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Abstract: Modern convolutional neural networks (CNNs) play a crucial role in computer vision
applications. The intricacy of the application scenarios and the growing dataset both significantly
raise the complexity of CNNs. As a result, they are often overparameterized and have significant
computational costs. One potential solution for optimizing and compressing the CNNs is to re-
place convolutional layers with low-rank tensor decomposition. The most suitable technique for
this is Canonical Polyadic (CP) decomposition. However, there are two primary issues with CP
decomposition that lead to a significant loss in accuracy. Firstly, the selection of tensor ranks for CP
decomposition is an unsolved issue. Secondly, degeneracy and instability are common problems
in the CP decomposition of contractional tensors, which makes fine-tuning the compressed model
difficult. In this study, a novel approach was proposed for compressing CNNs by using CP decompo-
sition. The first step involves using the sensitivity of convolutional layers to determine the tensor
ranks for CP decomposition effectively. Subsequently, to address the degeneracy issue and enhance
the stability of the CP decomposition, two novel techniques were incorporated: optimization with
sensitivity constraints and iterative fine-tuning based on sensitivity order. Finally, the proposed
method was examined on common CNN structures for image classification tasks and demonstrated
that it provides stable performance and significantly fewer reductions in classification accuracy.

Keywords: convolutional neural networks; model compression; CP decomposition; rank
selection; sensitivity

1. Introduction

Convolutional neural networks (CNNs) have shown advanced capabilities within a
variety of domains. Nowadays, CNNs are becoming more common for use in a wide range
of computer vision applications, including object recognition, image classification, and
image segmentation. Nevertheless, since CNNs often have complex structures and need
a lot of parameters and computational capacity, it might be challenging to apply them to
computer vision tasks on edge devices with constrained resources, including embedded
systems and mobile devices [1,2]. For instance, autonomous vehicles need to quickly
evaluate camera frames in order to identify and avoid obstacles. The latency is increased
significantly when data are sent to the cloud for inference because of queueing and network
delays. For this reason, data processing needs to be performed on the device in order
to be efficient during the inference. Therefore, neural networks could be compressed to
reduce their size, allowing compressed versions of CNNs to operate on edge devices with
limited resources.

Several popular techniques to decrease redundancy in neural network parameters
include pruning [3,4], sparsification [5,6], quantization [7,8], and low-rank tensor decom-
position [9,10]. Among these techniques, the tensor decomposition-based compression
method is currently attracting growing interest. By decomposing the enormous weight
tensors of CNNs into several compact tensor cores, tensor decomposition could result in a
significant compression ratio with little accuracy reduction.
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The low-rank tensor decomposition method attempts to approximate the represen-
tation of the original high-order tensors using low-rank tensors. The most prevalent
approaches are Tucker decomposition [10] and Canonical Polyadic (CP) decomposition [11].
Due to its core tensors, Tucker decomposition often seems to compress less than CP decom-
position. Therefore, we undertook further study into the use of low-rank CP decomposition
for compressing entire CNN layers. However, CP decomposition has not been efficient for
compressing CNNs due to the CP instability issue [12,13], which often impairs fine-tuning
after decomposition. To overcome this problem, we propose two stable and efficient meth-
ods based on sensitivity. First, we apply sensitivity constraints for efficient optimization
in CP decomposition. The sensitivity criterion reveals that traditional CP decomposition
lacks robustness when subjected to minor perturbations in factor matrices, which denotes
sensitivity dropping. In the optimization process, the sensitivity of the decomposition is
able to be estimated and minimized to prevent degeneracy and instability in CP decom-
position. Secondly, another approach to address the issue of CP decomposition instability
involves the use of iterative fine-tuning, which is guided by sensitivity order. The lack
of stability in CP decomposition leads to poor training results during fine-tuning, as the
loss of function fails to reduce or may even be magnified when all layers are decomposed
and then fine-tuned only once in the last step. Therefore, we use an iterative fine-tuning
approach, performing CP decomposition and fine-tuning layer-by-layer. Furthermore, the
determination of the sequence of decomposition and fine-tuning is based on the sensitivity
of each layer. In general, layers with a higher sensitivity have a more significant impact
on the network output and are more challenging to fine-tune. Therefore, we prioritize
fine-tuning these layers for better accuracy. The experimental findings demonstrate that
the aforementioned instability may be effectively addressed via sensitivity-constrained
optimization and iterative fine-tuning techniques.

In the context of tensor decomposition, the issue of rank selection is another challenge
worth mentioning. The significance of tensor ranks lies in their ability to balance the
compression ratio and model capabilities. As a hyper-parameter, the tensor ranks play
a crucial role in determining the architecture and total size of the deconstructed CNN
model by quantifying the linear correlations in each dimension. Determining the most
suitable rank is very complex and faces significant difficulties. Various automated rank-
selection approaches have been developed to address this problem in model compression,
ranging from reinforcement learning [14] to genetic algorithms [15]. In comparison to
traditional manual selection methods, automatic rank-selection methods reduce human
efforts for testing. However, almost all automated techniques have the following issue: as
the compression ratio grows, the time required also increases because of the non-linear
development in the complexity of finding a more optimal combination. To address the
above issue, a novel approach is proposed to realize an efficient automatic rank-selection
method based on sensitivity. Each convolutional layer’s tensor rank strongly correlates with
its redundant information and compression rate. Consequently, to effectively determine
the optimal ranks for tensor decomposition, a simple principle is utilized to estimate the
rank: the more significant the redundancy of a layer, the lower the rank that layer requires.
Therefore, we define the sensitivity of a layer as the measure of its redundancy. For layers
with greater sensitivity, any perturbation will have a significant effect on the network
output, indicating that it is more difficult to compress and contains less redundancy.

In this work, we leverage sensitivity to deal with two main issues with CP decomposi-
tion: rank selection and stability maintenance. Our main contributions are as follows:

1. The sensitivity of each convolutional layer is computed by Hessian trace to determine
the amount of redundancy of each layer, and then select the optimal ranks for CP
decomposition by considering the redundancy we obtained.

2. In order to overcome the CP decomposition instability problem, an efficient optimiza-
tion method is developed to quantify the sensitivity of CP decomposition and add
sensitivity-constrained optimization during the process.
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3. Another potential approach is proposed to address the problem of instability in CP
decomposition by using iterative fine-tuning techniques. The layer that exhibits
more sensitivity should be prioritized for compression to minimize the accuracy
degradation of the compressed model.

The rest of the paper is organized as follows: In Section 2, we cover related efforts in
CNN compression. A detailed description of our approach is provided in Section 3. Our
experimental results and discussion are described in Section 4. Finally, we present our
conclusions in Section 5.

2. Related Work

There are several methods that have been developed to make CNNs smaller, quicker,
and more energy efficient. Here, we briefly discuss the related research on these CNN
compression approaches.

Pruning, widely recognized as the predominant method for model compression, de-
creases the model size by assigning zero values to specific weight components. According
to various sparsity patterns of pruning, pruning methods can be classified as either un-
structured or structured. The technique of unstructured pruning, as discussed in the work
of [16,17], has the potential to achieve significant compression ratios and accuracy. How-
ever, due to the unstructured feature of the sparsity pattern it produces, this strategy is
unable to fully realize its theoretical acceleration on hardware systems. Structured pruning
techniques, including filter [18,19] and channel [20,21] pruning, are solutions that are favor-
able to hardware. The performance of pruned models, however, limits the accuracy and
compression ratio by the deliberately enforced structural pattern.

Sparsification is the most widely used CNN compression method. A network’s struc-
ture may be sparse at many levels, including the weight [22], filter [23], and channel [24]. A
CNN model can generally be trained with sparsity-aware regularization [25] to achieve
sparsity. In addition, the introduced sparsity regularization may be categorized as either
structured or unstructured. Unstructured sparse models have shown excellent accuracy
and compression ratio [26]. However, these models also introduce challenges such as
irregular memory access and load issues of the hardware [27]. Structured sparse models
are sometimes considered to be more suitable for hardware implementation due to their
inherent architecture. However, it is worth noting that these models often exhibit worse
compression ratios and accuracy compared to their unstructured counterparts [28].

Quantization is a compression technique commonly used in CNN implementation in
hardware, particularly for specialized CNN chips [29]. It utilizes a restricted number of
bits for representing weight and activation [30,31]. The choice of precision often depends
on the available resource allocation and the desired level of accuracy. To achieve extremely
low storage and computational costs, 1-bit weight has been proposed in [32] as a highly
aggressive quantization approach.

Tensor decomposition is a widely used technique in tensor theory, with the purpose
of achieving compact representation of massive high-dimensional tensor-format data.
Beginning with Tucker decomposition [10], numerous tensor decomposition techniques
have been developed to compress CNNs by decomposing the original tensors into compact
core tensors. In the studies of [33–35], decomposition methods of the tensor train (TT) [35],
tensor ring (TR) [33], and hierarchical Tucker (HT) [34] have been utilized to obtain simple
RNN architectures, resulting in a significant decrease in model parameters. The most recent
study [36] introduces a low-rank Tucker-CP decomposition method. This method aims to
enhance the approximation of weight tensors in convolutional layers, enabling effective
CNN compression while preserving high accuracy.
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3. The Proposed Method
3.1. CP Decomposition for Convolutional Layers

In the process of CP decomposition, a tensor is decomposed by CP into a linear
combination of rank-one tensors. We focus on the three-way tensor and consider that a
tensor T is denoted as:

T = JA, B, CK, (1)

where A, B, and C denote factor matrices of tensor T . The notation J. . . K denotes that:

T =
R
∑

r=1
ar ⊗ br ⊗ cr, (2)

where ⊗ is the outer product of the tensors. The decomposition of the tensor T into its R
components is shown in Equation (2). The tensor rank is the overall amount of components
in the decomposed tensor, denoted by R. The rank R is a determining factor in the extent of
weight reduction in a convolution layer. Specifically, a lower value of R corresponds to a
greater weight decrease. {ar}, {br}, and {cr} denote the columns of factor matrices A, B,
and C, respectively.

Then, we focus on the tensor of the convolution layer. Convolution layers in CNNs
typically transform an input tensor X , with dimensions S × W × H, into an output tensor
Y , with dimensions T × W ′ × H′. This transformation is achieved by utilizing a four-
dimensional kernel tensor K, with dimensions T × S × D × D. We assume that kernel
tensors are square-shaped and have an odd dimension D:

Yt,w′ ,h′ =
S
∑

s=1

D
∑

j=1

D
∑

i=1
Kt,s,j,iXs,wj ,hi

. (3)

Now, the current problem involves the approximation of the tensor K using CP
decomposition with rank R. This is illustrated by Equation (4). The spatial dimensions of
tensor K are not decomposed due to their relatively modest size, such as 3 × 3 or 5 × 5:

Kt,s,j,i =
R
∑

r=1
U(1)

r,s U
(2)
r,j,iU

(3)
t,r , (4)

where U(1)
r,s , U (2)

r,j,i, and U(3)
t,r are the three tensors with sizes R × S, R × D × D, and T × R,

respectively.
By substituting Equation (4) into Equation (3), we obtain an approximate method to

calculate the convolution (3):

Yt,w′ ,h′ =
R
∑

r=1
U(3)

t,r

(
D
∑

j=1

D
∑

i=1
U (2)

r,j,i

(
S
∑

s=1
U(1)

r,s Xs,wj ,hi

))
. (5)

As illustrated in Figure 1, Equation (5) denotes that the output tensor Y is derived by
a series of distinct and compact convolutions applied to the input tensor X:

Zr,w,h =
S
∑

s=1
U(1)

r,s Xs,w,h, (6)

Z ′
r,w′ ,h′ =

D
∑

j=1

D
∑

i=1
U (2)

r,j,iZt,wj ,hi
, (7)

Yt,w′ ,h′ =
R
∑

r=1
U(3)

t,r Z ′
r,w′ ,h′ , (8)

where Zr,w,h and Z ′
r,w′ ,h′ are intermediate tensors with dimensions R × W × H and

R × W ′ × H′, respectively.
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three-way tensor X , Z , Z ′, and Y in Equations (6)–(8), with frontal sides corresponding to spatial
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to 1 × 1, D × D, and 1 × 1 convolutions in (6), (7), and (8), respectively.

3.2. Rank Selection Based on Sensitivity

The purpose of rank selection is significant in CP decomposition. Insufficient com-
pression would result from an excessively high rank, while too low a rank would lead to
a significant decrease in accuracy that cannot be compensated for by fine-tuning. How-
ever, a definitive approach for determining the optimal tensor rank does not currently
exist. Indeed, the computational problem of finding the rank is NP-hard [37]. Therefore,
an essential idea is used for estimating the rank: the relationship between redundancy
and compression rate is inversely proportional, so the relationship between redundancy
and rank is directly proportional. Specifically, as the redundancy of a layer increases, the
required rank of the layer decreases. To estimate the redundancy of each layer, a layer’s
sensitivity can be defined as its responsiveness to redundancy through compression. If a
layer has a high level of sensitivity, it would be unfavorable to put the rank at a low value,
and vice versa.

We propose the use of a sensitivity-based rank-selection method. The sensitivity can
be quantified by calculating the average of the Hessian trace. More specifically, the Hessian
can be efficiently estimated using randomized numerical linear algebra approaches, such
as Hutchinson’s approach [38]. Significantly, this method just needs the calculation of
the Hessian on an input vector that is generated at random. The computational cost is
equivalent to that of back-propagating the gradient. A similar method has been proposed
by [8] in terms of quantization.

Here, our focus is on the trace of a matrix H ∈ Rd×d. Next, with a random vector
z ∈ Rd whose component is i.i.d. sampled Gaussian distribution, we can obtain:

Tr(H) = Tr(HI) = Tr
(

HE
[
zzT]) = E

[
Tr
(

HzzT)] = E
[
zT Hz

]
, (9)

where I denotes the identity matrix. Then the Hutchinson algorithm [4] can be utilized to
compute the Hessian trace:

Tr(H) ≈ 1
m

m
∑

i=1
zT

i Hzi = TrEst(H). (10)
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Finally, the rank of each layer is calculated in proportion to its sensitivity. By calculating
and comparing the Hessian trace of each layer in the CNN, the ratio is able to measure the
relative sensitivity and guide the selection of the rank for each layer. However, since we
only know the ratio, the average rank of all layers must be selected arbitrarily.

3.3. Sensitivity-Constrained Optimization in CP Decomposition

Tensor decomposition can be considered as an optimization problem, i.e., minimizing
the difference between the decomposed tensor and the original tensor. In the optimization
process of CP decomposition, there may be some problems. For instance, it is common to
observe that two rank-one tensors with relatively high Frobenius norms cancel each other
out when applying optimization algorithms to low-rank decomposition with nonunique CP
decomposition [39]. This degeneracy is a common phenomenon in most CP decompositions
of the convolutional layer. The presence of degeneracy often leads to instability problems
when retraining a neural network with a CP format [12,13]. In particular, it impairs the
ability of a model to complete fine-tuning and preserve network stability.

Therefore, a stable method is introduced from the work of [40] to perform sensitivity-
based CP decomposition. To obtain a more stable decomposition, [40] proposed a correction
to the decomposition optimization with less sensitivity. The study revealed that sensitiv-
ity might be used as a potential metric to evaluate the level of degeneracy in the CP
decomposition. Consequently, we intend to quantify the sensitivity and perform sensitivity-
constrained optimization in CP decomposition.

When decomposing the tensor K of convolutional kernels using CP decomposition,
as previously mentioned, the kernel K is considered an order-3 tensor K = JA, B, CK with
dimensions T × S × D2. Due to the spatial dimensions of the tensor K being so small, it is
not necessary to decompose them. Subsequently, the sensitivity is defined as:

S(K) = lim
σ2→0

1
Rσ2 E

{
∥ K − [[A + δA, B + δB, C + δC]] ∥2

F
}

(11)

where δA, δB, and δC denote elements with i.i.d. Gaussian distribution N
(
0, σ2).

The sensitivity could be quantified by calculating the expectation (E{·}) of the normal-
ized squared Frobenius norm of the difference. Essentially, the sensitivity of the tensor K
is a metric that is relative to perturbations in individual factor matrices. Additionally, CP
decomposition with great sensitivity is often ineffective.

Upon performing a simple calculation, the expectation (E{·}) in Equation (11) may be
represented in the following form:

E
{
∥ K − JA + δA, B + δB, C + δCK ∥2

F
}

= E
{
∥ JδA, B, CK ∥2

F
}
+ E

{
∥ JA, δB, CK ∥2

F
}
+ E

{
∥ JA, B, δCK ∥2

F
}

= Rσ2tr
((

CTC
)
⊛
(

BTB
))

+ Rσ2tr
((

CTC
)
⊛
(

ATA
))

+Rσ2tr
((

BTB
)
⊛
(

ATA
)) , (12)

where ⊛ is the Hadamard element-wise product, while “tr” refers to the trace of a matrix.
Subsequently, we substitute this equation into the aforementioned Equation (11) to obtain
the compact representation of sensitivity:

S(K) = tr
((

ATA
)
⊛
(

BTB
)
+
(

BTB
)
⊛
(

CTC
)
+
(

ATA
)
⊛
(

CTC
))

=
R
∑

r=1
∥ ar ∥2∥ br ∥2 + ∥ ar ∥2 ∥ cr ∥

2
+ ∥ br ∥2∥ cr ∥2 . (13)

Next, our goal is to minimize the sensitivity while maintaining the error of optimization:

min
{A,B,C}

S( JA, B, CK)

s.t. ∥ K − JA, B, CK ∥2
F≤ δ2.

(14)
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The constraint δ2 can be utilized to define the approximation errors of optimization in
the decomposition. Then, we can update the tensor K with a lower sensitivity to enhance
the convergence of CP decomposition.

Iterative updating equations have been used for the aforementioned optimization
issue (14). With B and C remaining fixed, the objective of optimization is modified to
update A as follows:

min
A

tr
{(

ATA
)
⊛
(

BTB + CTC
)}

s.t. ∥ K(1) − A(C ⊙ B)T ∥2

F
≤ δ2,

(15)

where K(1) is mode-1 unfolding of the kernel tensor K, and ⊙ is Kronecker products. The
optimization issue (15) can be regarded as a regression problem with constraints. It may be
efficiently addressed using a closed-form solution using the technique from [41].

3.4. Iterative Fine-Tuning Based on Sensitivity

CP decomposition often leads to a drop in the accuracy of CNNs due to the optimiza-
tion errors of decomposition. To restore the lost accuracy, fine-tuning is a necessary process.
Nevertheless, the application of CP decomposition to each layer with one-time fine-tuning
has not been effective because of its inherent instability [11]. Therefore, after decomposing
each layer, we fine-tune the entire model iteratively to overcome the instability and prevent
the errors from becoming unrecoverable.

The arrangement of convolutional layers plays a crucial role in iterative CP decompo-
sition and fine-tuning. In general, the performance of a network using iterative decomposi-
tion and fine-tuning is influenced by the varying sensitivity information of each individual
layer. Therefore, we introduce sensitivity to determine the sequence of decomposition and
fine-tuning for each convolutional layer. Specifically, layers with higher sensitivity have
a greater impact on the output of CNNs, and it is more difficult to recover their accuracy
by fine-tuning after decomposition, so we prioritize compressing convolutional layers
with higher sensitivity in the original network, and then iterate until the whole model is
compressed. By using this iterative fine-tuning approach that considers sensitivity, we
anticipate that the overall error of the compressed model will be effectively controlled,
preventing it from reaching an unrecoverable magnitude.

As illustrated in Figure 2, the procedure of our method to compress the original model
includes four essential steps:
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1. Estimating the sensitivity of each layer in the original model.
2. Sorting each network layer according to the order of the sensitivity information

content of each network layer from large to small.
3. Determining the rank of each layer according to its sensitivity and an average rank

we set in advance.
4. Iterative compressing and fine-tuning based on the sensitivity of each layer. The

sorting results obtained from the second step and the rank obtained from the third
step are used to iteratively compress and fine-tune the network layer-by-layer.

4. Experimental Results

To prove the effectiveness of the proposed approach, we tested several CNN models in
popular image classification tasks. The proposed approach has been rigorously evaluated
on several different size datasets (ImageNet [42], CIFAR-10, and CIFAR-100 [43]) and well-
known CNN architectures VGG [44] and Resnet [45]. With the CIFAR-10 dataset, we trained
the ResNet-20 and ResNet-32 neural networks to evaluate our method. The ResNet-20
and ResNet-32 models were trained following the guidelines given by [45]. For testing our
approach on ImageNet, we implemented ResNet-18 and ResNet-50 neural networks, and
the pretrained models utilized in this study were derived from the Torchvision package of
PyTorch.

4.1. Experimental Results on CIFAR-10

Table 1 illustrates the test results on the CIFAR-10 dataset. Specifically, using the
ResNet-20 model, we achieved superior performance compared to the traditional Tucker
decomposition technique, with a 3.53% increase in accuracy, while maintaining the same
compression ratio of 2.6×. In addition, our method demonstrates a considerable perfor-
mance improvement (0.93% higher accuracy) when compared to the Tensor Ring tensor
technique [46], while maintaining the same compression ratio of 6.8×. Regarding ResNet-
32, our approach outperforms the existing methods. When compared to PSTR-S, our
method’s trained model yields a 0.6% increase in accuracy while maintaining a better
compression ratio of 2.8×. Furthermore, with the same compression ratio of 5.8×, we
achieved a 0.58% increase in accuracy.

Table 1. Comparison with various tensor decomposition methods for ResNet-20 and ResNet-32 on
CIFAR-10 dataset.

Model Method Compression
Method Top-1 Acc (%) Compression

Ratio

Resnet-20

Standard Tucker [10] Tucker −3.84 2.6×
Standard Tensor Train [47] Tensor Train −4.55 5.4×
Standard Tensor Ring [48] Tensor Ring −3.75 5.4×

PSTR-S [46] Tensor Ring −0.45 2.5×
PSTR-M [46] Tensor Ring −2.75 6.8×

Ours CP −0.31 2.6×
Ours CP −1.82 6.8×

Resnet-32

Standard Tucker [10] Tucker −4.79 5.1×
Standard Tensor Train [47] Tensor Train −4.19 4.8×
Standard Tensor Ring [48] Tensor Ring −1.89 5.1×

PSTR-S [46] Tensor Ring −1.05 2.7×
PSTR-M [46] Tensor Ring −1.89 5.8×

Ours CP −0.45 2.8×
Ours CP −1.31 5.8×

4.2. Experimental Results on CIFAR-100

The results of the test for the CIFAR-100 dataset are shown in Table 2. For ResNet-20,
we obtain an 8.92% increase in accuracy compared to the Tucker decomposition method,
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while also achieving a higher compression ratio. When compared to the PSTR-S [46],
our approach achieves 0.32% better accuracy and a 0.3× higher compression ratio. In
comparison to the original uncompressed model, this performance is even better by 1.05%.
Even when the desired compression ratio is increased to 4.7×, our approach continues
to surpass the PSTR-M [46] with 0.46% better accuracy. For ResNet-32, the proposed
approach obtains an accuracy increase of 8.82% and 0.2%, respectively, over standard
Tucker decomposition and PSTR-S [46]. Furthermore, with the same 5.2× compression
ratio, our method achieves a 0.52% increase in accuracy compared to PSTR-M [46].

Table 2. Comparison with various tensor decomposition methods for ResNet-20 and ResNet-32 on
CIFAR-100 dataset.

Model Method Compression
Method Top-1 Acc (%) Compression

Ratio

Resnet-20

Standard Tucker [10] Tucker −7.87 2.5×
Standard Tensor Train [47] Tensor Train −3.76 5.6×
Standard Tensor Ring [48] Tensor Ring −1.85 4.7×

PSTR-S [46] Tensor Ring +0.73 2.3×
PSTR-M [46] Tensor Ring −1.78 4.7×

Ours CP +1.05 2.6×
Ours CP −1.32 4.7×

Resnet-32

Standard Tucker [10] Tucker −9.07 2.5×
Standard Tensor Train [47] Tensor Train −5.20 4.6×
Standard Tensor Ring [48] Tensor Ring −1.40 4.8×

PSTR-S [46] Tensor Ring −0.05 2.4×
PSTR-M [46] Tensor Ring −1.33 5.2×

Ours CP −0.25 2.5×
Ours CP −0.81 5.2×

4.3. Experimental Results on ImageNet

We also examine the proposed approach using ImageNet to compress the VGG-16,
ResNet-18, and ResNet-50 models. Table 3 shows a comparative analysis of our method’s
performance against existing tensor decomposition techniques, and other compression
strategies like pruning and Low-Rank Matrix decomposition. As these studies focus on
providing a decrease in FLOPs, rather than the compression ratio, we also include the
FLOPs reduction achieved using tensor decomposition.

We used our method to compress the VGG-16 neural network, which is the largest
deep neural network examined in this paper. The results in Table 3 show that our method
yielded higher accuracy at a nearly similar drop in FLOPs as HT-2 [7]. The rest of the
methods lead to worse compression results. It is noteworthy that our approach achieved
the best Top-5 accuracy in the whole set of methods analyzed.

When comparing ResNet-18, our technique achieves better accuracy than MUSCO [49]
and TRP [50] by 0.14% and 2.18%, respectively, while maintaining an almost similar re-
duction ratio of FLOPs (4.6×). Our models achieve much higher accuracy while reducing
FLOPs more effectively compared to existing compression methods that result in noticeable
accuracy loss. Specifically, our model achieves a reduction of 2.47× in FLOPs and suffers a
mere 0.16% decrease in accuracy compared to the original model.

ResNet-50 is a more extensive and more complex model in comparison to ResNet-18.
Table 3 demonstrates that our method shows superior performance across nearly all metrics
compared to the other pruning approaches. Concerning the decomposition-based methods,
which include Tucker decomposition and low-rank matrix decomposition, it is evident that
all the mentioned decomposition-based approaches yielded inferior results in comparison
to our approach. Furthermore, with a compression of 2.97× FLOPs, our compressed model
achieves a Top-5 accuracy loss 0.51% less than the uncompressed model.



Appl. Sci. 2024, 14, 1491 10 of 14

Table 3. Comparison with various compression methods for VGG-16, ResNet-18, and ResNet-50 on
ImageNet dataset.

Model Method Compression
Method Top-5 Acc (%) FLOPs

Reduction

VGG-16

AutoPruner [51] Pruning −1.49 3.79×
Standard Tucker [10] Tucker −0.50 4.93×

HT-2 [52] Tucker −0.65 5.26×
Ours CP −0.38 5.26×

Resnet-18

FPGM [53] Pruning −0.55 1.72×
DSA [54] Pruning −0.73 1.72×

DACP [20] Pruning −1.48 1.89×
Standard Tucker [10] Tucker −1.55 2.25×

MUSCO [49] Tucker −0.30 2.42×
TRP [50] Low-Rank Matrix −2.34 2.60×

Ours CP −0.16 2.61×

Resnet-50

TRP [50] Low-Rank Matrix −0.80 1.80×
Standard Tucker [10] Tucker −1.75 2.04×

AKECP [55] Pruning −2.30 2.62×
HRANK [18] Pruning −1.86 2.64×

HT-2 [52] Tucker −0.71 2.85×
AutoPruner [51] Pruning −1.62 2.94×

Ours CP −0.51 2.97×

4.4. Discussion

To obtain a thorough comprehension of the impact of the proposed approach, we also
examine the training process for compressing ResNet-18 on the ImageNet dataset.

4.4.1. Sensitivity-Constrained Optimization

To evaluate the effect of the sensitivity-constrained optimization, we implemented some
comparative experiments. Figure 3 demonstrates an illustrative example, in which only CP
decomposes a single convolutional layer 1 of block 4 in ResNet-18. Our results demonstrate
that we obtain superior accuracy compared to standard CP (without sensitivity-constrained
optimization) with the same epoch of fine-tuning. Figure 4 demonstrates another illustrative
example of the effectiveness of our method. It is crucial to note that the compressed network,
which utilizes standard CP (without sensitivity-constrained optimization), fails to obtain the
same Top-1 accuracy of the original network, even when the rank is set at 400 and fine-tuning
is applied. Nevertheless, by using sensitivity-constrained optimization, the performance
significantly improves and achieves the level of original accuracy. Even the model with a rank
of 100 produces comparatively excellent results, with less than 2% accuracy loss.

4.4.2. Iterative Fine-Tuning Based on Sensitivity Order

To investigate the effects of iterative fine-tuning based on sensitivity, we performed
several ablation studies with ResNet-18 compression models on ImageNet. Other models
and datasets can provide similar results.

We start with one-shot fine-tuning, which means only fine-tuning once after all con-
volutional layers have been CP decomposed. We label this as CP-one-shot in Table 4.
Meanwhile, to validate the performance of our approach, which uses sensitivity order to
guide the process of iterative fine-tuning, we also conduct tests for iterative fine-tuning
with random order, denoted as CP-random in Table 4.

For a fair comparison, the other parameters for these different fine-tuning strategies
remain the same, such as tensor rank in each individual layer and sensitivity-constrained
optimization in CP decomposition. According to the results, the CP-one-shot strategy
presents the lowest Top-1 and Top-5 accuracy compared with CP-random and our method
in the same FLOPs reduction.
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Table 4. Ablation results in iterative fine-tuning based on sensitivity order.

Model Method Top-1 Acc (%) Top-5 Acc (%) FLOPs
Reduction

Resnet-18
CP-one-shot −4.09 −2.57 2.61×
CP-random −2.23 −1.31 2.61×

Ours −1.28 −0.16 2.61×

Resnet-50
CP-one-shot −6.27 −3.62 2.97×
CP-random −4.07 −1.86 2.97×

Ours −1.34 −0.51 2.97×

On the contrary, our approach yields optimal accuracy for the ResNet-18 models. This
indicates that sensitivity-based iterative fine-tuning combined with CP decomposition is
the most effective strategy for restoring the loss of accuracy.
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5. Conclusions

In this paper, we propose a novel approach for CNN decomposition based on sensitiv-
ity. The approach involves decomposing a network using CP decomposition, optimizing
the decomposition with a sensitivity constraint, and recovering the network by iterative
fine-tuning depending on the sensitivity order of each layer. The results of the experiments
conducted on three popular datasets with different large-scale CNNs clearly show that
our approach outperforms the existing methods, including the most common pruning
approaches and other low-rank compression approaches. Therefore, we conclude that our
method is quite competitive with other compression strategies that are considered for CNN
compression on a large scale.

There remain some limitations and much work to be further researched. Firstly, the
sensitivity metric used for rank selection is a heuristic metric and lacks theoretical analysis.
Figuring out the ranks with a better metric will be a key issue in further research. Secondly,
since the process of iterative fine-tuning needs too much computation, how to enhance
the computational efficiency is another important problem. Third, although our method
achieved better experimental results compared to the state-of-the-art compression method,
its advantages are not obvious, and further improvement is needed. Finally, this work has
only focused on the compression of convolution layers, and fully connected layers also
need to be considered.
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