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Abstract: The emergence of autonomous vehicles (AVs) presents a transformative shift in trans-
portation, promising enhanced safety and economic efficiency. However, a fragmented legislative
landscape across the United States hampers AV deployment. This fragmentation creates significant
challenges for AV manufacturers and stakeholders. This research contributes by employing advanced
machine learning (ML) techniques to analyze state data, aiming to identify factors associated with
the likelihood of passing AV-friendly legislation, particularly regarding the requirement for human
backup drivers. The findings reveal a nuanced interplay of socio-economic, political, demographic,
and safety-related factors influencing the nature of AV legislation. Key variables such as democratic
electoral college votes per capita, port tons per capita, population density, road fatalities per capita,
and transit agency needs significantly impact legislative outcomes. These insights suggest that a
combination of political, economic, and safety considerations shape AV legislation, transcending
traditional partisan divides. These findings offer a strategic perspective for developing a harmo-
nized regulatory approach, potentially at the federal level, to foster a conducive environment for AV
development and deployment.

Keywords: policy analysis; regulatory framework; data-driven policy making; federal and state
vehicle regulations; legislative landscape; machine learning in legislation; political influence on policy;
traffic safety; transportation innovation

1. Introduction

Economic and safety incentives are the primary motivators for autonomous vehicle
(AV) deployments. The society of automotive engineers (SAE) categorized vehicles that
can always operate without a human driver as level 5 automation [1]. Incentives include
significant cost savings from eliminating the human driver, increased efficiency by operat-
ing at all hours, and enhanced safety by reducing accidents attributable to human factors
such as intoxication and distracted driving [1]. Autonomous trucks can additionally benefit
by eliminating driver-related costs like insurance, training, and onboard amenities for
human comfort and entertainment. Despite these advantages, concerns about technology
readiness and potential negative impacts on traffic safety and congestion have emerged.
Such apprehensions have led to state-level legislative actions, including laws mandating a
human backup driver, which counteract the core benefits of AVs [2].

Currently, the United States lacks comprehensive federal regulation to uniformly
address the safety, design, and operation of AVs. The failure of the 2018 U.S. Senate bill, AV
START, due to safety concerns, has left a void filled by individual states introducing their
own AV legislation [3]. This has resulted in a fragmented regulatory environment, posing
challenges for AV manufacturers and stakeholders who must navigate a patchwork of state-
specific laws [4]. Furthermore, existing regulations often do not adequately differentiate
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between the operation of autonomous trucks and other vehicle types, each with distinct
sets of stakeholders.

This research aims to provide a comprehensive analysis of the varying state regulations
in the United States and their alignment or conflict with one another. Specifically, this
research seeks to identify factors associated with the propensity of an authority to pass laws
supporting AV operation without a human backup driver. By applying machine learning
(ML) techniques to state data, this study offers insights into the complex relationships
between different factors influencing AV policy decisions. This approach bridges the
understanding of disparate regulatory frameworks and highlights factors that significantly
impact legislative outcomes for AVs.

The organization of the remainder of this paper is as follows. Section 2 presents a
review of the literature on AV testing and deployment legislation. Section 3 describes the
methodological workflow developed for this research. Section 4 discusses the analytical
results and their implications for stakeholders, including investors and policymakers.
Section 5 concludes the research and suggests directions for future work.

2. Literature Review

The literature on AVs reveals uncertainties about their impact on traffic, infrastructure,
supply chain operations, the environment, and the economy. For instance, some predict
that AVs will reduce congestion because they can smooth out traffic flows by eliminating
the accordion effect [2]. Another optimistic expectation is that AVs will be safer because
they will eliminate errors due to human factors [4]. Contrary views are that AVs will
increase congestion because induced demand from lower costs and greater accessibility
to non-drivers will add more vehicles to the road, including empty vehicles [5]. Some
researchers posit that AVs will never fully eliminate crashes due to human factors so long
as they coexist with human-driven vehicles [6]. Research has also highlighted that AVs can
exacerbate inequities if policies do not address access for people with low income, people
of color, and rural communities [7].

The regulatory landscape allowing AV operation on U.S. public roads is dynamic and
involves a complex interplay between federal and state authorities [3]. There is a growing
consensus that the federal government should oversee aspects such as accessibility, safety,
design, and manufacturing, whereas state and local governments should retain their
traditional roles in regulating titling, registration, traffic laws, and deployments [8]. Toward
that end, the National Highway Traffic Safety Administration (NHTSA), a federal agency
of the U.S. Department of Transportation (USDOT), updated its safety standard to include
aspects of AVs such as not mandating steering wheels and driver’s seats [9].

AVs cannot become an affordable and robust form of transportation until the legislative
landscape matures [10]. However, ensuring safety, liability, and regulatory compliance in
an evolving field often faces hurdles in legislative processes [11]. An exhaustive review
of all the recent AV bills that failed revealed a complex interplay of factors. These include
a lack of support from legislators, a lack of consensus, safety concerns, opposition from
influential stakeholders such as labor unions, competing legislative priorities, and concerns
about the practicality of enforcement, technology readiness, and policy implications such
as potential economic impact. The literature does not currently offer a comparative analysis
between states with differing legislative outcomes to provide more depth in understanding
why certain regulations passed or failed, so future work could fill that gap.

There was a limited amount of research that recently explored the association of
features in an authority with its propensity to pass supportive AV regulations. Alnajjar et al.
(2023) analyzed panel data from 2011 to 2018 and found that an increase in a city’s use of
electric vehicles, gross domestic product (GDP) per capita, freeway vehicle miles traveled
(VMT), and land use score was positively associated with the allowance of AV testing,
whereas an increase in fatality cases had a negative association [12]. Bezai et al. (2021)
noted that perceived safety issues and public acceptance are predominant barriers to AV
adoption [13]. A survey by Freemark et al. (2020) revealed that population size and liberal
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political ideologies are strongly associated with support for policies that regulate AV use to
increase mobility for the low-income and disabled populations, reduce pollution, reduce
traffic, increase transit use, and reduce the use of private cars [14]. The study also found no
connection between population growth and support for general AV regulations. A survey
by Mack et al. (2021) found that, compared with conservative ideologies, moderates and
liberals reported higher AV adoption intention based on both higher perceived benefits
and lower perceived concerns [15]. A survey by Othman (2021) revealed that the level of
fear of AVs increased with an increase in the number of crashes involving AVs [1].

While the literature explores optimistic and pessimistic predictions about AVs, the
present research provides a grounded analysis of how legislative actions are translating
these expectations. This helps in understanding the practical challenges and considerations,
which often go beyond theoretical discussions, that policymakers face. Whereas some
research provided a high-level comparison of how other countries approach AV laws [3],
there have been no comprehensive and recent studies focused on the dynamic U.S. regu-
latory landscape. Hence, the present research fills that gap by conducting an exhaustive
review of recent AV bills in the United States to uncover the multifaceted factors influencing
the success or failure of AV legislation.

While previous studies have explored associations between various socio-economic
factors and AV regulation, the present research contributes by employing ML techniques
to systematically analyze and rank these factors. This methodological rigor provides a
more robust and data-driven foundation for understanding the dynamics of AV regulation.
Furthermore, the present research aligns with and expands upon the findings of Freemark
et al. (2020) and Mack et al. (2021) by offering empirical evidence on how political
ideologies and public perceptions might influence AV legislation. This contribution is
crucial in understanding the policy landscape, especially in terms of addressing public
concerns and shaping future legislative strategies.

3. Methodology

Figure 1 illustrates the overall workflow of the methodology. The next subsections
detail each procedure shown in the workflow. The Python programming language and its
associated ML libraries implemented all procedures.
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3.1. Data and Feature Engineering

The authors identified the 55 features summarized in Table 1 to test their association
with the target class. This research defined the positive target class for ML prediction
as regulations in which a human backup driver is optional. Hence, the target variable
“optional” is a binary categorical variable that takes on the value one for states that stipulate
an on-board human driver to be optional, and zero otherwise. The features spanned a
broad realm of general statistics from each state to capture potential influences from diverse
factors, including governance (gov.), economic (eco.), energy, environmental (env.), and
social. The features also covered specific statistics, including infrastructure, transportation
(transp.), and trucking economics. The values for all features are from the year 2021 for
alignment with when the government officially published the results of the electoral college
votes for the 2020 U.S. presidential election.

Table 1. Features selected and engineered for ML.

Category Feature Description Source

Gov.

Votes_D Democratic electoral college votes reported in 2021 [16]
Votes_R Republican electoral college votes reported in 2021 [16]

VDpPOPM Democratic electoral college votes per million population Derived
VRpPOPM Republican electoral college votes per million population Derived

MPO Metropolitan planning organizations (MPOs) [17]
POPMpMPO Million population per MPO Derived

Eco.

GDP_B State gross domestic product (GDP) in billion dollars [18]
GDPpPOP GDP_B/POP_M or GDP (USD B) per million population (POP) Derived

TM_B Billion ton-miles (TM) [19]
TMpVMT TM_B/VMT_HW_B or TM per vehicle miles traveled (VMT) Derived

Port_M_Ton Million tons moved by seaports [17]
HW_Rev_M State and local highway (HW) revenue (millions) [20]

REVpTM HW_Rev_M/TM_B or USD M revenue per B ton-miles Derived
HW_Exp_M State and local highway expenditures (millions) [20]

EXPpTM HW_Exp_M/TM_B or USD M expense per B ton-miles Derived
REVpEXP HW_Rev_M/HW_Exp_M or highway revenue/expense ratio Derived

Energy

BTU_T Trillion British thermal units (BTU) consumed by transport [21]
BTUpVMT BTU_T/VMT_HW_B or trillion BTU per billion VMT Derived

Petrol_BBTU Gasoline consumed by transportation (billion BTUs) [21]
GASpVMT Petrol_BBTU/VMT_HW_B or BTUs of gasoline per VMT Derived

Social
POP_M State population (millions) [22]

POPpLA POP_M × 1E6/LSqMi or population per sq mi of land Derived

Env.

SqMi State area in square miles [23]
LSqMi Land area in square miles [23]
WSqMi Water area in square miles [23]
WISqMi Inland water in square miles [23]
WCSqMi Coastal water in square miles [23]

CO2_MMT Million metric tons of CO2 emitted by transportation [21]
CO2pPOP CO2_MMT/POP_M or annual CO2 ton per capita Derived

Snow_Days Annual days of snow on average [24]
Snow_Ins Annual inches of snow on average [24]

Infra.

Pub_Road_Mi_K Miles (thousands) of public roads [17]
UI_Miles Urban interstate miles [17]
RI_Miles Rural interstate miles [17]

RoadpLand Pub_Road_Mi_K per LSqMi Derived
UIpLand UI_Miles per LSqMi Derived
RIpLand RI_Miles per LSqMi Derived

PCT_Sys_Acc Percentage of system (overall) acceptable IRI [17]
Bridges Number of bridges in 2021 [17]

BRpPOPK Bridges/(POP_M × 1000) or bridges per thousand population Derived
Fr_Rail_Mi Freight rail miles [17]
RailpLand Freight rail miles per LSqMi

PORTpPOP Port_M_Ton/POP_M or port tons per capita Derived
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Table 1. Cont.

Category Feature Description Source

Transp.

VMT_HW_B State VMT on highways (billion miles) [25]
VMTpLAN VMT_HW_B/(LSqMi/1000) or B VMT per thousand sq. mi. land Derived
HW_Fatals Highway fatalities [17]
FATLpPOP HW_Fatals/POP_M or fatalities per million population Derived
Truck_Estab Trucking business establishments [17]
Truck_Emp Trucking company employees [17]
TRKEpCO Truck_Emp/Truck_Estab or employees per company Derived

Truck_Pay_M Trucking company annual payroll in million dollars [17]
TRKPpE Truck_Pay_M * 1E6/Truck_Emp or truck pay per employee Derived

TRKpMPO Truck_Estab/MPO Derived
Agencies Transit agencies [26]

POPKpTRA Population (thousands) per transit agency Derived

As shown in Figure 1, the feature engineering process of the methodological workflow
(Figure 1) included variable proportioning, aggregate variable trimming, outlier removal,
collinearity reduction, and variable standardization. Aggregate variables tend to have
heavily skewed distributions because they reflect the large variation in a dataset, such as
state area and population, leading to distorted model performance. Proportional variables
reduce skewness and provide control for confounding factors. For instance, a larger
population might naturally have a higher total GDP, whereas GDP per capita controls for
population size, giving a clearer picture of economic health. That is, proportional variables
normalize the scale of the data to make them more meaningful for comparison across
districts. Eliminating the aggregate variables encapsulated in the proportional variable
helps to simplify model training without losing crucial information. The features labeled in
Table 1 as “derived” are the proportional variables used for ML.

Outlier removal is important for improving the accuracy of the statistical analysis
because it can significantly affect the mean and standard deviation of the dataset, resulting
in misleading interpretations. Models based on feature distance metrics or normality
assumptions are sensitive to outliers. This analysis removed Alaska, Hawaii, and the
District of Columbia (DC) because of their geographical anomalies. Canada separates
Alaska from the contiguous United States (CONUS), and Hawaii is an island state in
the Pacific Ocean. DC is a federal district of the United States and has a unique status
and demographic profile compared with states. These regions are also statistical outliers
based on their landmass, with Alaska and DC being the largest and smallest, respectively.
Furthermore, DC has no rural interstate miles. These differences can introduce variations
that are misaligned with the general patterns of CONUS states.

Collinearity refers to the situation where two or more predictor variables of the ML
model are highly correlated such that one is accurately predictable from the other. Hence,
building ML models with highly correlated features can lead to overfitting, a condition
where the model fits the training data well but fails to generalize in accurately predicting
unseen data. Therefore, reducing multicollinearity by eliminating highly correlated vari-
ables increases the reliability, generalizability, and speed of training statistical models. This
analysis used the Pearson correlation coefficient r as the measure of collinearity such that

r = ∑(xi − x)(yi − y)√
∑(xi − x)2 ∑(yi − y)2

(1)

where xi and yi are the individual samples, with x and y being their mean values, respectively.
The numerator represents the covariance between the two variables and the denomi-

nator is the product of the standard deviations of the two variables. Hence, r quantifies
the degree to which a change in one variable associates with a change in another variable,
assuming a linear relationship.

Standardizing the features to center the values around the mean with a unit standard
deviation is a crucial preprocessing step for many ML algorithms. The transformation
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involves subtracting the variable mean and dividing by the standard deviation. Standard-
ization makes the variables more comparable on the same scale, resulting in a more efficient
and effective training process. Other benefits of standardization are the elimination of
non-uniformity in measurement scales due to different units such as miles and tons, and
reducing the influence of large values that can dominate the model’s learning process and
lead to biased results.

3.2. Categorical Associations

The chi-squared test of independence is a statistical approach to determine if there is a
significant relationship between two categorical variables. The test is based on comparing
observed frequencies in each category of the variable with the expected frequencies if
the two variables have no association or dependencies. Conducting the test requires a
contingency table of the categories where Eij is the expected frequency for the cell at row i
and column j such that

Eij =
∑j Oij × ∑i Oij

∑ij Oij
(2)

where Oij is the observed frequency at the intersection of category i for one variable and
category j for the other variable. A chi-squared statistic then measures how much the
observed frequencies deviate from the expected frequencies such that

χ2 = ∑
i,j

(
Ei,j − Oi,j

)2

Ei,j
(3)

which is based on the sum of the squared differences between the entries of the expected
and observed values. The null hypothesis is that there is no association between the two
variables. Evaluating a p-value determines if one can reject the null hypothesis of no
association. The p-value is the probability of observing a chi-squared statistic at least
as large as the one observed when the null hypothesis is true. One can reject the null
hypothesis at a low chance (typically a p-value ≤ 0.05) of observing such a large deviation
from the expected frequencies, suggesting that there is an association between the two
variables. The p-value is the area under the chi-squared distribution curve to the right of
the chi-squared statistic. The general form of the probability density function (pdf) for the
chi-squared distribution is

f (x; k) =
2−k/2e(−x/2)x(k/2−1)

Γ(k/2)
(4)

where x is a positive chi-squared statistic, k is the degree of freedom (DOF), and Γ is the
Gamma function. The DOF is (r − 1) × (c − 1) where r and c are the number of rows and
columns, respectively, of the contingency table. The Gamma function is

Γ(z) =
∫ 1

0

[
ln
(

1
t

)]z−1
dt. (5)

In practice, statistical software packages use numerical methods to compute the
integral for finding the area under the pdf.

3.3. Machine Learning

The limited dataset of 48 states restricts the complexity of the ML models. Complex
models, such as deep neural networks, typically require large amounts of data to learn
effectively [27]. Simpler models are more appropriate with small datasets, even though
they may not capture the complexity of the relationships in the data as effectively as more
complex models. To address these challenges, the workflow used 10 robust and mature ML
models and employed cross-validation to help in assessing the model’s ability to generalize.



Appl. Sci. 2024, 14, 1396 7 of 21

The workflow then picked the best performing model to rank feature importance. The
models learned the importance of features in providing the best predictive performance for
the target class.

The 10 models were decision tree (DT), gradient boosting (GB), extreme GB (XGB),
AdaBoost (ADB), random forest (RF), naïve Bayes (NB), k-nearest neighbor (kNN), support
vector machine (SVM), logistic regression (LR), and artificial neural network (ANN). These
traditional models are more data-efficient, and they provide more meaningful insights
even with limited data. These models require fewer data points to learn the underlying
patterns in a dataset. As the characteristics of the models themselves are not the focus
of this research, Table 2 provides a summary of their theory of operations, advantages,
and disadvantages. Numerous textbooks, including [27,28], provide more details about
their operation.

Table 2. Machine learning models applied.

Model Theory of Operations Advantages Disadvantages

DT

A flowchart-like structure in which each
internal node represents a test on an
attribute, each branch represents the

outcome of the test, and each leaf node
represents a class label.

Easy to interpret and visualize.
Can handle both numerical

and categorical data and
requires little data preparation.

Prone to overfitting, especially
with noisy or complex datasets.
Can create biased trees if some

classes dominate.

GB

Builds an additive model in a forward
stage-wise fashion, allowing for the

optimization of arbitrary differentiable
loss functions.

Highly effective on various
problems. Can handle mixed

types of data, and often
provides high

predictive accuracy.

Requires careful tuning, is
computationally expensive,

and can overfit on
small datasets.

XGB
Optimized distributed gradient boosting
library utilizing decision trees with high

performance and flexibility.

Handles sparse data well,
provides built-in

cross-validation, works well on
large and complex datasets,
and often outperforms other

algorithms in
predictive accuracy.

Computationally intensive,
requires careful tuning of

parameters, and may overfit if
not properly regularized.

ADB

Short for adaptive boosting, is an
ensemble boosting technique that

adjusts the weights of weak classifiers to
form a strong classifier.

Often achieves high accuracy,
is less prone to overfitting, and

improves the accuracy of
weak classifiers.

Sensitive to noisy data and
outliers, and performance can

suffer if weak classifiers are
too complex.

RF

An ensemble learning method that
constructs multiple decision trees during
training and outputs the mode of classes

of the individual trees.

Effective in high-dimensional
spaces, robust to overfitting,
and handles both categorical

and numerical data well.

Model interpretability can be
challenging, and performance
is dependent on the strength of

individual trees.

NB

A simple probabilistic classifier based on
applying Bayes’ theorem with strong
(naive) independence assumptions

between the features.

Simple, fast, and efficient with
large datasets. Performs well

with categorical input variables
compared to

numerical variables.

The assumption of
independent predictors is
rarely true. Has a notable

limitation with data scarcity for
a category of a

categorical variable.

kNN

A non-parametric method that classifies
a sample by a plurality vote of its

neighbors, assigning the class most
common among its k nearest neighbors.

Simple, intuitive, and effective
in practice, especially for

low-dimensional datasets.

Computationally expensive,
especially as dataset size

grows. Sensitive to irrelevant
or redundant features.
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Table 2. Cont.

Model Theory of Operations Advantages Disadvantages

SVM

Analyzes data for classification by
maximizing the margin between

decision boundaries and data points in
high-dimensional feature space.

Effective in high-dimensional
spaces, versatile with different
kernel functions, and provides

a unique solution since the
optimization problem

is convex.

Not suitable for large datasets,
less effective on noisier

datasets with overlapping
classes, and requires a good

kernel choice.

LR

Measures the relationship between a
categorical dependent variable and

independent variables by estimating
probabilities using a logistic function.

Simple and efficient for binary
classification problems.

Outputs probabilities that
are interpretable.

Assumes linearity between the
dependent variable and the
independent variables. Can

struggle with complex
relationships and is not flexible

enough to capture more
complex patterns.

ANN

Modeled loosely after the human brain
to recognize patterns by interpreting

sensory data through machine
perception, labeling, and clustering.

Highly flexible and capable of
learning nonlinear

relationships. Performs well on
a large variety of tasks and is

scalable to large datasets.

Not appropriate for small
datasets. Computationally

intensive, prone to overfitting,
and lacks interpretability.

Con.
The constant (Con.) model always

predicts the same output regardless of
the input.

Provides a baseline for model
performance comparison.

Offers no real insight into
data patterns.

3.3.1. Measure of Predictive Performance

The workflow used the AUC score as the primary measure of a model’s predictive
performance. The AUC score, which stands for “area under the curve”, refers specifically
to the area under the receiver operating characteristic (ROC) curve. The ROC curve is a
graphical representation that illustrates the diagnostic ability of a binary classifier as a
function of its discrimination threshold. The horizontal and vertical axes of the ROC plot
the false positive and true positive rates, respectively. The false positive rate (1 − specificity)
is the ratio of false positives to the sum of false positives and true negatives. The true
positive rate (sensitivity) is the ratio of the true positives to the sum of the true positives
and the false negatives. Hence, the ROC captures the trade-off between the sensitivity
and specificity of a model. The AUC score ranges from 0 to 1, providing an aggregate
measure of the model’s performance across all classification thresholds. A model that
perfectly discriminates between the positive and negative class will have an ROC curve
that passes through the upper left corner of the plot, which represents 100% sensitivity
and 100% specificity with AUC = 1. An AUC score of 0.5 signifies that the model has no
class separation capacity, which is no better than random guessing. The AUC score is
particularly useful when dealing with imbalanced datasets, as it does not bias toward the
majority class.

3.3.2. Recursive Feature Elimination (RFE)

For small datasets, the process of feature selection becomes critical yet challenging.
Selecting the right features (variables) that have significant predictive power is crucial
because a small dataset magnifies the impact of each feature. However, with limited data,
it can be difficult to discern which features are truly relevant and which are coincidentally
correlated with the target variable. Recursive feature elimination with cross-validation
(RFECV) is a method in the ML workflow that identifies the most expressive features for
a predictive model. RFECV begins by using cross-validation to train a model with the
full set of features to obtain their level of importance either through coefficients or feature
importance scores, and then iteratively eliminates the least prominent features. Cross-
validation accounts for the variability in the dataset and reduces the risk of overfitting,
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leading to a more robust feature selection. Cross-validation iteratively divides the dataset
into a specified number of subsets called folds, trains the model on the union of all folds
except one, and validates the predictive performance on the held-out fold. The cross-
validation ends after involving each fold in the validation at least once.

RFECV keeps track of the model’s performance based on the average AUC score for
each set of features and reports the final selection that maximizes its predictive performance.
The methods used to determine feature importance scores vary, depending on the model
type. For example, linear models assign coefficients to the features based on the sensitivity
of the target variable to changes in each feature, with all other features remaining constant.
Decision tree-based models calculate feature importance based on the contribution of each
feature to the purity of the node in a tree. A significant drop in model performance when
there is a change in feature value indicates high importance. The scale of the features can
significantly influence the variation of feature importance; hence, feature standardization
as described earlier becomes necessary.

3.3.3. Hyperparameter Tuning

Most ML models have so-called hyperparameters, user settings that govern the
model’s overall behavior. The user must set hyperparameter values prior to the train-
ing process. Examples of hyperparameters include the learning rate that affects model
convergence, the number of trees in a random forest, the depth of a decision tree, and
the number of hidden layers in a neural network. Manually setting hyperparameters is
not necessarily intuitive and can involve guessing and testing various combinations. This
research used a more systematic grid search method that evaluated every hyperparameter
combination to maximize model performance. The approach required defining a grid of
parameter range and increment for evaluation, and then conducting an exhaustive search
for the best performing parameter combination based on maximizing a performance metric
such as the AUC. As the grid search method is computationally intensive, it is advantageous
to apply RFECV prior to hyperparameter optimization.

3.4. Feature Ranking

This research adopted the Shapley values (SHAP) from cooperative game theory to
fairly assign a value to each feature based on their contribution toward the prediction.
The calculation accounts for the interaction effects between features by considering all
combinations of features and how the addition of each feature contributes to the change in
prediction. Hence, a SHAP value is the average marginal contribution of a feature value
across all combinations such that

ϕj = ∑S⊆F\{j}
|S|!(|F| − |S| − 1)!

|F|!

[
fS

(
XS∪{j}

)
− fS(XS)

]
(6)

where ϕj is the SHAP value for feature j, F is the set of all features, S is a subset of features
excluding j, |S| is the number of features in subset S, |F| is the total number of features,
fS

(
XS∪{j}

)
is the model prediction with feature j included, and fS(XS) is the model

prediction without feature j. The sum is across all the subsets of features that exclude j.
Features with higher absolute SHAP values have a greater impact on the model’s output.

4. Results

Status is either enacted, executive order (EO), failed, no specific laws (none), pending,
or vetoed by the governor. The specification for a human driver to be onboard is either
optional, required, or unclear.

4.1. Legislative Status

By the end of 2023, all 48 states of the CONUS, except 4, had processed legislation
relating to the operation of Avs in their district. Figure 2 shows the status of AV regulations
at the end of 2023 for the CONUS. Figure 3 shows the requirements for a human backup
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driver in these regulations. Laws requiring a human backup driver assume SAE level 3 or
level 4 operation, expecting that a person in the vehicle will take over control as needed.
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Tables 3–6 summarize the status of AV legislation for the northeastern, southern,
midwestern, and western U.S. states, respectively. The first column of each row of the
table lists the state name and abbreviation, the bill identification, the year of last action,
the status (enacted, pending, failed, vetoed, or none), and whether the legislation makes
a human backup driver optional, required, or the law lacks clarity. The states with no
pending legislation at the time were Virginia, Wisconsin, North Dakota, and Rhode Island.
Nevertheless, those states engage in AV research as summarized in the legislative status
tables below.
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Table 3. Autonomous vehicle legislation in northeastern U.S. states.

State and Status Special Conditions

Connecticut (CT)
H 6486 (2021): Failed

Human: Required

The operator must be an employee, a contractor, or trained personnel, holding a valid
operator’s license. AV testers must register each vehicle with the Commissioner of Motor

Vehicles. Requires proof of liability insurance or a surety bond of at least USD 5 million. No
testing on limited access highways. If involved in a crash, the vehicle must achieve a

minimal risk condition and remain at the crash scene. The owner or a representative must
report the crash immediately, remain until law enforcement arrives, and provide

necessary information.

Maine (ME)
H 1222 (2019): Failed

Human: Required

Providers must have a license and maintain at least USD 25 million in insurance coverage.
Providers must consent to state authority and have a registered office in Maine. If involved

in an accident, the AV shall remain on the scene and the provider shall inform law
enforcement that the system was engaged.

Massachusetts (MA)
S 2257 (2023): Pending

Human: Required

Clearly marked to indicate that it is operating autonomously. Data capture and storage
systems must comply with the department’s requirements. The registrar must certify

manufacturers or operators.

New Hampshire (NH)
S 216 (2020): Enacted

Human: Optional

The AV must be capable of achieving a minimal risk condition if it malfunctions. The owner
or manufacturer must submit proof of monetary responsibility.

New Jersey (NJ)
A 1853 (2020): Failed

Human: Required

Manufacturers must apply and receive commission approval. The operator must have the
proper license for the vehicle type. Manufacturer’s designated personnel must operate the
vehicle. Manufacturer must obtain USD 5 million insurance or surety bond. Manufacturer

must provide a written disclosure of information collected by the technology.

New York (NY)
A 539 (2023): Pending

Human: Optional
The AV must be capable of achieving a minimal risk condition if it malfunctions.

Pennsylvania (PA)
H 2398 (2022): Enacted

Human: Optional

Obtain certificate of safety and performance compliance from the Department of Motor
Vehicles. Clearly marked to indicate that it is operating autonomously. A

manufacturer-designated entity must monitor the vehicle’s operation and be able to
remotely intervene if necessary. Must operate within approved geofenced areas.

Rhode Island (RI)
No bills

Human: Unclear

No specific laws. However, the Rhode Island Department of Transportation (RIDOT)
published a request for information in 2017 seeking advice relating to AV deployments [29].

Vermont (VT)
S 149 (2019): Enacted

Human: Optional

Exempts AV tester from the requirement to hold a commercial driver’s license. AV tester
must obtain a permit from the Commissioner of Motor Vehicles and notify the agency of any

accidents involved.

Table 4. Autonomous vehicle legislation in southern U.S. states.

State and Status Special Conditions

Alabama (AL)
SB311 (2023): Failed
Human: Optional

Vehicle must be capable of achieving a minimal risk condition if it malfunctions. If involved
in an accident, the AV shall remain on the scene, and the owner or representative must

report. State, federal, or common law determines liability.

Arkansas (AR)
H 1562 (2021): Enacted

Human: Optional

Remote operators must have a valid driver’s license for the vehicle class. State or federal
law determines liability for accidents. The original manufacturer of a vehicle converted into

an AV by a third party is not liable in legal actions.

Delaware (DE)
EO 14 (2017): EO
Human: Unclear

Does not provide specific conditions related to AV operations on public roads. Primarily
focuses on establishing an advisory council on AVs.

Florida (FL)
H 1289 (2021): Enacted

Human: Optional
Restrictions apply to the operation of AVs on roads with certain speed limits.
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Table 4. Cont.

State and Status Special Conditions

Georgia (GA)
H 249 (2021): Failed
Human: Optional

The AV must be capable of achieving a minimal risk condition if it malfunctions.

Kentucky (KY)
H 135 (2023): Vetoed

Human: Optional

Achieve a minimal risk condition upon a malfunction. If involved in an accident, the AV
owner or a representative must notify law enforcement and file a written report within ten

days of the occurrence.

Louisiana (LA)
S 453 (2022): Enacted

Human: Optional

Exempt AVs from state motor vehicle equipment laws or regulations that relate to or
support operation by a human driver and are not relevant for an automated driving system.

Maryland (MD)
S 685 (2023): Enacted

Human: Unclear

Does not provide specific conditions related to AV operations on public roads. Primarily
focuses on authorizing AV converters to sell or lease.

Mississippi (MS)
H 1003 (2023): Enacted

Human: Optional
The AV must be capable of achieving a minimal risk condition if it malfunctions.

North Carolina (NC)
H 814 (2022): Enacted

Human: Optional

Low speed AVs can operate on streets and highways where the posted speed limit is 45 mph
or less. On a highway with two travel lanes, AVs must turn off the roadway to allow faster

moving vehicles to pass when it is safe to do so.

Oklahoma (OK)
S 1541 (2022): Enacted

Human: Optional

The owner must submit a law enforcement interaction plan to the Department of Public
Safety. The owner must provide proof of insurance coverage equal to at least USD 1 million.

The owner must report an accident while the AV remains on the scene.

South Carolina (SC)
H 4015 (2013): Failed

Human: Required

Have a designated or remote operator to assume control if needed. Have a mechanism to
capture and store data in case of an accident.

Tennessee (TN)
S 0151 (2017): Enacted

Human: Optional

The AV must be capable of achieving a minimal risk condition if it malfunctions. Owner
maintains insurance providing of at least USD 5 million for death, bodily injury, and

property damage.

Texas (TX)
S 2205 (2017): Enacted

Human: Optional

Clearly signal autonomous operation. Have a licensed entity monitor and remotely operate
if needed. Should not operate when weather or road conditions pose unreasonable risks.

Full deployment requires federal approval and a regulatory framework established by the
Department of Public Safety.

Virginia (VA): No Bills
Human: Required

No specific laws. However, Virginia Tech Transportation Institute (VTTI) leads an initiative
aimed at supporting AV testing and certification [30].

West Virginia (WV)
H 4787 (2022): Enacted

Human: Optional

Submit a law enforcement interaction plan to the department of motor vehicles. The AV
must be capable of achieving a minimal risk condition if it malfunctions and request a

human driver to intervene.

Table 5. Autonomous vehicle legislation in midwestern U.S. states.

State and Status Special Conditions

Illinois (IL)
H 2913 (2023): Pending

Human: Optional

The manufacturer must notify the Secretary of State and self-certify under certain
conditions, define geographical boundaries for the operation, maintain incident records,

and provide summaries to the Secretary of State and the National Highway Traffic
Safety Administration.

Indiana (IN)
S 141 (2023): Failed
Human: Required

The human safety operator must meet all state and federal qualifications to operate both a
motor vehicle and an automated vehicle.

Iowa (IA)
S 302 (2019): Enacted

Human: Optional

The AV must be capable of achieving a minimal risk condition if it malfunctions. If involved
in an accident, the AV shall remain on the scene. The owner or a representative must

promptly report any accident.
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Table 5. Cont.

State and Status Special Conditions

Kansas (KS)
S 313 (2022): Enacted

Human: Optional

The AV must be capable of achieving a minimal risk condition if it malfunctions. If involved
in an accident, the AV shall remain on the scene. The owner or a representative must

promptly report any accident.

Michigan (MI)
S 706 (2022): Enacted

Human: Optional
Must comply with user fee requirements on designated roadways or lanes.

Minnesota (MN)
SF 0214 (2022): Failed

Human: Required

Prohibits AV operation on Minnesota roads and highways. Requires a human operator to
perform all dynamic driving tasks.

Missouri (MO)
S 452 (2021): Failed
Human: Required

Prohibits AVs from operating without a human driver and imposes a fine of up to USD 1000
if violated. AVs are subject to the same laws as conventional vehicles.

Nebraska (NE)
LB 989 (2018): Enacted

Human: Optional

The AV must be capable of achieving a minimal risk condition if it malfunctions. If involved
in an accident, the AV shall remain on the scene. The owner or a designated person shall

report any crash or collision. The AV must safely negotiate railroad crossings unless granted
an exemption.

North Dakota (ND)
No bills

Human: Unclear

No specific laws about operating on public roads. However, HB 1519 allocated funding for
grants and studies on multiple autonomous technologies, including uncrewed

aircraft systems.

Ohio (OH)
HB699 (2018): Failed

Human: Required

A licensed commercial driver must be physically present in the vehicle, monitoring its
operation and ready to take control in emergencies. Operator must maintain proof of

monetary responsibility throughout the registration period.

South Dakota (SD)
H 1120 (2023): Failed

Human: Optional

Have a designated supervisor. Have a fallback plan for human takeover in case of system
failure. Operate within a limited design domain.

Wisconsin (WI)
No bills

Human: Required
No specific laws. However, the state has an AV proving ground [31].

Table 6. Autonomous vehicle legislation in western U.S. states.

State and Status Special Conditions

Arizona (AZ)
S 1333 (2022): Enacted

Human: Optional

The AV owner or a representative must report accidents. The AV must stop at accident
scenes or as close as possible. Liability determined by state or federal law.

California (CA)
A 316 (2023): Vetoed

Human: Required

AVs over 10,001 pounds must have a trained human safety operator to operate and shut off
the vehicle. The operator must meet all federal and state qualifications for the vehicle type,

in both automated and non-automated modes. Manufacturers must report collisions
involving AVs to the Department of Motor Vehicles within 10 days. Owners must submit

annual submission of disengagement reports.

Colorado (CO)
S 213 (2017): Enacted

Human: Optional

Human driver laws do not apply to automated driving systems, except those regulating the
physical driving of a vehicle. Prohibits testing if the system cannot comply with laws, unless
approved by the Colorado State Patrol and Colorado Department of Transportation. State,

federal, or common law determines liability.

Hawaii (HI)
S 1008 (2021): Pending

Human: Unclear

Does not provide specific conditions related to AV operations on public roads. Primarily
focuses on establishing an autonomous transportation task force within the Department

of Transportation.

Idaho (ID)
EO 2018-01 (2018): EO

Human: Unclear

Does not provide specific conditions related to AV operations on public roads. Primarily
focuses on creating a committee to study and support the testing and deployment of

autonomous and connected vehicles.
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Table 6. Cont.

State and Status Special Conditions

Montana (MT)
H 339 (2023): Failed
Human: Required

AVs cannot operate on public highways until the Department of Transportation completes
specific rulemaking.

Nevada (NV)
S 182 (2023): Enacted

Human: Unclear

Does not provide specific conditions related to AV operations on public roads. Primarily
addresses regulatory aspects concerning the manufacturing and selling of AVs.

New Mexico (NM)
H 378 (2023): Failed
Human: Required

An operator must be able to monitor vehicle performance, intervene, operate the vehicle,
and turn off the engine.

Oregon (OR)
H 4063 (2018): Enacted

Human: Required

The operator must possess the proper class of driver’s license for the type of vehicle. The
owner must obtain a general liability insurance policy that covers no less than USD 5
million for death or bodily injury for each person covered and for property damage.

Utah (UT)
H 101 (2019): Enacted

Human: Optional

The AV must be capable of achieving a minimal risk condition if it malfunctions or it must
request human intervention. Owner or operator must report accidents and provide

registration and insurance information.

Washington (WA)
S 5594 (2023): Pending

Human: Optional

The AV must be capable of achieving a minimal risk condition if it malfunctions. If involved
in an accident, the AV shall remain on the scene. The owner must report the accident.

Municipalities can require crash data sharing.

Wyoming (WY)
S 16 (2022): Failed
Human: Optional

Clearly marked to indicate that it is operating autonomously.

The general conditions for allowing AV operation with or without a backup driver
were the following:

• Vehicles must have obtained a title and have a valid manufacturer’s certificate.
• Vehicles must have registration and insurance.
• Vehicles must comply with all applicable state and federal regulations or have an exemption.
• Occupants must comply with safety belt and child passenger restraining

system requirements.
• Operators must possess the proper class of driver’s license for the type of vehicle they

operate unless specifically exempted by the law.

In general, the laws stipulated that no other local governing body, including cities,
may prohibit AV operation, or impose taxes, fees, or other requirements upon them.

The second column of the tables describes any special conditions of the legislation
beyond the general requirements described above. Some special conditions require the
vehicle to operate within a limited design domain or designated geofenced areas, avoid
operation when weather or road conditions pose unreasonable risks, and comply with
user fees on designated roadways or lanes. Some special conditions require the vehicle to
clearly indicate when it is operating autonomously, and that it must be capable of achieving
a “minimal risk condition” if the system fails. Such a condition reduces the risk of an
accident by having the system move the vehicle to the nearest shoulder of the road if
capable, stopping the vehicle, and activating its emergency signal lamps.

For liability purposes, several state laws define the automated driving system (ADS)
to be the vehicle operator. A common requirement is for owners to maintain minimum
insurance levels covering death, bodily injury, and property damage. A related requirement
is that owners or operators must submit a law enforcement interaction plan to the depart-
ment of motor vehicles. The plan must describe how to communicate with a fleet support
specialist, how to safely remove the vehicle from the roadway, and the steps needed to
safely tow the vehicle. A frequent stipulation for vehicles involved in an accident is that it
shall remain on the scene while the owner or a representative reports the incident to law
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enforcement. A few of the legislations require the system to have a designated or remote
operator to assume control if needed.

Other special conditions require the owners to obtain a certificate of safety and per-
formance compliance from the department of motor vehicles. Related requirements stip-
ulate that AVs must have the capability to capture and store data in case of a crash,
and that municipalities can require crash data sharing. A related requirement for some
legislation is that manufacturers must provide a written disclosure of information that
the technology collects.

4.2. Feature Engineering

Figure 4 shows a heatmap of the Pearson correlation coefficient among the selected
variables (Table 1). Each cell of the matrix is a color code of the correlation coefficient for
all pairwise combinations of the variables. The legend to the right of the heatmap shows
the color–value association. The matrix is symmetric, with the diagonal cells showing the
highest coefficient of 1.0 (red) because those cells show the variable correlated with itself.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 22 
 

that municipalities can require crash data sharing. A related requirement for some legis-

lation is that manufacturers must provide a written disclosure of information that the 

technology collects. 

4.2. Feature Engineering 

Figure 4 shows a heatmap of the Pearson correlation coefficient among the selected 

variables (Table 1). Each cell of the matrix is a color code of the correlation coefficient for 

all pairwise combinations of the variables. The legend to the right of the heatmap shows 

the color–value association. The matrix is symmetric, with the diagonal cells showing the 

highest coefficient of 1.0 (red) because those cells show the variable correlated with itself. 

 

Figure 4. Heatmap of the correlation matrix of the ML features selected. 

The heatmap sorted the variables by their correlation level to easily identify the clus-

ter of collinear variables near the top left. The highly correlated variables are aggregate 

variables such as GDP, population, vehicle miles traveled, highway revenue, highway fa-

talities, urban interstate miles, energy utilization, fuel consumption, carbon dioxide emis-

sions, the number of transit agencies, trucking establishments, trucking employment, 

trucking payroll, and the number of MPOs. The procedure eliminated 28 aggregate vari-

ables, resulting in 27 variables to further evaluate for collinearity reduction. Based on a 

customary Pearson correlation coefficient threshold of 0.75, collinearity reduction elimi-

nated 8 variables, leaving 19 for ML. The heatmap also highlights the binary target varia-

ble “optional” with an arrow and a bounding box. The heatmap does not show a clear 

Figure 4. Heatmap of the correlation matrix of the ML features selected.

The heatmap sorted the variables by their correlation level to easily identify the cluster
of collinear variables near the top left. The highly correlated variables are aggregate vari-
ables such as GDP, population, vehicle miles traveled, highway revenue, highway fatalities,
urban interstate miles, energy utilization, fuel consumption, carbon dioxide emissions, the
number of transit agencies, trucking establishments, trucking employment, trucking pay-
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roll, and the number of MPOs. The procedure eliminated 28 aggregate variables, resulting
in 27 variables to further evaluate for collinearity reduction. Based on a customary Pearson
correlation coefficient threshold of 0.75, collinearity reduction eliminated 8 variables, leav-
ing 19 for ML. The heatmap also highlights the binary target variable “optional” with an
arrow and a bounding box. The heatmap does not show a clear correlation with the target
feature, suggesting that they are independent of the target and suitable for the ML process.

4.3. Categorical Associations

Figure 5 shows the observed frequencies of the two categorical variables reflecting the
bill status (Figure 2) and the stipulation for a human backup driver (Figure 3). For statistical
stability, the analysis consolidated executive orders into enacted laws, vetoed into failed
legislation, and no legislation into the pending category. Table 7 summarizes the results of
the chi-squared statistical tests for association. The p-value for status and human backup
requirement, being significantly less than 0.05, indicates there is a statistically significant
association between the status of AV legislation and their requirement for a human backup
driver. Figure 5a shows high values for enacted legislation that stipulates a human driver
to be optional and failed legislation that requires an on-board human driver. While this test
shows a significant association, it does not indicate causation.
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Figure 5. Contingency matrices to test the statistical associations of the categorical variables for
(a) status vs. human requirement, (b) status vs. political affiliation, and (c) human requirement vs.
political affiliation.

Table 7. Results of the chi-squared statistical test for association.

Test Statistic Status vs. Human Status vs. Affiliation Human vs. Affiliation

Chi-squared 20.79 5.42 4.15
DOF 4 2 2

p-value 3.5 × 10−4 0.067 0.126
Reject

Independence Yes No No

The p-value for status and political affiliation, being greater than 0.05, indicates that
there is no statistically significant association between the status of AV legislation and
the aggregate political leaning of the state. Similarly, the p-value for human backup
requirement and the political leaning of a state, being greater than 0.05, indicates that there
is no statistically significant association between requiring a human backup driver and
the state’s aggregate political leaning. This suggests that the matter is bipartisan, and that
other factors may have influenced the proposed stipulation for human requirements and
the outcome of the legislation. Therefore, turning to more complex ML models can offer
more nuanced insights.
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4.4. Machine Learning

Table 8 summarizes the outcome of the ML, ranked by the AUC performance metric
for each model. In general, the tree-based models provided better AUC performance
than the others, with GB providing the best performance. Hence, the workflow applied
RFE and hyperparameter tuning to the GB model prior to ranking the features using the
SHAP method.

Table 8. ML predictive performance metrics.

Model AUC Accuracy

GB 0.757 0.688
RF 0.721 0.625

XGB 0.674 0.604
DT 0.631 0.604
NB 0.614 0.562

ADB 0.595 0.604
LR 0.578 0.583

kNN 0.550 0.542
SVM 0.540 0.646
ANN 0.501 0.479

Constant 0.500 0.562

The focus of the ML models was on the interpretative value they provide in under-
standing the complex factors influencing AV legislation rather than on predicting outcomes
with high accuracy. Hence, despite the low AUC and accuracy scores, the models enable
hypothesis generation because they encapsulate relative feature importance. The low
scores reflect the inherently complex and intertwined factors that influence legislative
outcome. Hence, low scores do not detract from the model’s ability to identify and rank
variables based on their relative importance in the dataset. The next subsection presents
these features and their ranking.

4.5. Feature Ranking

Figure 6 is the output of the SHAP feature ranking method explained above. The
features on the left are in the order of their level of contribution in predicting the positive
target class, which is that a human backup driver is optional. Each point on the plot
expresses two values associated with each data instance. The color code as shown in the
legend is the relative value for that feature, with red and blue representing higher and
lower feature values, respectively. The horizontal position is the SHAP value indicating the
level of impact of that feature in predicting the target class. The positive and negative SHAP
values indicate the impact level in target class prediction as indicated for that direction,
with the positive target class being that a human backup driver is optional. Data instances
with similar SHAP values will appear as a spatial cluster at that position.

The observation from Figure 6 is that every feature has a mix of instances with high
and low values that are associated with the positive target class. However, there are some
general trends in terms of most instances with high or low values. For example, most of
the instances with low feature values for democratic electoral college votes per million
population (VDpPOPM), port tons per capita (PORTpPOP), and population per land area
(POPpLA) were associated with the positive target class. In contrast, most of the instances
with high feature values for fatalities per million population (FATLpPOP) and population
(thousands) per transit agency (POPKpTRA) were associated with the positive target class.
The discussion section that follows offers some interpretation of these results.



Appl. Sci. 2024, 14, 1396 18 of 21Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 22 
 

 

Figure 6. Feature ranking. 

5. Discussion 

The analysis reveals that a significant majority of CONUS states have engaged in AV-

related legislation, underscoring the increasing recognition of AVs’ role in the future of 

transportation. The diverse state-level approaches, particularly regarding the requirement 

for a human backup driver, reflect the complexity of AV regulation. This variance indi-

cates both the challenges and the opportunities in harmonizing AV policies across differ-

ent jurisdictions. 

The application of machine learning (ML) models, particularly the feature engineer-

ing process, has uncovered several factors influencing AV legislation. A key finding is the 

lack of a strong correlation between the target feature (the requirement for a human 

backup driver) and other variables. This suggests a multifaceted interplay of factors driv-

ing legislative decisions, which goes beyond simple linear associations. The chi-squared 

test reveals a significant association between legislative status and the requirement for a 

human backup driver. States with enacted legislation are more inclined to consider human 

drivers optional, reflecting either a growing confidence in AV technology or a legislative 

move toward advanced AV deployment stages. Interestingly, the chi-squared test also 

shows that AV legislation transcends traditional political divides, indicating a broader, 

non-partisan approach to AV regulation. 

The SHAP analysis highlights critical features influencing legislative outcomes. For 

instance, the association of features like democratic electoral college votes per million pop-

ulation (VDpPOPM) and port tons per capita (PORTpPOP) with the optional status of a 

human backup driver hints at the role of economic and demographic factors in shaping 

AV policies. This could indicate that states with less intense political partisanship and 

lower dependence on port-related economic activities might be more receptive to innova-

tive AV policies. The association of lower population density (POPpLA) with the positive 

target class could imply that less densely populated states might be more inclined to adopt 

AV-friendly legislation. This could be due to fewer traffic complexities or a greater will-

ingness to experiment with new technologies in less congested areas. Interestingly, higher 

Figure 6. Feature ranking.

5. Discussion

The analysis reveals that a significant majority of CONUS states have engaged in
AV-related legislation, underscoring the increasing recognition of AVs’ role in the future of
transportation. The diverse state-level approaches, particularly regarding the requirement
for a human backup driver, reflect the complexity of AV regulation. This variance indicates
both the challenges and the opportunities in harmonizing AV policies across different
jurisdictions.

The application of machine learning (ML) models, particularly the feature engineering
process, has uncovered several factors influencing AV legislation. A key finding is the lack
of a strong correlation between the target feature (the requirement for a human backup
driver) and other variables. This suggests a multifaceted interplay of factors driving
legislative decisions, which goes beyond simple linear associations. The chi-squared test
reveals a significant association between legislative status and the requirement for a human
backup driver. States with enacted legislation are more inclined to consider human drivers
optional, reflecting either a growing confidence in AV technology or a legislative move
toward advanced AV deployment stages. Interestingly, the chi-squared test also shows that
AV legislation transcends traditional political divides, indicating a broader, non-partisan
approach to AV regulation.

The SHAP analysis highlights critical features influencing legislative outcomes. For
instance, the association of features like democratic electoral college votes per million
population (VDpPOPM) and port tons per capita (PORTpPOP) with the optional status of a
human backup driver hints at the role of economic and demographic factors in shaping AV
policies. This could indicate that states with less intense political partisanship and lower
dependence on port-related economic activities might be more receptive to innovative
AV policies. The association of lower population density (POPpLA) with the positive
target class could imply that less densely populated states might be more inclined to
adopt AV-friendly legislation. This could be due to fewer traffic complexities or a greater
willingness to experiment with new technologies in less congested areas. Interestingly,
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higher values for fatalities per capita (FATLpPOP) and potential service demand per transit
agency (POPKpTRA) are associated with the positive target class. This might indicate
that states with higher road fatality rates or higher populations per transit agency are
potentially more motivated to seek AV solutions, considering them to enhance road safety
and improve public transit efficiency.

The associations between these variables and AV legislation underscore the multi-
faceted nature of policy making in this domain. This finding suggests that a blend of
political, economic, demographic, and safety considerations influence the legislative de-
cisions of states. The influence of political factors (VDpPOPM) and economic activities
(PORTpPOP) on AV legislation decisions suggests that broader political and economic
contexts play a significant role in shaping the openness of a state to AV technology. The
impact of population density (POPpLA) indicates that demographic factors, particularly
urbanization levels, may affect the readiness or hesitance of a state to embrace AV technol-
ogy. The correlation with fatalities (FATLpPOP) and public transit demands (POPKpTRA)
suggests that states with more pressing road safety concerns or strained public transit
systems might view AVs as a potential solution to these challenges.

These findings emphasize the need for policymakers to consider broader socio-
economic contexts when drafting AV legislation. The diversity in state-level AV legislation
suggests an urgent need for a more unified regulatory framework, potentially at the federal
level. Such harmonization could prevent a disjointed regulatory landscape that might im-
pede AV development and deployment. Emphasizing safety provisions and striving for a
minimal risk condition demonstrates a universal focus on public safety and liability, crucial
for public acceptance and the success of AV technology. The insights gained from this
research can guide stakeholders, including policymakers and industry leaders, in shaping
future AV regulations that balance innovation with safety, equity, and public acceptance.

This study, while comprehensive, faces limitations due to the limited data scope and
the rapidly evolving nature of AV technology. Hence, future research will incorporate
more recent data and consider the dynamic nature of AV legislation through longitudinal
assessment. The ML models used might not account for unrecorded variables or emerging
trends that could influence legislative outcomes. Moreover, the interpretation of these
models requires caution, as they provide correlations that should not be misconstrued as
causation. The study simplifies the complexity of legislative processes into quantifiable data.
This simplification might overlook the nonlinear nature of how people develop, debate, and
enact policies. Hence, future studies will explore the potential of large language models
(LLMs) and qualitative analyses applied to a larger corpus to provide deeper insights.
Additionally, future work will examine international data to provide a broader perspective
on global trends in AV legislation, offering comparative insights that could further inform
U.S. policy development.

6. Conclusions

This study aimed to provide insights into the complex legislative landscape of au-
tonomous vehicles (AVs) in the United States. Through the deployment of machine learning
(ML) techniques, this study highlighted the multifaceted factors influencing state-level AV
legislation, with a particular focus on regulations pertaining to human backup drivers. This
study demonstrated that AV legislation is not merely a technological or safety issue, but it
encapsulates socio-economic factors, transcending traditional partisan lines. A significant
finding is the correlation between states with higher road fatality rates or potential for
greater public transit demands and the propensity to adopt AV-friendly policies. This aligns
with recognizing AVs as a solution to enhance road safety and public transit efficiency.

There were several implications for policy harmonization and stakeholder engagement.
The varied legislative approaches across states underscore the need for a more harmonized
regulatory framework, potentially at the federal level. This could streamline the path for AV
development and deployment, providing clarity for manufacturers and stakeholders. The
findings also advocate for a more inclusive dialogue among policymakers, industry players,
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and the public. Understanding the diverse perspectives can aid in crafting regulations that
balance innovation with public welfare and safety.

There is a need for ongoing research to track the evolution of AV policies and their
impacts. Longitudinal studies can provide insights into the effectiveness of different
legislative approaches and inform future policy adjustments. Further research comparing
the U.S. legislative framework with international counterparts could yield valuable insights,
offering a global perspective on AV regulation strategies. Investigating public perception
and the economic impact of AV deployment could offer a more holistic understanding of
the societal implications of AVs. Overall, this study illuminates the current state of AV
legislation and sets the stage for future explorations in this evolving field. As AV technology
continues to advance, it is imperative that our legislative frameworks adapt in tandem,
ensuring a safe and efficient integration of AVs into our transportation ecosystem.
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