao et al. [4] designed a new method for secure
online data backup to address issues such as data loss. Li et al. [5] researched a multi-
chain model based on financial transactions and its corresponding cross-chain transaction
protocol, achieving interoperability between homogeneous or heterogeneous blockchains,
though the actual blockchain environment is complex, affecting its application effectiveness.
In response, Du et al. [6] proposed an anti-tampering data query model based on B+
trees and Merkle trees, addressing the issue of single-query blockchain data systems, with
experimental results indicating that this method performs best.

Among the emerging technologies, Merkle trees (Merkle Tree) and the Transformer
model have attracted widespread attention due to their unique characteristics. Merkle
trees, a hash-based data structure, efficiently and securely verify data content and have
been successfully applied in various distributed systems and cryptocurrencies. Their main
advantage lies in the ability to verify data integrity, enabling the validation of a part of the
data without revealing the entire content [7], which is crucial for protecting the privacy and
security of financial data.

On the other hand, the Transformer model, as a revolutionary deep learning architec-
ture, has demonstrated outstanding performance in natural language processing (NLP)
and several other domains [8]. Its main advantage is its capability to process sequential
data, particularly in understanding complex, long-distance dependencies [9]. In the finan-
cial sector, this ability can be employed to capture complex patterns in transaction data,
thereby improving the accuracy of financial fraud detection and the capability to predict
market changes.

Lian et al. [10] proposed a financial product recommendation network based on
the Transformer, showing that it has a faster training speed and better results than RNN.
Zhang et al. [11] used the Transformer for stock trend prediction, proposing a Transformer
encoder-based attention network (TeaNet) architecture, addressing the time-dependency
issue of financial data. Chen et al. [12] proposed an MTCformer method combining multi-
channel TextCNN and Transformer for Ponzi scheme detection, utilizing the Transformer
to extract semantic features, with experimental results showing that MTCformer achieved
97% accuracy, outperforming other methods (although it is time-consuming). Kim Gyeong-
min et al. [13] proposed a Bitcoin trading model—Cryptocurrency BERT Incorporated
Trading System (CBITS); research indicates that our model significantly outperforms other
trading methods.

However, despite the significant advantages of Merkle trees and the Transformer
model, research combining the two in the field of financial security remains relatively
limited. This paper proposes an innovative combination—the Merkle-Transformer
model—to explore the application potential of these two technologies in secure financial
computing. The objective is to enhance the security and efficiency of financial data
processing by combining the data verification capability of Merkle trees with the data
processing power of the Transformer model.

Karagiannis Ioannis et al. [14] proposed a method based on blockchain for sharing
financial information between financial institutions, but it cannot guarantee the integrity of
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data during processing; Alegria Alberto Vidal et al. [15] presented a quantitative analysis
method for calculating the risk of cyber-attacks in the data security domain of finance;
however, complex environments may affect the performance of this method in practical
applications. Ahmed Mohammad Rasheed et al. [16] proposed a blockchain-based payment
system for the Indian financial industry, which can achieve considerable speed, but it has
not been tested in real-time, and the performance of the system under different network
scenarios cannot be guaranteed.

The design of the Merkle-Transformer model considers multiple aspects of financial
data processing. First and foremost, the model ensures the security and integrity of data
during processing, which is vital in domains such as financial transactions and stock price
prediction. Secondly, by effectively integrating the structure of Merkle trees, the model
provides an additional layer of security for financial data. This not only helps prevent data
tampering but also makes the data verification process more efficient. Lastly, by combining
the advantages of the Transformer model, our model exhibits excellent performance in
processing large-scale financial data, especially in capturing complex patterns and long-
term dependencies.

In this paper, the design and implementation of the Merkle-Transformer model will be
elaborated, including the verifiable computation module based on Merkle trees and the
secure verifiable Transformer model. Additionally, a new loss function—the Merkle loss
function—specifically designed for the model will be introduced to optimize its perfor-
mance and enhance security. In the results and discussion section, the application results of
the model on financial transaction data (for financial attack detection) and stock price data
(for stock price prediction) will be showcased. Through these results, the advantages of
the Merkle-Transformer model in terms of performance, security, and cost will be verified,
and its application prospects in the domain of secure financial computing will be explored.
The methodology presented in this paper is aimed at enhancing fairness and stability in
financial markets, while concurrently augmenting the decision-making capabilities and
confidence of investors and analysts. This is achieved by devising the model to ensure
the aforementioned objectives are met. In conclusion, the Merkle-Transformer model not
only provides a new approach to the secure processing of financial data but also holds
significant theoretical and practical implications. Through the research presented in this
paper, a new perspective and solution for the development of financial technology security
is anticipated to contribute.

2. Related Works
2.1. Hash Algorithms

In the subsection on hash algorithms, it is highlighted that hash algorithms play a
critical role in the field of financial security, as they provide a foundation for data integrity
and security [17]. An introduction to hash verification algorithms is offered, including
their characteristics and applications in detecting financial attacks. Hash algorithms are
functions that transform an input of arbitrary length (usually a file) into a fixed-length
string, referred to as a hash value [18]. The main characteristic of a hash algorithm is its
unidirectional nature, meaning that it is computationally infeasible to reverse-engineer
the original input from the hash value. Furthermore, hash algorithms should satisfy the
following important properties:

1. Determinism: A hash algorithm must produce the same output for any given input.
For example, for input x, the output of the hash function, H, should always be the
fixed H(x).

2. Efficient computation: Computing the hash value H(x) should be quick for any input
value x.

3. Collision resistance: It should be extremely difficult to find two different inputs (x
and y) that yield the same hash value, i.e., H(x) = H(y).
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4. Avalanche effect: A small change in the input value should cause a significant change
in the hash value. In other words, if x and x′ differ slightly, then H(x) and H(x′)
should be significantly different.

This paper will focus on how these hash algorithms are applied to the secure processing
of financial data, particularly in scenarios involving the integration with Merkle trees and
the Transformer model. By combining the data integrity protection of hash algorithms with
the efficient data processing capabilities of the Transformer model, the proposed Merkle-
Transformer model aims to provide an innovative solution for the secure processing of
financial data.

2.2. Merkle Tree

In this section, we describe how Merkle trees (which are hash-based data structures)
are extensively utilized in various scenarios for security and data integrity verification [19],
particularly in the fintech sector. Essentially, Merkle trees are a special type of binary tree
where each non-leaf node is the hash of the hash values of its child nodes, as depicted in
Figure 1.

Top Hash
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𝐻𝑎𝑠ℎ	0
+

𝐻𝑎𝑠ℎ	1

Hash 0

hash 
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Figure 1. Illustration of a Merkle tree.

Within a Merkle tree, leaf nodes contain hash values of data blocks (such as transaction
records or file segments), while each non-leaf node contains the combined hash of the
hash values of its two child nodes. The top of the tree features a single node, known as
the root node or Merkle root, representing a unique fingerprint of the entire dataset. The
construction of a Merkle tree can be mathematically expressed as follows:

MerkleTree = Hash(Hash(A)⊕ Hash(B)⊕ Hash(C)⊕ . . .) (1)

Here, A, B, C, etc., represent data blocks, ⊕ represents concatenation, and the Hash()
function is utilized to generate hash values.

In the context of financial attack detection, Merkle trees can ensure the integrity and
immutability of transaction records. Consider, for example, a blockchain system comprising
multiple transaction records. Each block in the blockchain can utilize a Merkle tree to store
the hash values of transactions [20]. To verify whether a specific transaction is included in
a block, only a path from that transaction record to the Merkle root (i.e., a Merkle proof)
is required.
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This process can be represented by the following equation:

MerkleProo f = Hash(Hash(Transaction)⊕ Hash(Sibling1)⊕ . . . ⊕ Hash(Siblingn)) (2)

Here, Transaction is the transaction record being verified, and Sibling1, . . . , Siblingn
are sibling nodes on the path from the transaction record to the root. In practical applica-
tions, Merkle trees offer an efficient and secure way to verify the integrity of large volumes
of data. In the financial domain, this characteristic is especially significant. It not only
ensures the security of transaction data but also effectively guards against financial fraud
and tampering activities [21]. For instance, in distributed ledger technologies (such as
blockchain), Merkle trees are used to ensure the integrity of transaction records in each
block. Through this method, participants can verify the validity of individual transactions,
even without downloading the entire blockchain. A key advantage of Merkle trees is their
“avalanche effect”: any change in a data block within the tree leads to a change in the entire
tree’s root hash value. This feature allows for any unauthorized modifications to the data
to be rapidly detected, thereby providing a robust mechanism for data integrity protection.

In the Merkle-Transformer model, these characteristics of Merkle trees are leveraged
to enhance the security of financial data processing. By combining Merkle trees with
the Transformer model, a secure and efficient method for processing complex finan-
cial data is provided, particularly when dealing with large-scale and high-frequency
transaction data.

2.3. Financial Computation Model Based on Transformer

In the subsection on Transformer-based financial computation models, the Trans-
former’s exemplary performance in various domains, particularly in finance, is emphasized
since its introduction [22]. This model, proposed by Vaswani et al. in 2017 [23], revolu-
tionized sequence data processing with its “Self-Attention” mechanism. Compared to
traditional recurrent neural networks (RNNs) [24] and long short-term memory networks
(LSTMs) [25], the Transformer addresses long-distance dependencies more effectively, a
critical aspect in financial time-series data analysis. The core of the Transformer is its
self-attention mechanism, allowing the model to consider other elements while processing
each element in a sequence, thereby capturing complex patterns in data more effectively.
The computation of self-attention can be represented as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (3)

Here, Q, K, and V represent the query, key, and value, respectively, with dk denoting
the dimension of the key. This mechanism enables the model to allocate different attention
weights to each element in a sequence, as shown in Figure 2.

Concat

Scaled Dot-Product
Attention

h

Linear Linear Linear

V K Q

Figure 2. Illustration of the multi-head attention mechanism.
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The Transformer model also includes two main parts: an encoder and a decoder.
The encoder consists of multiple identical layers, each with a self-attention mechanism
and a simple feed-forward neural network. The decoder comprises multiple identical
layers, but each decoder layer includes an additional attention mechanism focusing on
the encoder’s output. In financial computation models, the Transformer is employed for
various tasks, such as stock price prediction, risk assessment, and market trend analysis [26].
In these applications, the Transformer effectively captures complex patterns and long-term
dependencies in financial time-series data. For instance, in stock price prediction models,
the Transformer can be represented by the following formula [27]:

Pt = f (Transformer(St−n, . . . , St−1)) (4)

where Pt denotes the stock price prediction at time t, and St−n, . . . , St−1 represent the stock
price series at previous n time points, with f being the function linking the Transformer
output to the prediction result.

Another significant application of the Transformer in finance is fraud detection [28]. In
this scenario, the model must identify anomalous patterns from a vast array of transaction
data. With its self-attention mechanism, the Transformer can efficiently identify these
complex fraud patterns. A Transformer model for fraud detection can be represented
as follows:

Ft = Transformer(Transaction1, . . . , Transactiont) (5)

where Ft represents the fraud detection outcome at time t, and Transaction1, . . . , Transactiont
denote the transaction sequence up to time t. In conclusion, the Transformer model plays a
crucial role in financial computation models due to its efficient handling of long-distance
dependencies and capturing of complex patterns. A deeper understanding of the Trans-
former’s structure and principles enables the design of more accurate and efficient financial
computation models, achieving breakthroughs in areas like stock price prediction, risk
assessment, and fraud detection. In the Merkle-Transformer model, these advantages of
the Transformer will be utilized, combined with the security of Merkle trees, to provide a
secure and efficient solution for financial data processing.

3. Materials and Method
3.1. Dataset Collection
3.1.1. Financial Transaction Datasets

In the subsection on financial transaction data, it is noted that financial transaction
datasets typically consist of a vast array of transaction records, potentially including
information such as transaction time, parties involved, amount, and type. These datasets are
often employed for financial attack detection to identify anomalous transaction behaviors,
such as fraud or money laundering. When selecting datasets, attention is paid to the
diversity, authenticity, and completeness of the data. Prominent public financial transaction
datasets include the Credit Card Fraud Detection dataset provided by Kaggle [29]. The
reason for utilizing these datasets is that they offer a wealth of real-world cases, assisting in
effectively testing and optimizing the performance of the Merkle-Transformer model in
financial attack detection. By analyzing real transaction data, more accurate simulation and
identification of financial fraud and other abnormal behaviors can be achieved.

3.1.2. Stock Price Datasets

In the subsection on stock price data, stock price datasets, including historical trading
data of the stock market such as opening and closing prices, highest and lowest prices, and
trading volume, are discussed. These datasets are typically used for training and testing
stock price prediction models, to forecast future stock market trends. The stock price data
for this study are obtained from various public financial market databases, including Yahoo
Finance, Google Finance, and others [29]. Additionally, professional financial data service
providers like Bloomberg and Reuters offer high-quality stock price data. The reason for
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using these datasets is that they provide detailed market transaction records, reflecting the
collective behavior and sentiments of market participants. By analyzing the data, the model
can learn complex patterns affecting stock price fluctuations, thereby enhancing prediction
accuracy. After acquiring stock price data, data cleaning and preprocessing are conducted
to ensure data quality and consistency. Specific to stock price prediction, various technical
indicators such as moving averages, Relative Strength Index (RSI), and Bollinger Bands are
calculated as input features for the model. Moreover, external factors like macroeconomic
indicators and market news, which also influence stock price volatility, are considered.

3.1.3. Generated Datasets

In the subsection on generated datasets, the purpose of generating datasets is to im-
prove the generalization ability and robustness of the model. In the real world, financial
data are often imbalanced, particularly in scenarios of financial attack detection where
normal transactions far outnumber fraudulent ones. To address this issue, data generation
techniques are used to balance the datasets. A primary method employed is the synthetic
minority over-sampling technique (SMOTE) [30]. SMOTE generates new samples by inter-
polating among minority class samples, thereby balancing class distribution. This method
enhances model performance in handling imbalanced data. The basic idea of SMOTE is to
find the k nearest neighbors for each minority class sample and then generate new samples
through random interpolation between these samples. Assuming a minority class sample
xi with its nearest neighbor set {xi1, xi2, . . . , xik}, a new sample xnew is generated as follows:

xnew = xi + λ · (xij − xi) (6)

Here, xij is a nearest neighbor of xi, and λ is a randomly chosen parameter within
[0, 1]. Through these methods, not only high-quality datasets are obtained, but the model’s
robustness and generalization ability are also enhanced through data generation techniques.
This is crucial for the development and testing of the Merkle-Transformer model.

3.2. Dataset Preprocessing and Augmentation

In the subsection on dataset preprocessing and augmentation, it is outlined that
preprocessing and augmenting the dataset are key steps in experimental preparation. This
work ensures the quality and diversity of the dataset, crucial for subsequent model training
and evaluation. A detailed explanation of data preprocessing and augmentation methods
is provided, including annotation methods, preprocessing techniques, and the application
and mathematical principles of data augmentation techniques.

3.2.1. Dataset Annotation

In the context of financial data processing, dataset annotation is an important step,
particularly in applications such as financial attack detection and stock price prediction.
For financial transaction data, the focus is primarily on labeling transactions as normal or
anomalous (fraudulent). Stock price data, on the other hand, needs to be labeled according
to price trends within a specific time window, such as rising, falling, or stable.

1. Annotation of financial transaction data: Based on historical records and background
information of transactions, each transaction is labeled as “normal” or “fraudulent”.

2. Annotation of stock price data: For stock price data, annotation is typically based
on historical trends of price changes. For example, if the stock price in a given time
window rises beyond a certain threshold, it might be labeled as “rising”; conversely,
if the price falls below the threshold, it is labeled as “falling”.

3.2.2. Dataset Preprocessing

Data preprocessing is a key step to ensure data quality and model performance. Ini-
tially, data cleaning involves removing or correcting erroneous and inconsistent records in
the dataset. This is to ensure the accuracy of model training and evaluation, preventing
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incorrect data from leading the model to learn incorrect patterns. Following this, normal-
ization or standardization processes involve transforming all features to the same scale
for more effective learning and generalization by the model. Common methods include
min-max normalization and Z-score standardization. The mathematical expression for
Z-score standardization is as follows:

x′ =
x − µ

σ
(7)

Here, x represents the original feature value, µ and σ represent the mean and standard
deviations of the feature values, and x′ is the standardized feature value.

Handling missing values is also a crucial aspect of data preprocessing. For missing
data, various methods can be employed, such as interpolation, filling with mean values, or
simply deleting related records. Finally, feature engineering involves selecting and con-
structing features according to the needs of the model. In financial data analysis, especially
for stock price prediction, calculating moving averages or other technical indicators as
input features for the model might be necessary.

3.2.3. Dataset Augmentation

Data augmentation is an important method to enhance model generalization ability,
especially in situations with limited data or imbalanced class distribution. Common
methods of data augmentation in financial data processing include the following:

1. Synthetic minority over-sampling technique (SMOTE): As previously mentioned,
SMOTE is a popular data augmentation method used to address class imbalance
issues. It generates new samples by interpolating between minority-class samples.

2. Time series data augmentation: For stock price data, time series-specific data aug-
mentation methods such as time window sliding and time series segmentation can be
used to increase the number and diversity of data samples.

3. Feature expansion: In some cases, creating new features by adding noise, transform-
ing, or combining existing features can enhance the diversity of the dataset.

Through the above data preprocessing and augmentation steps, the quality and di-
versity of the dataset can be ensured, providing a solid foundation for the training and
evaluation of the Merkle-Transformer model.

3.3. Merkle-Transformer
3.3.1. Overall

In this paper, we propose an innovative method that combines the advantages
of Merkle trees and Transformer models to enhance the security and efficiency of fi-
nancial computations. The core concept of the Merkle-Transformer model is to ensure
the security and integrity of data through Merkle trees while leveraging the efficient
computational capability of the Transformer model. This combination not only improves
the accuracy of data processing but also ensures that security is not compromised in the
pursuit of efficiency.

Figure 3 illustrates a schematic of the working principle of the Merkle-Transformer
model. The figure elucidates how the outputs of the intermediate layers of a deep learning
model are combined with the Merkle tree structure to ensure the security and verifiability of
the model’s processing. Each layer (L1 to L8) are first considered as leaf nodes in the Merkle
tree. Subsequently, adjacent outputs are paired and combined through a hash function
Hash, progressively building the Merkle tree until forming the top hash, representing a
unique fingerprint of the entire model’s output.
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Figure 3. Overview of the Merkle-Transformer.

Specifically, the raw data passes through a series of attention modules, each generating
a feature representation (L1 to L8). This paper introduces a shallow convolutional neural
network at the model’s entrance for initial feature extraction, and the extracted features are
then fed into the Transformer model. These feature representations are further combined
through the hash function to form intermediate nodes (Hash 0-0, Hash 0-1, etc.), culminating
in the top hash. At the end of the model, after passing through the flattened and dense
layers, the output is obtained. Throughout this process, every step of the model’s output
is linked to the Merkle tree structure via the hash function, implying that any minor
change in output will cause a variation in the root hash, thereby verifying the integrity
and unaltered state of data throughout the transmission and processing. This design
enables the Merkle-Transformer model not only to process complex financial data but also
to ensure security during data processing, as any unauthorized data modification will
be detected. This is particularly important for financial data, often involving sensitive
information and critical decision-making. Additionally, the Merkle-Transformer model
provides a verifiable computation process, allowing every step of the model’s operation
to be traceable and verifiable, greatly increasing the transparency and trustworthiness of
financial computation models.

In summary, the Merkle-Transformer model integrates deep learning and Merkle
trees to provide a secure and efficient new framework for financial computations. This
combination effectively utilizes the strengths of both technologies—the powerful data
processing ability of deep learning and the unique security advantage of Merkle trees—
offering a novel solution for financial data processing and analysis.

3.3.2. Verifiable Computation Module Based on Merkle Tree

The verifiable computation module based on Merkle trees is a core component of the
model, playing a vital role in safeguarding data security and integrity throughout the compu-
tation process. The design of this module merges the data verification mechanism of Merkle
trees with the efficient computation capability of deep learning, aiming to provide a secure
and efficient framework for financial data processing. The design details of this module follow
the basic principles of Merkle trees, where data blocks are hashed to form a tree-like structure,
with each non-leaf node being the hash of the hash values of its child nodes. In our model,
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this concept is extended to the outputs of the intermediate layers of deep learning models.
Specifically, for each intermediate layer of the model, the hash value of its output is calculated,
and these hash values are organized in the manner of a Merkle tree.

Considering that each layer in deep learning can be viewed as a data transformation,
the outputs of each layer are treated as data blocks. For instance, if the model’s first layer
is a two-dimensional convolutional layer with input x and output h1, then the hash value
H(h1) of h1 can be calculated. Similarly, the hash value H(h2) for the output h2 of the
second layer is computed, and so on. These hash values are then paired and hashed again
to form the parent nodes of the Merkle tree, continuing until the root hash is formed.
Mathematically, this process can be expressed as follows:

hparent = H(hleft||hright) (8)

where hparent is the hash value of the parent node, hleft and hright are the hash values of the
child nodes, H is the hash function, and || denotes concatenation. In practical applications,
our deep learning model may include various types of layers, such as convolutional
layers (Conv2D), pooling layers, and dense layers. These layers are stacked in sequence
to form a network capable of extracting and processing complex features. For example,
a typical stacking structure might involve the input passing through two convolutional
layers, followed by a pooling layer, several more convolutional layers, and finally, a dense
layer to produce the output. The output of each layer is used not only for the input of
the next layer but also for constructing the Merkle tree. The output dimensions of each
convolutional or dense layer depend on the layer’s configuration and the dimensions of the
input. For example, the output dimension of a convolutional layer might be a function of
the number of filters, stride, and padding. The advantage of this design is that it combines
the efficient computational capability of deep learning models with the data integrity
verification mechanism provided by Merkle trees. This combination not only enhances the
model’s performance in processing financial data but also increases the security of the data
processing. Any unauthorized alteration to the data or model output will be reflected in
the root hash of the Merkle tree and can, therefore, be quickly detected. Additionally, due
to the structure of the Merkle tree, which makes the verification process highly efficient,
only a small portion of nodes need to be verified to ensure the integrity of the entire dataset,
significantly reducing computational and storage overhead. In financial computation tasks,
this design is particularly important as it not only ensures the reliability and auditability of
data processing but also allows for rapid response to potential security threats. Whether in
scenarios of financial transaction detection or stock price prediction, ensuring the security
and integrity of data is of utmost importance.

3.3.3. MatrixSplit Verification Method

In this subsection, it is explained that while traditional Merkle trees are highly efficient
in processing single data streams, a decline in verification efficiency occurs when dealing
with matrices or multi-dimensional data using conventional methods. To address this issue,
a novel matrix splitting method is introduced and applied within an improved Merkle
tree structure.

Figure 4 displays the matrix splitting verification method, a novel approach to data
structure processing aimed at enhancing the efficiency of Merkle trees in verifying matrix
data. In this method, the matrix initially undergoes processes of consecutive and non-
overlapping slicing. Consecutive slicing refers to continuously dividing the original matrix
by rows or columns to form multiple smaller submatrices. Non-overlapping slicing involves
splitting the original matrix into multiple smaller, non-overlapping submatrix blocks.
This slicing approach reduces the amount of data needed to be processed in a single
verification while maintaining data integrity. Mathematically, matrix splitting can be
expressed as follows:

Mij = Slice(M, i, j) (9)
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where M is the original matrix, Mij is the resulting submatrix from slicing, Slice is the
splitting function, and i and j represent the starting indices of rows and columns for slicing,
respectively. During non-overlapping slicing, a specific slicing strategy is used to ensure
that each submatrix block can be independently verified, crucial for the parallelization
and efficiency of computation. The choice of this slicing strategy depends on the size
of the submatrices and the structural characteristics of the original matrix. After slicing,
each submatrix block is assigned a unique hash value, then combined using the improved
Merkle tree structure. Unlike traditional Merkle trees, the improved Merkle tree allows
nodes within the tree to represent submatrix blocks rather than just single data points. For
a submatrix block Mij, its hash value is represented as follows:

hMij = H(Mij) (10)

where H is the hash function. In constructing the tree, hash values of adjacent submatrix
blocks are combined to compute their parent hash value, continuing until the root hash
value of the tree is calculated. The advantage of this design is that when verifying the
integrity of matrix data, it is not necessary to verify every element of the entire matrix, but
only the hash values of the submatrix blocks and the root hash value. This significantly
reduces the computational load in the verification process and enhances the parallelization
of verification. In particular, when dealing with large-scale financial data, this method
significantly improves verification efficiency.

𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒

𝒉𝟏𝟐 𝒉𝟑𝟒

𝒉𝟏𝟐𝟑𝟒

Figure 4. Illustration of the MatrixSplit method. Initially, the matrix is divided into multiple
continuous submatrices using a continuous slicing approach, with each submatrix containing a
portion of consecutive rows or columns from the original matrix. Subsequently, the disjoint slicing
technique is applied to further partition the matrix into non-overlapping smaller matrix blocks, each
composed of a specific region from the original matrix. These matrix blocks are assigned individual
hash values, serving as unique identifiers for leaf nodes in the modified Merkle tree. By constructing
the modified Merkle tree, effective validation of individual matrix blocks can be performed without
the need to validate the entire integrity of the matrix. This approach is particularly valuable in
large-scale data processing scenarios, significantly improving validation efficiency while supporting
parallel processing and incremental updates.

In the financial computation tasks of this paper, the application of the matrix split-
ting verification method offers distinct advantages. Since financial data are often multi-
dimensional, such as stock price data matrices encompassing time, prices, volumes, and
other dimensions, directly applying traditional Merkle trees leads to efficiency issues. By
adopting the matrix splitting verification method, the integrity and correctness of data can
be verified more quickly, ensuring the reliability and security of the financial computation
model. Additionally, this method supports incremental updates and rapid re-computation;
when matrix data change, only the hash values of the affected submatrix blocks and their
related path need to be recalculated, without processing the entire dataset.

3.3.4. Verifiable Secure Transformer Inference Model

Apart from the verifiable computation module based on the Merkle tree, another core
component is the verifiable secure Transformer model. This module aims to efficiently
process financial data while providing a mechanism to verify the data processing procedure,
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ensuring data security and integrity throughout the computation process. The verifiable
secure Transformer model, in its design, incorporates the fundamental architecture of the
original Transformer model, consisting of multiple self-attention layers and feed-forward
networks, with added verifiability. Each layer of the model generates an intermediate
output, which is used not only for computing the input of the next layer but also for
generating the Merkle tree, facilitating comprehensive data integrity verification.

This self-attention mechanism allows the model to consider the influence of all other
inputs while processing each input, thereby capturing long-distance data dependencies.
Following the self-attention layer is the feed-forward network, which further processes the
output of the self-attention layer. Feed-forward networks typically consist of two linear
transformations with an activation function, such as ReLU [31] or GELU [32], in between,
and are mathematically expressed as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2 (11)

Here, W1, W2, and b1, b2 represent the weights and bias terms of the network layer,
respectively. To achieve verifiability, an additional step is added to the output of each
layer: the computation of its hash value, which is then integrated as a node in the Merkle
tree. This means that at every layer of the model, outputs are produced not only for
computation in the subsequent layer but also for validating data integrity. In the financial
computation tasks addressed in this paper, the verifiable secure Transformer model offers
numerous advantages. Firstly, it improves the efficiency and accuracy of financial data
processing, as the Transformer model is capable of effectively handling long sequence
dependencies. Secondly, the model enhances the security of data processing, as any
unauthorized alteration to the data will be reflected in the root hash value of the Merkle
tree and can be rapidly detected. Finally, this design supports the scalability and flexibility
of the model, as it allows for the addition of new data processing layers or adjustments to
existing ones while maintaining the validity of existing data verifications.

3.3.5. Merkle Loss Function

In this paper, a novel loss function, the Merkle loss function, is introduced. This
function is a significant supplement and expansion of traditional loss functions, designed
to integrate the data verification mechanism of Merkle trees with the optimization process
of deep learning models. The Merkle loss function is conceptualized to consider not only
prediction errors at every step of model training but also the integrity and security of data.
Traditional loss functions, such as mean squared error (MSE) or cross-entropy, primarily
focus on the model’s predictive performance, i.e., the discrepancy between predicted and
actual values. The Merkle loss function, however, introduces an additional term that
measures the consistency between the model output and the root hash value of the Merkle
tree. This new loss function is represented as follows:

LMerkle = Lpred + λ × Lmerkle (12)

where Lpred is the traditional prediction loss term, such as MSE or cross-entropy, Lmerkle is
the loss term related to the root hash value of the Merkle tree, and λ is a hyperparameter
balancing the importance of the two. The above approach is designed to conform to the
general expression of the loss function. In practice, by setting λ to a very large number
(e.g., 10,000), it allows the model to immediately stop training upon detecting data integrity
issues, similar to a penalty term in optimization algorithms.

3.4. Experiment Design

The design of the experiment is a crucial component in demonstrating the effectiveness
of the Merkle-Transformer model. The experiment aims to showcase the advantages of
our model in processing financial data and verify its capability to ensure data security. To
ensure the accuracy and reliability of the experimental results, a standard dataset division
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strategy is adopted. Specifically, the dataset is divided into training, validation, and test sets.
The training set is used for the learning process of the model, the validation set for adjusting
model parameters and hyperparameters, and the test set for the final evaluation of model
performance. Typically, the dataset is divided into a 70%, 15%, and 15% ratio, although
the actual proportions may vary based on the size and characteristics of the dataset. This
division ensures the model’s generalization on unseen data and avoids overfitting.

In the experiments, multiple baseline models were selected for comparison, including
Transformer [23], BERT [33], BERT-wwm [34], RoBERTa [35], and SpanBERT [36]. These
models have been widely applied in the field of natural language processing and have
demonstrated excellent performance across various tasks. Their selection aims to showcase
the performance improvement of the Merkle-Transformer model relative to the current
state-of-the-art technologies. The Transformer model, as the pioneer of self-attention mech-
anisms, serves as the foundation for our comparison. The BERT model, known for its
powerful contextual understanding capabilities, has established new benchmarks in mul-
tiple NLP tasks. BERT-wwm, RoBERTa, and SpanBERT represent further advancements
based on BERT, enhancing model performance through different pre-training strategies
and architectural optimizations. The choice of these models as baselines is motivated by
their representation of the current level of advancement in natural language processing
technology and their exceptional ability to handle sequential data. By comparing the
Merkle-Transformer model with these baselines, a fair assessment of our model’s perfor-
mance can be conducted, especially in the specific domain of financial data processing.

The Adam optimizer [37] was chosen for optimization. Adam, an adaptive learning
rate optimization algorithm, combines the advantages of momentum and RMSprop op-
timization methods. It adjusts the learning rate for each parameter based on its update
history, making it particularly suitable for handling large-scale and complex datasets. Ad-
ditionally, the Adam optimizer has been proven effective in various deep learning tasks,
thus being the preferred choice. Hyperparameter settings are based on an understanding
of the problem and preliminary experimental results, including learning rate, batch size,
and the number of training epochs. The learning rate starts high and is gradually reduced
during training to refine the adjustment of model weights. The batch size depends on the
dataset size, model complexity, and hardware resource limitations. The number of training
epochs needs to be sufficient to ensure the model can adequately learn patterns in the data
but not so numerous as to cause overfitting.

Through such an experimental design, a comprehensive evaluation of the Merkle-
Transformer model’s performance in secure financial computation tasks can be conducted,
allowing for a fair comparison with current advanced models. By comparing experimental
results, it is expected to demonstrate that the Merkle-Transformer not only provides excel-
lent predictive performance in processing financial data but also enhances the security of
the data processing process.

3.5. Evaluation Index

In our research, a series of quantitative evaluation metrics were employed to com-
prehensively assess model performance, reflecting various aspects of model functionality,
particularly in prediction accuracy and data integrity protection. Precision is used to mea-
sure the proportion of true positives among all samples predicted as positive by the model.
High precision directly relates to the credibility of the model in practical applications. The
formula for precision is as follows:

Precision =
TP

TP + FP
(13)

where TP (true positive) represents the number of samples correctly predicted as positive,
and FP (false positive) denotes the number of samples incorrectly predicted as positive.

Recall measures the proportion of actual positive samples identified by the model,
reflecting the model’s ability to capture important events. Recall is particularly crucial in
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the field of financial security, as missing any real fraudulent event could lead to significant
economic losses. The formula for recall is as follows:

Recall =
TP

TP + FN
(14)

where FN (false negative) refers to the number of actual positive samples incorrectly
predicted as negative.

Accuracy is an indicator of the overall correctness of the model’s predictions, reflecting
the proportion of correctly predicted samples in the total sample set. This metric provides
an intuitive overview of model performance and is calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

where TN (true negative) represents the number of samples correctly predicted as negative.
For regression tasks like stock price prediction, the coefficient of determination R2 is

used to assess the quality of the model’s predictions. R2 measures the degree of correlation
between the model’s predictions and actual values, with values closer to 1, indicating
stronger predictive ability. The formula for R2 is as follows:

R2 = 1 − ∑i(yi − ŷi)
2

∑i(yi − ȳ)2 (16)

where yi represents the actual value of the ith sample, ŷi is the model’s prediction for the
ith sample, and ȳ is the average of all actual values.

These evaluation metrics comprehensively assess the model’s performance from
multiple dimensions. Precision and recall are particularly applicable to classification
tasks, such as financial fraud detection, assisting in evaluating the model’s ability to
identify genuine risk events. Accuracy provides an overall performance evaluation, aiding
in understanding the model’s performance across the entire dataset. The coefficient of
determination R2, as a regression task metric, reflects the degree of fit between the model’s
predictions and actual outcomes, which is crucial for financial time series analysis like stock
price prediction.

4. Results and Discussion

In Section 4.1, we cover the performance of the model in financial behavior detection
and stock price prediction tasks, the verification of its security, the analysis of system
overhead, as well as the limitations and prospects of the model. Initially, in the performance
analysis section, an in-depth examination of the Merkle-Transformer model’s performance
in financial behavior detection tasks is conducted. By comparing it with various baseline
models, its precision, recall, and F1 score in identifying fraudulent transactions and money
laundering activities are assessed. The experimental results demonstrate that the Merkle-
Transformer, considering data integrity and security while processing financial sequential
data, exhibits commendable performance in detecting financial fraud, particularly excelling
in reducing false positives compared to traditional models.

In Section 4.2, we discuss the current limitations of the Merkle-Transformer model,
such as scalability issues when processing extremely large datasets, and ways to further
enhance the model’s security and reduce overhead. Furthermore, future research directions
are proposed, including optimizing the model structure, improving security mechanisms,
and exploring potential applications in other financial tasks.

4.1. Performance Analysis

The objective of this experiment is to validate and showcase the performance of the
Merkle-Transformer model in processing financial data, especially in comparison with
current mainstream deep learning models. Through this experiment, the superiority of the
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Merkle-Transformer in key performance metrics such as precision, recall, accuracy, and F1
score is intended to be demonstrated, thereby proving its potential application in the field of
financial security. The results in Table 1 indicate that the Merkle-Transformer outperforms
all other models in all evaluation metrics, followed by RoBERTa, BERT, Transformer, BERT-
wwm, and SpanBERT. These results reflect the performance differences of various models in
financial behavior detection tasks, where the Merkle-Transformer’s superior performance
is attributed to its unique design and algorithms.

Table 1. Financial computation performance.

Model Precision Recall Accuracy F1 Score

Merkle-Transformer 0.95 0.97 0.96 0.96
RoBERTa 0.90 0.92 0.91 0.91
BERT 0.87 0.89 0.88 0.88
Transformer 0.85 0.87 0.86 0.86
BERT-wwm 0.83 0.85 0.84 0.84
SpanBERT 0.81 0.84 0.83 0.82

Firstly, the Merkle-Transformer model integrates the data integrity verification mech-
anism of Merkle trees with the efficient data processing capabilities of the Transformer
model. The Merkle tree structure provides a mechanism for verifying data integrity, en-
suring that data remains unaltered or undamaged during processing, which is especially
important in financial data processing. The Transformer model, known for its efficient
self-attention mechanism, excels in handling complex sequential data. This combination
not only improves the accuracy of data processing but also enhances the robustness of the
model when facing challenges unique to financial data. Models like RoBERTa, BERT, and
SpanBERT, although performing well in natural language processing tasks, are limited in
their performance in financial data processing due to their original design focus. These
models primarily concentrate on semantic understanding of text data, not on the specific
characteristics of financial data. Additionally, they lack a mechanism for verifying data
integrity, an important consideration in financial data processing. The Transformer model,
as the originator of the self-attention mechanism, has certain advantages in processing se-
quential data but its application in the financial domain is limited by its generality. Without
customized processing for the specific characteristics of financial data, it may not achieve
optimal performance in financial behavior detection tasks. The BERT-wwm model, despite
its advantages in processing Chinese text, is limited in this specific task of financial behavior
detection due to its understanding of financial-specific contexts.

The superior performance of the Merkle-Transformer model can be attributed to its
integration of the data integrity verification mechanism of Merkle trees with the efficient
data processing capabilities of the Transformer model. In contrast, models like RoBERTa,
BERT, Transformer, and BERT-wwm, despite their exemplary performance in natural
language processing, showed slightly inferior results in this specific task of stock price
prediction. This is mainly because these models, while capable of processing sequential
data, lack customized processing abilities for financial characteristics. For instance, they
might be insufficient in capturing complex market trends and subtle financial signals,
resulting in lesser predictive performance compared to the Merkle-Transformer, which is
specifically designed for financial data. The SpanBERT model performed the worst across
all metrics, possibly due to its focus on the span representation of text during pre-training,
rather than the time dependencies in sequential data, which may not be optimal for dealing
with highly time-sensitive data like stock prices.

4.2. Security and Performance Verification

In this section, the security features of the Merkle-Transformer model and its per-
formance across various hardware platforms are extensively evaluated. Additionally, in
combination with the Merkle-Transformer verification method, the impact of various run-
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time configurations on the model’s performance is further explored. These experiments
are designed to not only validate the efficiency and accuracy of the model in performing
tasks such as financial behavior detection and stock price prediction but also to ensure the
verifiability and security of the model’s operations.

As illustrated in Table 2, tests across multiple hardware platforms reveal that even on
lower-end devices like Raspberry Pi and NVIDIA Jetson Nano, the Merkle-Transformer
model maintains stable performance while ensuring integrity verification throughout the
computation process. Its performance on the GPU and Apple M1 is particularly notewor-
thy, indicating the model’s effective utilization of the high-performance computational
resources of modern hardware platforms. The data also show that multi-threading execu-
tion significantly improves inference throughput while keeping the CPU load at a lower
level, crucial for applications requiring deployment in resource-constrained environments.

Table 2. Performance comparison between local inferences and Merkle-Transformer running hard-
ware platforms.

Hardware Concurrency CPU Load Latency Throughput

RPi Baseline Mid 8.3 s 157
RPi 2× Concurrency High 3.1 s 618
RTX 3070 Baseline Low 3.0 s 482
RTX 3070 2× Concurrency Mid 4.1 s 1107
Apple M1 Baseline Low 3.9 s 531
Apple M1 2× Concurrency Mid 6.2 s 1209
Jetson Nano Baseline Low 21.4 s 125

In Table 3 and Figure 5, the Merkle-Transformer shows significant advantages over
other verification methods like Slalom [38] in terms of communication and computation
overhead, storage requirements, and potential error detection. This result confirms the effi-
ciency of our verification method in ensuring the integrity of machine learning inferences.

Table 3. Qualitative comparisons between verification methods for checking inference integrity.

Model Communication Computation Concurrency FNE

Slalom [38] High High Low Low
MLP Low High Low High
ResNet Mid High Low High
Merkle-Transformer Low Mid High Low
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Figure 5. Latency detail of Merkle-Transformer on different hardware platforms.

Furthermore, the impact of different runtime configurations of MatrixSplit on perfor-
mance is explored. As indicated in Table 4, by optimizing communication and computation,
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latency can be significantly reduced without sacrificing verification stringency. For example,
when low partition of the network instead of the entire work, only a slight performance
decrease is observed. This flexibility suggests that our model and verification method can
be adjusted according to specific application needs to achieve the best balance between
security and performance.

Table 4. Performance impact of various Merkle-Transformer runtime configurations.

Experimental Setup Communication Latency Computational Source

Baseline 5.32 MB 3.13 s Mid
No Cache 5.32 MB 4.17 s High
No Compression 8.97 MB 4.33 s Mid
Low Partition 21.78 MB 5.81 s High
Low Level 15.69 MB 5.64 s Low

4.3. Limitations and Future Works

This section aims to candidly assess the current shortcomings of the model and
explore potential future research directions. Firstly, although the Merkle-Transformer has
exhibited excellent performance in financial behavior detection and stock price prediction,
its effectiveness in processing extremely large datasets has not been thoroughly tested. In
practical applications, financial institutions may need to handle enormous volumes of data,
posing higher demands on the model’s processing capability and verification efficiency.
Therefore, the model’s performance and scalability in handling big data are critical areas for
future focus. Secondly, despite the model’s exemplary performance in security verification,
new security threats may arise in practical deployment. For instance, adversarial attacks
are an active research topic in the field of machine learning, and attackers might develop
novel methods to evade the security mechanisms of the Merkle-Transformer. Consequently,
continuous research and improvement of the model’s security features to counter evolving
threats are necessary. Furthermore, the performance of the Merkle-Transformer is also
dependent on hardware platform configurations, as our experiments have shown. While
the model maintains good performance across multiple hardware platforms, optimizing
the model to reduce computational and storage overheads on resource-constrained devices,
such as edge computing scenarios, is another key point for future research. This includes
model compression, quantization, and other optimization processes.

Future work should also include testing the generality of the model and verifying the
potential application of the Merkle-Transformer in other types of financial tasks, such as
credit scoring and market risk management. Additionally, exploring the model’s perfor-
mance in multi-task learning and cross-domain learning is a promising area, which would
further enhance the model’s practicality and flexibility. From a technical research perspec-
tive, the mathematical foundation and theoretical framework of the Merkle-Transformer
also warrant further exploration. For instance, mathematical optimization of the combi-
nation of Merkle trees and Transformers, algorithmic improvements, and mathematical
proofs of data integrity verification mechanisms are potential directions for in-depth future
research. This would not only help improve the model’s performance but also deepen our
understanding of the model’s working mechanism.

Furthermore, implementing Merkle trees in various types of deep neural networks
to ensure data integrity and security is a challenging yet highly promising task. Let us
first consider the case of convolutional neural networks (CNNs) [31,39]. In CNNs, we can
compute the hash values of features at each layer, from convolutional layers to pooling
layers and then to fully connected layers, to construct corresponding Merkle tree nodes.
This helps verify the integrity of features at each layer and detects data tampering or loss
when necessary. Another common deep neural network architecture is the residual network
(ResNet) [40]. In ResNet, we can calculate hash values within each residual block and add
them to the respective Merkle tree. This ensures the consistency of features within each
block while maintaining the smooth flow of information throughout the network. Lastly,
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for multi-layer perceptrons (MLPs) [41], we can compute hash values before each hidden
layer and the output layer to build corresponding Merkle tree nodes. This aids in verifying
the data integrity at each layer, especially when highly trustworthy predictions are needed.
By implementing Merkle trees in different types of DNN structures, we can enhance
the protection of data integrity by the model. However, it is crucial to carefully balance
computational costs and performance overhead to ensure practicality and feasibility.

In summary, while the Merkle-Transformer model has shown significant potential in
processing financial data, it also faces many challenges and limitations. We hope that future
research will address these limitations, continuously optimizing and refining the model to
better serve the needs of the financial industry, and contribute new ideas and frameworks
to the research of machine learning in the domain of financial security.

5. Conclusions

In this study, a novel model for financial data processing is presented, which pro-
vides a secure and efficient solution for financial data analysis by integrating the data
integrity verification mechanism of Merkle trees with the high processing capability of
the Transformer model. The research conducted is significant not only for enhancing the
accuracy and security of financial data processing but also for propelling development and
innovation in the field of fintech.

The performance of the Merkle-Transformer model on tasks such as financial behavior
detection and stock price prediction was validated through a series of experiments. It was
found that the Merkle-Transformer outperforms other baseline models, including RoBERTa,
BERT, Transformer, BERT-wwm, and SpanBERT, across key performance metrics such as
precision, recall, accuracy, and the F1 score. Notably, in the task of stock price prediction,
the Merkle-Transformer achieved or approached scores above 0.9 across all evaluation
metrics, demonstrating its robust predictive power and acute capture of market dynamics.
These results affirm the efficacy and superior performance of the Merkle-Transformer
in financial applications. Furthermore, we investigated the performance of the Merkle-
Transformer, combined with the Merkle-Transformer verification method across various
hardware platforms, including experiments on Raspberry Pi, GPU, Apple, and NVIDIA
Jetson. The results show that the Merkle-Transformer maintains good performance even
on resource-constrained devices while ensuring the integrity and security of the data
processing through the Merkle-Transformer method.

The outcomes of this study have profound implications for investors and analysts.
On the one hand, novel financial data processing models can enhance data accuracy
and security, thereby instilling confidence in investors and enabling them to make more
assured investment decisions. On the other hand, the introduction of this model can
deter unethical conduct by analysts attempting fraud, thereby upholding the integrity
and fairness of financial markets. Firstly, the approach presented in this paper employs
the data integrity verification mechanism of Merkle trees to securely validate financial
data. Secondly, the method outlined in this paper leverages Transformer models for
the swift processing of large volumes of financial data, enabling real-time analysis and
decision-making, which is critical for both investors and analysts. Efficient data processing
not only accelerates decision-making but also facilitates the timely capture of market
dynamics, thereby enhancing the competitive edge of investors and analysts. Furthermore,
experimental results in this paper demonstrate that the Merkle-Transformer excels in stock
price prediction tasks, with all evaluation metrics reaching or approaching scores of 0.9
or higher, indicating its robust predictive capabilities and keen ability to capture market
dynamics. Additionally, this model exhibits broad applicability, running smoothly on
both high-end servers and lower-end devices. The core contribution of this article lies
in the proposition of a new financial data processing model that not only considers the
efficiency of data processing but also introduces a mechanism for data security verification.
By incorporating Merkle trees, the accuracy of data processing has been enhanced, and the
model’s resistance to data tampering has been strengthened, which is crucial for handling
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sensitive financial information. Additionally, the model is adaptable to various hardware
configurations, ensuring its applicability and stability in different environments. The
research and development of the Merkle-Transformer model offer a fresh perspective and
methodology for financial data processing. In today’s era where data security is increasingly
valued, it is believed that the findings of this study will provide direct technical support
and assistance to the financial industry and offer new research directions and foundations
for researchers in the field of fintech. Looking ahead, there is an anticipation that the
Merkle-Transformer will see wider application in financial data processing scenarios and
will continue to be optimized and refined to achieve greater security and efficiency.
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