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Abstract: This paper addresses the challenge of extracting feature points and image matching in
Synthetic Aperture Radar (SAR) satellite images, particularly focusing on large-scale embedding. The
widely used Scale Invariant Transform (SIFT) algorithm, successful in computer vision and optical
satellite image matching, faces challenges when applied to satellite SAR images due to the presence of
speckle noise, leading to increased matching errors. The SAR–SIFT method is explored and analyzed
in-depth, considering the unique characteristics of satellite SAR images. To enhance the efficiency
of matching identical feature points in two satellite SAR images, the paper proposes a Graphics
Processing Unit (GPU) mapping implementation based on the SAR–SIFT algorithm. The paper
introduces a multi-GPU collaborative acceleration strategy for SAR image matching. This strategy
addresses the challenge of matching feature points in the region and embedding multiple SAR
images in large areas. The goal is to achieve efficient matching processing of multiple SAR images
in extensive geographical regions. The proposed multi-GPU collaborative acceleration algorithm
is validated through experiments involving feature point extraction and matching using 21 GF-3
SAR images. The results demonstrate the feasibility and efficiency of the algorithm in enhancing the
processing speed of matching feature points in large-scale satellite SAR images. Overall, the paper
contributes to the advancement of SAR image processing techniques, specifically in feature point
extraction and matching in large-scale applications.

Keywords: image matching; SAR-SIFT; GPU mapping; multi-GPU collaborative acceleration

1. Introduction

Synthetic Aperture Radar (SAR) [1] is a remote sensing technology that can obtain the
surface information by transmitting high-frequency electromagnetic waves to the ground
and receiving echoes. Different from optical remote sensing, SAR sensor can collect data in
any weather conditions, because it can obtain target information by sending electromagnetic
waves [2]. SAR image matching is one of the basic and key technologies of SAR image
processing. The main task is to carry out geometric correction for two or more images
taken at different times, from different sensors or different perspectives, and transform
them into the same coordinate system for alignment, so as to carry out subsequent tasks,
such as change detection [3], image fusion [4], and agricultural monitoring [5]. Therefore,
the research on SAR image matching technology is of great significance for improving the
promotion and application of SAR data.

The feature point extraction and matching of satellite SAR images mainly completes
the feature point extraction of the satellite SAR image to be matched and the registration
of the satellite SAR image to be matched with the target satellite SAR image. The key
is the matching of the same feature points of two satellite SAR images. The essence of
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the matching problem of homonymous feature points is to detect “obvious points” with
stable features in the image [6,7]. To detect these feature points, three steps are generally
required: (1) Select “points of interest” with special positions on the image, such as corners,
spots, and T-shaped points. The most important feature of interest point detection is
repeatability, which requires that the same interest point can be reliably found under
different viewing angles. (2) Represented by the neighborhood feature vector of each point
of interest, the feature vector descriptor must be unique and robust to noise, geometric
deformation, and gray deformation. (3) The feature descriptors between different images
can be matched based on the distance between vectors. The dimension of feature vectors
will affect the efficiency of matching.

Research on SAR image matching methods is currently mainly divided into two major
directions [8]: traditional SAR image matching methods and deep learning-based SAR
image matching. Among them, traditional SAR image matching methods can be further
categorized into methods based on region features (including mutual information, cross-
correlation, etc.) [9,10] and methods based on point features (including Harris, Surf, SIFT,
etc.) [11–13]. Region-based registration methods have the advantage of simplicity and ease
of use but face significant challenges in registration accuracy and stability when dealing
with large-scale, noisy, or unevenly distributed SAR images. In contrast, feature-based
methods improve registration efficiency by extracting prominent features from images [14].
In recent years, significant progress has been made in the computer vision field regarding
feature point extraction from multi-scale images and constructing feature vectors within
the neighborhood of feature points. SIFT (Scale Invariant Feature Transform) is a typical
representative [13]. Introduced by David Lowe in 1999 at an international computer
vision conference, SIFT is a method for describing local features of images based on scale
space. It exhibits invariance to image scaling, rotation, and even affine transformations,
making it widely applied and effective in optical image matching. In recent years, with
the development of deep learning technology, various matching methods based on neural
networks have emerged [15]. However, due to the significant challenges in obtaining and
generating training samples for SAR images compared to optical images, these methods
have not been widely adopted.

To enhance the applicability of SIFT to SAR images, subsequent researchers have
undertaken a series of improvements to the SIFT algorithm. Schwind et al. [16] combined
the Best-Bin-First algorithm with SIFT (BBF–SIFT) for SAR image registration. The adapted
anisotropic Gaussian SIFT(AAG–SIFT) strategy [17], addressing the issue of edge detail
blurring, modified the standard SIFT algorithm by incorporating an adaptive Gaussian
blur filter, thereby enhancing the stability and reliability of feature points. Divya et al. [18]
proposed a SIFT algorithm based on structure tensors, utilizing tensor diffusion techniques
to construct scale levels and extract features in the scale space. Wang et al. [19] introduced a
SAR–SIFT algorithm based on the Range–Doppler (RD) model, incorporating the RD model
into feature matching and geometric transformation estimation, and designing a novel local
matching approach based on the RD model. Deng et al. [20] presented a two-step matching
method based on SIFT, utilizing global matching to establish coarse mapping relationships
and employing a refinement matching strategy for precise matching of SAR images.

Currently, most existing research focuses primarily on the matching accuracy, over-
looking efficiency and feasibility issues in practical application processes [21,22]. Simultane-
ously, with the increase in algorithm complexity, matching accuracy may improve but will
inevitably impose higher demands on computational resources [23]. Therefore, balancing
the precision and efficiency of matching algorithms for better SAR image matching is of
paramount significance.

This paper is organized as follows: firstly, a brief introduction to the SAR–SIFT image-
matching method is demonstrated in Section 2. In Section 3, a GPU-mapped implemen-
tation based on the SAR–SIFT algorithm and the corresponding multi-GPU collaborative
acceleration strategy, emphasizing the enhancement of matching efficiency for correspond-
ing feature points between satellite SAR images is proposed. Experiments and analysis on
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feature point extraction and matching are conducted using 21 scenes of high-resolution
GF-3 SAR images as illustrated in Section 4, followed by a conclusion in Section 5.

2. Baseline Algorithm, SAR–SIFT: A SIFT-like Algorithm for SAR Images

Synthetic Aperture Radar (SAR) images exhibit inherent speckle noise due to their
unique imaging mechanism, rendering conventional SIFT feature algorithms unsuitable
for SAR images. The SAR–SIFT feature algorithm is specifically proposed to address this
issue, encompassing the detection of key feature points and improved computation of
local descriptors. The SAR–SIFT feature algorithm introduces a novel gradient calculation
method to overcome the robustness challenges posed by speckle noise. This gradient is
employed in several steps as the SIFT algorithm to adapt to SAR image processing.

SAR–SIFT is a processing framework tailored for SAR image characteristics, primarily
encompassing the following steps:

2.1. Scale Space Construction

The differential gradient algorithm may lead to variations in false alarm rates on
SAR images, with higher false alarm rates in regions with high reflectivity compared to
those in low reflectivity regions. Therefore, the classical differential gradient calculation
method is not a constant false alarm rate algorithm, and the use of the ratio of exponentially
weighted averages (ROEWA) is more suitable for multiplicative noise than differentiation.
To achieve a constant false alarm rate on SAR images, the ratio of exponentially weighted
averages [24], an edge detector, can be employed.

The ratio of exponential weighted average ROEWA is an improvement on the ratio of
average ROA [25] (the ratio of average), which calculates the exponential weighted local
average. For instance, the average value of a given point (c, d) with horizontal direction
i = 1 and vertical direction i = 3 are defined as:

M1,α(i = 1) =
∫

x=R

∫
y=R+ I(c + x, d + y)× e−

|x|+|y|
α

M2,α(i = 1) =
∫

x=R

∫
y=R− I(c + x, d + y)× e−

|x|+|y|
α

M1,α(i = 3) =
∫

x=R

∫
y=R+ I(a + x, b + y)× e−

|x|+|y|
α

M2,α(i = 3) =
∫

x=R

∫
y=R− I(a + x, b + y)× e−

|x|+|y|
α

(1)

Among α is an exponential weight parameter.
The ratio in direction i and its normalization are defined as:

Ratioi,α =
M1,α(i)
M2,α(i)

(2)

Ti,α = max(Ratioi,a,
1

Ratioi,a
) (3)

These ratios Ti,α in α is calculated along the horizontal (i = 1) and vertical (i = 3)
directions, and the edge image is obtained as follows:

D2
n,α =

√
(T1,α)

2 + (T3,α)
2 (4)

ROEWA is more accurate and robust to noise in multi-scale edge contexts because the
weighted adaptive smoothing parameters α can be applied to images.

The horizontal and vertical gradients of SAR–SIFT are defined as:{
Gx,α = log (R1,α)
Gy,α = log (R3,α)

(5)
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Calculate the magnitude and direction of the gradient using the following formula

Gn,α =

√
(Gx,α)

2 +
(
Gy,α

)2 (6)

Gt,α = arctan(
Gy,α

Gx,α
) (7)

Among them, α is a parameter used to calculate the exponential weight of the lo-
cal mean.

To obtain negative and positive gradient values, no normalization with minimum
(or maximum) values has been applied between the ratio and its reciprocal. Furthermore,
due to the weighted parameters allowing for smoothing the image at different scales,
this gradient calculation method can be compared with the gradient difference applied
to images with Gaussian blur. The gradient calculation method of SAR–SIFT is the ratio
gradient GR (gradient by ratio) [26].

The differential gradient can to some extent mitigate speckle noise, but the gradient
values (magnetic component, vertical component, and horizontal component) in high-
reflectivity areas are higher than those in low-reflectivity areas. For the ratio gradient
method, the gradient responses in different reflection regions are more consistent and
robust against speckle noise. This novel gradient calculation method will facilitate the
application of the SIFT algorithm to SAR images.

LoG (the Laplacian of Gaussian) and Hessian matrices rely on second-order derivative
calculations, making them less suitable for multiplicative noise. In contrast, the multi-
scale Harris function is based on first-order derivative calculations. According to the
ratio gradient (GR) calculation method proposed by SAR–SIFT for SAR images, SAR–SIFT
adopts a new approach based on this detector.

The multi-scale Harris matrix and function are defined as follows:

C(x, y, σ) = σ2·G√
2·σ ∗

 ( ∂Iσ
∂x )

2
( ∂Iσ

∂x )·(
∂Iσ
∂y )

( ∂Iσ
∂x )·(

∂Iσ
∂y ) ( ∂Iσ

∂y )
2

 (8)

R(x, y, σ) = det(C(x, y, σ))− t·tr(C(x, y, σ))2 (9)

Among G√
2·σ is the Gaussian kernel of the standard deviation

√
2·σ, ∗ is a convo-

lution operator, Iσ is with standard deviation σ Gaussian kernel of the theoretical image
convolution, and t is an arbitrary parameter.

Note that the weights σ2 need to be adjusted here to carry out full-scale normalization.
In the LoG–Harris detector, the multi-scale Harris criterion allows for the detection of
R(x, y, σ) upper application threshold dH to suppress low contrast and edge points. Ac-
cording to the new definition and GR, the new multi-scale SAR–Harris [27] Matrix and
new multi-dimensional SAR–Harris function, as shown in the following formula:

CSH(x, y, α) = G√
2·α ∗

[
(Gx,α)

2 (Gx,α)·(Gy,α)

(Gx,α)·(Gy,α) (Gy,α)
2

]
(10)

RSH(x, y, α) = det(CSH(x, y, α))− d·tr(CSH(x, y, α))2 (11)

Among d is any parameter, derivative Gx,α and Gy,α use horizontal and vertical gradi-
ents to define calculations. In this case, it is easy to deduce that it is no longer necessary to
multiply σ2 to ensure scale invariance.

2.2. Key Point Detection

A simple method for detecting key points on SAR images involves applying a loga-
rithmic transformation to the image and then using the LoG–Harris detector of the SIFT
algorithm. This approach can handle images with additive noise rather than multiplicative
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noise and can suppress false detection in high-reflectivity areas. Despite its simplicity, this
method is not robust enough in noise handling and does not significantly improve the
performance of the original LoG–Harris method. Key point detection examples on SAR
images, affected by speckle noise unique to SAR images, indicate that key points do appear
near corners but with poor localization. Compared to direct application on amplitude
images, there are fewer scattered detections, and they also appear in both high- and low-
reflectivity areas, with many false positives. Adjusting the parameters of multiple scales
can reduce the number of false detections, but it also decreases the number of correctly
detected key points.

For the key point detector, the multi-scale space of the original image can be used
instead of LoG scale space, which is represented by computing different scales αm = α0·cm

(where m ∈ J0, . . . , mmax − 1K) obtained from the multi-scale function. Then the local
extrema is selected as the key point candidate at each scale, and the bilinear interpolation
using the SAR–Harris criterion near the local extrema to refine the key location of the point.
Thresholds dSH on multi-scale functions can filter edges and low contrast points, thereby
obtaining the key points expressed from position (x, y) and scale α. This method is called
the SAR–Harris detector, which integrates the two steps of the LoG–Harris detector and
does not use second-order derivatives. At the same time, it has the advantage of being
independent of the dynamic range of the image.

2.3. Principal Orientation Determination

In the original SIFT algorithm, both principal orientation determination and feature
descriptor construction rely on histograms of gradient directions. These histograms are
computed in the vicinity of each key point, weighted by both gradient magnitude and
a Gaussian window. The calculation of these histograms can be accomplished using the
GR method.

Principal orientation determination involves computing one or more principal orienta-
tions for each key point, derived from local orientation histograms calculated in circular
neighborhoods (radius is 6σ). By selecting the primary modes of the local orientation
histograms, up to two orientations can be chosen for each point, ranging from the dominant
mode to the opposite mode.

2.4. Feature Descriptor Construction

Feature descriptor construction involves computing feature descriptors for each ori-
entation. SAR–SIFT diverges from the original SIFT feature descriptor, which employs
square neighborhoods and 4 × 4 square sectors, by utilizing circular regions (radius is
12σ) and logarithmic polar sectors. Similarly, the feature descriptor is constructed based
on the computed gradient direction. The generated feature descriptor is referred to as
the ratio feature descriptor. This feature descriptor is constructed in the same manner as
the circular SIFT feature descriptor by connecting the number of orientation histograms
corresponding to the logarithmic polar sector. The only difference lies in the use of GR
instead of differential gradients. The GR method for gradient computation can be directly
applied to other spatial configurations of sectors, such as the spatial configuration of the
original SIFT.

3. Methodology
3.1. GPU Mapping Implementation of SAR–SIFT Algorithm

1. GPU Mapping for Scale Space Construction

The 2D Gaussian kernel is a known separable kernel, meaning that convolution with
a 2D Gaussian kernel is equivalent to two consecutive 1D convolutions, one along the
rows and the other along the columns. The exponentially weighted ratio used in SAR–
SIFT can also be separated into mean convolution along the columns and exponential
convolution along the rows. It has been observed that leveraging this separability property
can significantly enhance performance in GPU convolution operations. Therefore, we have
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adapted the NVIDIA kernel for 2D separable convolution to construct the SAR–SIFT ratio
gradient convolution results of each scale space in parallel.

The SAR–SIFT algorithm computes convolution results for SAR images by constructing
mean and exponential convolution kernels at different scales, and then calculates the ratio
gradient for each scale based on the convolution results. Thus, in the process of constructing
the SAR–SIFT scale space, the natural order of kernel invocations is as shown in Algorithm
1 below.

Algorithm 1: The natural order of kernel invocations

For all scales from 1 to S do
Calculate the mean convolution kernel of the current scale;
Calculate the current scale exponential convolution kernel;
Using GPU to perform convolution operation;
Calculate the ratio gradient of the current scale;

End for

All scales are convolved one by one using GPU. For each of these convolutions, a
unique kernel call must be made to use the correct number of blocks to cover the entire
image at a specific scale. When each kernel is called, the code corresponding to the kernel
function is transferred to the GPU. The number of read blocks requested is initialized, and
convolution at a specific scale level is started. Each thread block can access the unique
variable blockIdx that identifies the block. The input of the kernel is the original SAR
image, and the output of the kernel is the convolution image corresponding to the specific
scale under consideration and the corresponding ratio gradient result. Use of parallel
convolution algorithm blockIdx and input images and generate output. After the kernel
execution is completed, the next dimension will be considered.

In the above process, parallelism is only exploited within each convolution for each
scale. On the other hand, parallelism between scales and a combined kernel can be utilized.
One of the primary challenges in designing such a combined kernel is maintaining a fixed
grid size, ensuring that all convolutions for various scales operate with the correct inputs
and outputs. Identifying a virtual single grid within the combined grid is crucial and must
be achieved with minimal code overhead.

All thread blocks executing convolutions in Algorithm 1, regardless of their scale space
level, execute the same convolution code but with different inputs, outputs, and parameters.
We leverage this property to assimilate all levels of thread blocks within a single combined
kernel. The total number of blocks NCOMBINED for the new combined kernel depends
on how a single kernel is laid out. The optimal placement strategy is to minimize the
rectangular region required to enclose all thread blocks since CUDA (Compute Unified
Device Architecture) kernels can only be invoked with a rectangular grid. Maintaining
the structure and shape of a single kernel grid within the combined kernel is crucial, as
the kernel code must be able to identify its original kernel to recognize the correct input–
output (IO) parameters and define and use modified versions of variables blockIdx to
compensate for offsets introduced by kernel combination. To initiate the selection of IO
parameters, some additional code must be placed at the beginning of the combined kernel
function. During kernel invocation, all necessary IO parameters for the original kernels
must be passed.

The number of kernel invocations is reduced from S + 1 to 1, saving kernel invoca-
tion time where kernel code is copied to device memory, and streaming multiprocessors
(SM) and streaming processors (SP) are initialized. Additionally, there is minimal code
overhead in the combined kernel function. The scheduler optimizes processor utilization,
contributing to performance improvement.

Similarly, the multi-scale SAR–Harris feature response obtained based on the multi-
scale ratio gradient is directly implemented in CUDA. Parallel processing is achieved by
assigning a thread to each pixel of the feature response image. It can be observed that the
computation kernels for each scale in the scale space are independent of each other. This
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step also employs a combined kernel optimization, simplifying the S + 1 kernels into a
single kernel.

2. GPU Accelerated Key Point Detection

In this processing stage, it is necessary to detect local extrema in the feature response
images at different scales within the SAR–SIFT scale space. A total of N kernels are utilized,
where each thread examines the extrema of a single pixel in the feature response image. The
challenge in this processing stage involves storing all detected key points. Before executing
the kernels, the number of key points generated by the kernels and the order of generated
points are uncertain. In most sequential implementations, using a global array in device
memory to store key points and a global index variable to track the number of key points
found is a common approach. However, due to synchronization issues, this method cannot
be directly applied to the GPU.

3. GPU-Accelerated Key Point Orientation Assignment and Feature Description

The key point orientation assignment and feature descriptor construction can be
achieved using a single kernel function. This is because both steps require the same
gradient information around key points, considering the uneven distribution of texture
features in SAR images. The algorithm utilizes the gradient information of surrounding
96 × 96 pixels to set the main orientation and construct feature descriptors for key points.
The number of thread blocks in the kernel is determined by the number of key points
detected in the previous step, with each block responsible for setting the main orientation
and constructing features for one key point.

Each thread block is configured with 97 × 97 threads, where each thread computes
the gradient information for one pixel. Firstly, threads within a block load the surrounding
97 × 97 pixels of key points into shared memory, which is implemented using a caching
mechanism to reduce memory access latency, and synchronization points are used to
ensure that all threads have completed loading. Secondly, the gradients of the surrounding
96 × 96 pixels of key points are calculated.

Implementing histogram creation on the GPU is challenging due to simultaneous
updates to the shared gradient direction histogram by all threads, introducing synchroniza-
tion issues. In such cases, the use of atomic instructions significantly degrades performance
due to a low number of bins and high conflicts between threads. A parallel histogram
creation technique utilizes multiple copies of histograms updated by different parallel
elements [28]. These partial histograms are then merged to form the final histogram. This
study has adapted this technique for computing the orientation histogram. To determine
the maximum value of the histogram, a well-known GPU reduction algorithm employing
the MAX operator is employed.

3.2. Multi-GPU Cooperative Acceleration Strategy for SAR Image Matching in Large Area

This research mainly focuses on the matching problem in the area mosaic of multiple
SAR images in a large area, because SAR image matching requires processing all image
pairs with overlapping areas to obtain connection matching points. As shown in Figure 1.

Assuming there are N SAR images in total, the maximum processing times of image
matching is C2

N , which is extremely time-consuming and takes up most of the processing
time of the whole process, so it is necessary to design parallel algorithms.
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Figure 1. Large area SAR image mosaic overlay.

Although the GPU parallel acceleration is proposed in the previous section to process
fast matching between a pair of SAR images, the following problems still exist in SAR
image matching for large areas:

(1) Image matching requires a large number of cumulative calls. If a single GPU node
is used for serial processing, assuming that the image matching time after GPU
acceleration is T seconds, serial processing is required T × C2

N seconds, when the
number of images (N) is large, the overall image matching time is longer. Therefore,
how to reasonably allocate multiple GPU nodes to accelerate multiple image matching
is a major problem.

(2) In hundreds of SAR images, the imaging mode (bunching, stripe, etc.), imaging angle
(different incidence angles, lift rails), imaging resolution, and imaging width may be
different, so SAR image matching C2

N needs various GPU computation resources. If
the memory of a single GPU node is exceeded, block processing is required. If it is
much smaller than the memory of a single GPU node, it will cause a significant waste
of GPU resources. Therefore, how to reasonably allocate GPU node memory is also a
big problem.

(3) The processing efficiency of SAR image matching is different for different ground
objects. For example, for flat terrain areas, the similarity between SAR images is high,
and the repetition rate of key point detection is also high, so key point matching can
quickly retrieve the corresponding matching points, and the processing efficiency is
high. For areas with topographic relief, since the SAR image is a side view image, the
distortion and distortion introduced by topographic relief will significantly reduce the
repetition rate of key points, so the key point search efficiency is also low, resulting
in the overall processing efficiency being slow, as shown in Figure 2. Therefore, how
to reasonably allocate GPU nodes according to the different matching efficiencies
brought by different figure types is also a big problem.
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To solve these problems, this paper proposes a multi-GPU cooperative strategy for
multi-SAR image matching.

(1) Standardized processing of image data to be matched based on upper limit of GPU
node memory

Generally, each GPU node has multiple GPU graphics cards, and the memory of each
GPU graphics card is fixed. For example, the test node used in the experiment has two
NVIDIA A100s, and each A100 has 40G memory. Therefore, it is necessary to standardize
SAR images to be matched according to the memory upper limit (A100-40G) of a single
video card. First, we need to calculate the video storage requirements for single-image
matching. According to the analysis of the GPU acceleration of the SAR–SIFT algorithm
in the first two sections, the size of the data that needs to be copied from the CPU to the
GPU is sizeo f ( f loat)× M × N (M × N is the size of the overlapping area of the image to
be processed).

In addition, the GPU needs to open up a new scale space for graphics memory, which
is S × sizeo f ( f loat)× M × N (S is the level series of the scale space), the graphics memory
of key point coordinate information is K × 2 × sizeo f (Point2 f ), the graphics memory of
key point feature descriptor is K × 2× sizeo f ( f loat)× 136, and the graphics memory of key
point feature description sub distance of the metric is K × K × sizeo f ( f loat). In summary,
the optimal image pixel size for each GPU can be set based on the actual graphics memory
of the GPU, which is Ms × Ns. For image pairs with overlapping areas exceeding this size,
block operations are performed in advance. For overlapping area image pairs smaller than
this size, multiple regions can be combined together for full utilization of the GPU devices.

Through the above-standardized processing of the image data to be matched, the
GPU node can process without considering the changing imaging parameters of the SAR
images to be matched. At the same time, the single GPU can achieve the optimal load, thus
significantly improving the processing efficiency.

(2) Dynamic adjustment of optimal size of image to be matched considering ground
object type

Due to the geometric characteristics of side view imaging of SAR image, its geometric
positioning model has a higher correlation with elevation. As shown in Figure 3, according
to the analysis of the SAR imaging geometric positioning model, the two SAR images to
be matched were obtained from satellite SAR sensors at different incidence angles θ1 and
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θ2, the relationship between relative positioning error of ∆r = ∆r1 − ∆r2 and error with
elevation ∆h and the incident angle is:

∆r = ∆r1 − ∆r2 =
∆h
θ1

− ∆h
θ2

(12)
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From the above formula, when the elevation error is fixed (the same terrain), the
relative positioning error decreases with the increase in the incidence angle. When the
incident angle is fixed, the relative positioning error increases with the increase in elevation
error, so the relative positioning error in flat areas (small elevation error) is small, and that
in undulating areas (large elevation error) is large. For SAR image matching, the incidence
angle is fixed, so SAR image matching is less difficult to process in flat areas, and it is easy
to obtain more homonymous points. The process of image matching search and model
fitting is also faster. However, in undulating areas, the processing is difficult, there are
fewer homonymous points to be matched, the image matching search is complex, and the
simulation fitting is not easy to converge. The above theoretical analysis is consistent with
the experimental results shown in Figure 2.

In view of the above analysis, this study introduces the elevation change trend to
dynamically adjust the optimal processing size of the SAR image to be matched. In the
digital elevation model (DEM), slope and aspect are important parameters to describe
surface morphology. The slope is a measure of slope gradient at a point on the surface,
usually expressed in percentage or decimal form, and its calculation formula is as follows:

Slope =
∆Z
∆D

× 100% (13)

Among them, ∆Z is the elevation difference between the point and its adjacent points
and ∆D is the distance between the point and its adjacent points. Different size windows
can be used for slope calculation, such as 3 × 3 or 5 × 5 windows. The size of the window
will affect the accuracy and details of slope calculation. Take the 3 × 3 window as an exam-
ple, where the elevation of the center point is Z(i, j) and the elevations of 8 adjacent points
around it are Z(i − 1, j), Z(i + 1, j), Z(i, j − 1), Z(i, j + 1), Z(i − 1, j − 1), Z(i − 1, j + 1),
Z(i + 1, j − 1), Z(i + 1, j + 1). The slope calculation formula at the center point is:

Slope = [(Z(i + 1, j)− Z(i − 1, j) + Z(i, j + 1)− Z(i, j − 1))/(2d)]× 100% (14)

where d is the side length of the grid. The slope aspect is the inclination direction of a slope
facing due north at a point on the surface. Its value range is 0–360 ◦, where 0◦ represents
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due north, 90◦ represents due east, 180◦ represents due south, and 270◦ represents due
west. The calculation formula is:

SlopeA= arctan[∆Y/∆X] (15)

Among them, ∆Y is the Y-coordinate difference between the point and its adjacent
points and ∆X is the X-coordinate difference between the point and its adjacent points.
Similarly, the calculation of aspects can also use windows of different sizes. Taking the
3 × 3 window as an example, the calculation formula of the aspect at the center point is:

SlopeA= arctan[((Z(i + 1,j)− Z(i − 1,j))/(Z(i,j + 1)− Z(i,j − 1)))] (16)

It can be seen that the gradient and aspect measure the severity of elevation changes
in local areas and are closely related to the processing efficiency of the image to be matched.
In the previous section, we standardized the image area to be matched for the upper limit
of GPU node memory, and the optimal size is Ms × Ns. Therefore, this study proposes to
calculate the slope accumulation characteristics of the coverage area in the optimal size, as
shown below:

histslope = histogram
(

SlopeMs×Ns

)
(17)

Then, the Gaussian Mixture Model (GMM) is used to fit the slope probability distri-
bution characteristics for the slope cumulative characteristics. First, initialize the model
parameters of the GMM, including the number of Gaussian distributions, and the mean
and covariance matrix of each Gaussian distribution. Then, use the selected initialization
parameters to fit the data through the EM iteration algorithm. EM algorithm updates
parameters through iteration until the model converges or reaches the preset number of
iterations. Finally, after the training, the GMM model is used to fit the statistical charac-
teristics of the slope. Based on the fitting results of the GMM model, calculate the mean
sum of each Gaussian distribution as the dynamic size adjustment factor µ, and then the
optimal size adjustment method is as follows:

(Msa × Nsa) = (Ms × Ns)× ⌊0.5, (1 − µ)⌋ (18)

Among Msa and Nsa, respectively, represent the optimal adjusted block size.
For the SAR image to be matched in the flat area, the slope is small, and the statistical

characteristics of the slope are distributed near 0, so the adjustment of the original size is
small. For the SAR image to be matched in the undulating area, the more intense the undu-
lation is, the greater the slope value is, and the greater the statistical characteristics of the
slope are. Therefore, the corresponding size needs to be reduced to meet the approaching
processing time of different areas.

(3) Accelerating strategy based on multi-GPU node cooperative parallelism

The acceleration strategy designed above achieves the optimal load of a single GPU.
However, when processing multiple GPU nodes in parallel, how to deal with reasonable
allocation of the C2

N SAR image-matching processing flows and corresponding acceleration
strategies need to be designed.

Standardize image data by processing matching images, assuming that there are
currently Msa × Nsa image matching tasks of Nsa sub-standardized areas, with Ngpu GPU
nodes for processing. Cooperate with multi-node processing by setting the shared folder
for storing coordinate files of image matching points.

First, assign Ngpu individual GPU nodes to perform the first image-matching pro-
cessing. When the image matching task is created, a blank matching point coordinate file
is created. After the image matching task is completed, the matching point coordinate
information is written into the blank matching point coordinate file.

Secondly, after the first image-matching process is completed, the image-matching
tasks of the remaining areas are dynamically allocated. Before the image-matching task is
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created the coordinate file of the area-matching point is determined. If the matching point
coordinate file already exists in the area, the area is skipped and the task assignment of the
next area is carried out. The above operations can avoid repeated processing of multiple
nodes and save resources.

Finally, for the area that has been matched but failed to match, the matching point
file is also retained, but the coordinate point file information is deleted to avoid re-
peated processing.

4. Experiment and Analysis
4.1. Experimental Data and Platform

In order to verify the effectiveness of the proposed algorithm, this experiment uses
the domestic Gaofen-3(GF-3) satellite SAR images for related verification work. The GF-3
SAR image used in the experiment is in the Ultra Fine Strip (UFS) mode, with a total of
21 images. The imaging time is from 2 July 2019 to 20 October 2021, with a resolution of
3 m, the imaging angle is from 19.99◦ to 36.31◦, and the actual ground sampling interval is
1.12 m × 1.54 m~1.12 m × 1.75 m. The coverage area of the data used in the experiment is
the southeast coastal area of China, as shown in Figure 4. The terrain fluctuates from 0 m to
2358 m. The specific experimental data information is shown in Table 1.
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Table 1. Detailed Table of Experiment Data of GF-3 Satellite.

S/N Image Identification Angle of
Incidence (◦) Average Elevation (m) Ground Sampling

Interval (m) Imaging Time

1 GF3-15230-1

37.16

17.31

1.12 × 1.54 2 July 2019

2 GF3-15230-2 17.24

3 GF3-15230-3 69.52

4 GF3-15230-4 234.57

5 GF3-15230-5 167.94

6 GF3-15230-6 66.17

7 GF3-15230-7 28.26

8 GF3-15230-8 15.37

9 GF3-27350-1

36.31

35.67

1.12 × 1.73 20 October 2021

10 GF3-27350-2 342.94

11 GF3-27350-3 1156.29

12 GF3-27350-4 1366.71

13 GF3-27350-5 968.64

14 GF3-27076-1

19.99

3.24

1.12 × 1.75 1 October 2021

15 GF3-27076-2 21.38

16 GF3-27076-3 879.94

17 GF3-27076-4 1361.97

18 GF3-27076-5 677.02

19 GF3-27076-6 259.56

20 GF3-27076-7 15.04

21 GF3-27076-8 1.53

This experiment uses a high-performance computing server. The specific hardware
parameters of a single node are shown in Table 2.

Table 2. Table of hardware parameters of the experimental platform.

Item Type Model Parameters

CPU configuration

CPU frequency 2.6 GHz

Number of CPUs 2

Number of CPU cores 48 cores

CPU Number of threads 48 threads

Memory configuration
Memory type DDR4

Total memory capacity 768 GB

SSD hard disk configuration
Number of SSD hard disk blocks 1 piece

SSD hard disk capacity 256 GB

GPU card configuration

Number of GPUs 2 pieces

GPU model NVIDIA A100 PCIE

GPU computing performance 19.5 TFLOPS

GPU node memory capacity 40 GB
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4.2. Experimental Results

In order to verify the effectiveness of GPU mapping implementation based on the
SAR–SIFT algorithm, multi-GPU collaborative acceleration strategy for large area SAR
image matching, and other algorithms and acceleration strategies, this experiment adopted
21 high resolution GF-3 SAR images in Ultra Fine Strip mode. Five experiments were
carried out:

(1) Implementation of SAR–SIFT algorithm for single CPU server node This experiment
uses a single CPU server node (without a GPU card), and the configuration of the
subsequent experimental server nodes is consistent except for the absence of a GPU
card. The implementation experiment of the CPU-based SAR–SIFT algorithm is
carried out, and the time for extracting and matching 21 scenes GF-3 SAR images is
counted as the benchmark algorithm, which is used to achieve GPU mapping with
the proposed SAR-SIFT algorithm, the multi-GPU collaborative acceleration strategy
and acceleration strategy for SAR image matching in large regions.

(2) Implementation of SAR–SIFT algorithm for single GPU server node This experiment
uses one GPU server node (including one GPU card) to carry out an experiment on
the implementation of the SAR–SIFT algorithm based on a single GPU card. The
time required for feature point extraction and matching 21 scenes GF-3 SAR images is
counted to verify the acceleration efficiency of GPU mapping based on the SAR–SIFT
algorithm in Section 3.1.

(3) Implementation of SAR–SIFT algorithm for multiple image standardization accelera-
tion of single GPU server node This experiment uses one GPU server node (including
one GPU card) to carry out a SAR–SIFT algorithm implementation experiment based
on multiple image standardization acceleration using a single GPU card. The time
required for feature point extraction and matching 21 scenes GF-3 SAR images is
counted to verify the standardization processing of the image data to be matched
based on the GPU memory upper limit in the multi-GPU collaborative acceleration
strategy for SAR image matching towards large areas in Section 3.2.

(4) Implementation of SAR–SIFT algorithm for multiple image standardization acceler-
ation of four GPU server nodes This experiment uses 4 server nodes (8 GPU cards
in total) to carry out the SAR–SIFT algorithm implementation experiment based on
multiple image standardization acceleration using 8 GPU cards. The experiment calcu-
lates the time required for feature point extraction and matching 21 scenes GF-3 SAR
images to verify the effectiveness of the multi-GPU nodes collaborative acceleration
strategy based on multi-GPU nodes collaborative parallel in Section 3.2 of SAR image
matching for large areas.

(5) Implementation of SAR–SIFT algorithm for multiple image standardization acceler-
ation of 16 GPU server nodes This experiment uses 16 server nodes (32 GPU cards
in total) to carry out the SAR–SIFT algorithm implementation experiment based on
multiple image standardization acceleration using 32 GPU cards. The experiment
calculates the time required for feature point extraction and matching 21 scenes GF-3
SAR images, to verify the effectiveness of the multi-GPU nodes collaborative accelera-
tion strategy based on multi-GPU nodes collaborative parallel in Section 3.2 of SAR
image matching for large areas.

4.3. Analysis of Experimental Results

A matching experiment was carried out on 21 SAR images covering the southeast
coastal area of China. The matching resolution was set to a fixed ground sampling interval
of 1.8 m, and the initial absolute positioning deviation of the image was about 30 m.
Therefore, the matching window was set to 300 pixels, which could ensure that enough
similar ground object information was found in the window area of the two images, so as
to ensure the effectiveness of the matching results.

For 21 scene images, the feature points of overlapped images are extracted and
matched. After resampling, the maximum overlap area of the two scene images is
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41,142 × 35,049 pixels, and the minimum overlap area is 18,948 × 2906. After match-
ing with the matching algorithm, 42 matching files are obtained, of which the maximum
number of matching points in each matching file is 853 and the minimum number is 79.
The distribution of matching feature points is shown in Figure 5.
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In order to compare the difference between the method proposed in this paper and the
traditional method, we used four GPU computing nodes for experimental verification. The
matching efficiency was compared in four ways: single-node CPU serial, multi-node CPU
parallel, single-node GPU serial, and multi-node GPU parallel. The single-node CPU serial
uses a multi-core parallel strategy to give full play to the maximum computing efficiency
of the single-node CPU. In order to fully test the image-matching process, this experiment
selects 5, 10, 15, and 21 scene images for comparison of relevant efficiency. The matching
efficiency comparison results of different image numbers, different hardware devices, and
different strategies are shown in Figures 6 and 7.
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By comparing the experimental results in Table 3, it can be seen that:

(1) When matching SAR images for a single node, the SAR–SIFT algorithm after GPU
processing is nearly 96% higher than that of the single CPU node SAR–SIFT algorithm.
After the improvement of the GPU algorithm, the performance of single-node GPU
optimization algorithm is improved by 97%, which shows the effectiveness of the
optimization strategy of the SAR–SIFT algorithm based on GPU mapping;

(2) After multi-node processing, SAR image matching performance has been significantly
improved. After 16-node parallelism, the GPU optimization algorithm based on multi-
node parallelism has improved by 99.75% compared with the traditional single-node
CPU, which shows the effectiveness of the multi-node parallelism strategy.

Table 3. Record of SAR Image Matching Parallel Experiment Results.

Parallelization Strategy 5 Scenes 10 Scenes 15 Scenes 21 Scenes

Single node CPU 932.56 1848.73 3484.66 5268.59

Single node GPU 34.73 68.99 125.43 189.98

Single node GPU optimization 27.49 52.85 98.49 147.49

Four nodes GPU optimization 8.62 13.21 27.09 51.45

Sixteen nodes CPU optimization 2.93 4.77 9.35 13.62

To sum up, by optimizing the multi-node parallel strategy for computing time-
consuming content in SAR image feature point extraction and matching, the resource
utilization of computing nodes can be effectively improved, thus improving the efficiency
of SAR image feature point extraction and matching.

4.4. Discussion

For SAR images with coherent imaging mechanisms, we used the SAR–SIFT algorithm
as the algorithm benchmark. The SAR–SIFT algorithm replaces the construction of the SIFT
scale space with a multi-scale Harris space based on the ROEWA multiplicative operator to
handle the severely interfering speckle noise in SAR images, achieving very good matching
results. However, the computational complexity of SAR–SIFT is linearly related to image
size, and it is very time-consuming to process matching in multiple SAR image mosaic
tasks, which does not have practical engineering application value. Therefore, based on the
SAR–SIFT algorithm, this article proposes improvement points from two aspects: Firstly,
accelerate the GPU by constructing the most time-consuming multi-scale Harris space and
feature descriptors for SAR–SIFT. Then, for the matching task of multiple SAR images, a
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joint acceleration strategy based on multi-node GPUs is proposed to further improve the
processing efficiency of the matching algorithm in large-scale tasks.

Of course, for our current algorithm, there are still the following shortcomings: due
to the need to construct multi-scale Harris space on the GPU, a large amount of graphics
memory is required to process large and wide SAR images. For example, for an M × N SAR
image, assuming the scale is S, a space of 2× M× N × S× sizeo f ( f loat) is required. For the
test data in the experiment, it actually requires more than 20 G of graphics memory, which
has certain requirements for GPU configuration, it does not have the ability to migrate
to edge computing devices. Later, we will further study how to reduce the consumption
of GPU video memory by the algorithm and further improve the processing efficiency of
the algorithm.

5. Conclusions

The effectiveness of the GPU acceleration processing method proposed in this paper
was verified through experiments on feature point extraction and matching in GF-3 satellite
SAR images. Thus, the following conclusions can be drawn:

(1) After single-node GPU matching, the feature point extraction and matching of GF-3
satellite SAR images improved by about 96%, verifying the effectiveness of the opti-
mization strategy implemented by the SAR–SIFT algorithm based on GPU mapping.

(2) After multi-GPU nodes processing, the feature point extraction and matching of GF-3
satellite SAR images improved by about 99.75%, verifying the effectiveness of the
multi-GPU nodes parallelization strategy.

The proposed method greatly improved the performance of the GPU-based image-
matching technique. However, the limitation of GPU memory will restrict the migration of
the proposed method on portable devices. Therefore, the lightweight technology will be
conducted in the future.
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