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Abstract: Street-view images can help us to better understand the city environment and its potential
characteristics. With the development of computer vision and deep learning, the technology of seman-
tic segmentation algorithms has become more mature. However, DeeplabV3+, which is commonly
used in semantic segmentation, has shortcomings such as a large number of parameters, high require-
ments for computing resources, and easy loss of detailed information. Therefore, this paper proposes
LM-DeeplabV3+, which aims to greatly reduce the parameters and computations of the model while
ensuring segmentation accuracy. Firstly, the lightweight network MobileNetV2 is selected as the
backbone network, and the ECA attention mechanism is introduced after MobileNetV2 extracts shal-
low features to improve the ability of feature representation; secondly, the ASPP module is improved,
and on this basis, the EPSA attention mechanism is introduced to achieve cross-dimensional channel
attention and important feature interaction; thirdly, a loss function named CL loss is designed to
balance the training offset of multiple categories and better indicate the segmentation quality. This
paper conducted experimental verification on the Cityspaces dataset, and the results showed that the
mIoU reached 74.9%, which was an improvement of 3.56% compared to DeeplabV3+; and the mPA
reached 83.01%, which was an improvement of 2.53% compared to DeeplabV3+.

Keywords: street-view images; semantic segmentation; DeeplabV3+; attention mechanism; loss function

1. Introduction

The continuous development of deep learning and street-view images provides new
perspectives for city feature recognition. The element extraction of street-view environment
can help us to better understand the city environment and its potential features and,
combining street-view data and multi-dimensional feature recognition technology, provides
refined technical support for city design [1]. With the development of deep learning
and computer vision, the technology of extracting elements from street scenes based on
semantic segmentation algorithms is becoming more mature. Street-view images have
the advantages of wide coverage, providing street-level landscape information, and low
data collection costs, providing a large sample data source and new research ideas for city
environmental assessment research [2]. Street-view images contain a large amount of visual
information about city space, including static city architectural environments and dynamic
pedestrians or vehicles on the streets, providing new perspectives and dimensions for city
spatial environment analysis [3]. Researchers have extracted elements from street-view
images and conducted some research related to city perception and safety [4–6].

In recent years, computer vision and deep learning have brought many new opportuni-
ties to the field of geographic space [7]. So far, many semantic segmentation algorithms have
been widely applied in different fields. From the perspective of model structure, semantic
segmentation algorithms mainly have two categories: classification based on information
fusion and classification based on encoder–decoder architecture [8]. The method based on
information fusion improves the utilization of the model by increasing the number of layers
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in the network [9]. Representative algorithms include the fully convolutional network
(FCN) algorithm [10] and a series of improved algorithms [11], such as FCN-32S, FCN-16S,
and FCN-8S. The method based on encoding and decoding [12] improves the accuracy of
the network by using different backbone network forms and pyramid pooling modules.
Representative algorithms include the pyramid scene parsing network (PSPNet) [13] and
DeepLabV3+ [14].

With the emergence of more and more image semantic segmentation algorithms,
the challenges to computer computing resources and hardware memory requirements
are gradually increasing. The Deeplab [15] series is a series of semantic segmentation
algorithms developed by the Google team based on FCN. From 2014 to 2018, the Deeplab
series released four versions, namely, v1, v2, v3, and v3+. The most influential change
in DeepLabV3+ is the use of a new backbone network, Xception [16], and the addition
of an upsampling decoder module modeled after U-Net [17]. The original DeepLabV3
is used as an encoder, and the addition of a decoder results in a new model with better
boundary segmentation performance. DeepLabV3+ also integrates the spatial pyramid
pooling (SPP) [18] and encoder–decoder into one. DeepLabV3+ refers to a very common
feature fusion strategy in object detection, which preserves a considerable amount of
shallow information in the network. At the same time, it replaces depthwise separable
convolutions with dilated depthwise separable convolutions and proposes Atrous spatial
pyramid pooling (ASPP), which can achieve a faster speed while ensuring effectiveness.

However, the DeeplabV3+ algorithm has high computational complexity and high
memory consumption, making it difficult to deploy in platforms with limited computing
power. Moreover, DeeplabV3+ cannot fully utilize multi-scale information when extracting
image feature information, which can easily lead to the loss of information detail and affect
segmentation accuracy. For some application scenarios that require real-time feedback,
such as autonomous driving or real-time monitoring, the limitation of computing resources
makes it difficult to complete segmentation tasks in a timely manner. Under limited com-
puting resources, semantic segmentation models cannot achieve good segmentation results.
However, many existing lightweight segmentation models (such as BiseNetv2 [19]) use
detail and semantic branches to balance low-level and high-level semantic information.
Although this model effectively reduces the number of network parameters, its segmenta-
tion accuracy is not optimistic. In 2017, Google proposed the MobileNet network, which
is a representative of lightweight networks aimed at significantly reducing model size
and accelerating model computation speed while sacrificing model performance. There
are currently three versions of MobileNet, namely MobileNetV1 [20], MobileNetV2 [21],
and MobileNetV3 [22]. MobileNetV2 performs well in semantic segmentation tasks. As a
lightweight convolutional neural network, it maintains high accuracy while having fewer
parameters and lower computational complexity. Previous studies have shown that using
MobileNetV2 for the lightweight improvement of DeeplabV3+ achieves good effects [23,24].

In this regard, this paper proposes an improved algorithm based on the mainstream
semantic segmentation model DeeplabV3+ to solve the problem of high model resource
consumption, while taking into account segmentation accuracy and obtaining key category
information. The main contributions of this paper are summarized as follows:

(1) On the basis of using lightweight network MobileNetV2 as the backbone network
to alleviate network architecture, an ECA attention mechanism is introduced after extract-
ing shallow features in MobileNetV2, improving feature representation ability without
damaging the network’s structure.

(2) Improvements are made to the ASPP module: replacing ASPP pooling with strip
pooling effectively expands the receptive field range of the network, making it suitable for
more complex scenarios. Furthermore, the EPSA attention module is introduced to effec-
tively establish long-term dependencies between multi-scale channel attention modules
and achieve cross-dimensional channel attention interaction between important features.

(3) CE loss may have the problem of training results shifting towards a larger number of
categories when faced with class imbalance, and the measurement of CE loss usually cannot
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indicate segmentation quality well on the validation set. Therefore, we have designed a
loss that combines CE loss and Lovasz loss and named it CL loss.

This paper validates the effectiveness of the method on the Cityspaces dataset and
trains new pre-training weights that are more suitable for the semantic segmentation of
city street-view images.

2. Materials and Methods
2.1. The Overall Framework of LM-Deeplabv3+

LM-deeplabV3+ is based on the lightweight MobileNetV2 backbone network. Due
to the use of pre-trained weights in MobilenetV2 in order to the improve image segmen-
tation performance without damaging the original network structure, shallow features
were extracted and an ECA attention mechanism was incorporated into MobilenetV2.
Improvements were made to the ASPP module by using strip pooling instead of ASPP
pooling, which effectively expanded the receptive field range of the network and could
be applied to more complex scenarios. The EPSA attention module was also introduced,
effectively establishing long-term dependencies between multi-scale channel attention and
achieving cross-dimensional channel attention important feature interaction. Considering
the problem of imbalanced weight allocation among multiple categories and the fact that
its metrics on the validation set often cannot effectively indicate the quality of segmentation
in the original CE loss, as well as the instability of the training process in Lovasz loss, we
designed CL loss, which takes into account the stability and effect of the loss function.

Figure 1 shows the structure of the original model DeeplabV3+, and Figure 2 shows
the structure of improved DeeplabV3+, which we named LM-DeeplabV3+.
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2.2. Strip Pooling

For semantic segmentation tasks, receptive field size and full-text contextual informa-
tion are crucial for the final prediction results. Strip pooling [25] can effectively expand the
receptive field range of the backbone network and involves a long strip-shaped pooling
kernel deployed along the spatial dimension. The parallel connection of strip pooling in
the ASPP module can enhance its ability to perceive remote context. The structure of strip
pooling is shown in Figure 3.
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In strip pooling, the current feature map is divided into several strip regions according
to certain rules, and each strip pooling window is pooled along the horizontal or vertical
dimension. When two spatial dimensions are pooled, the feature values of columns or
rows are weighted averages.

For the input image, the calculation formula for row vector output is as follows:

yh
i =

1
W ∑

0≤j<W
xi,j (1)

The calculation formula for column vector output is as follows:

yV
i =

1
H ∑

0≤j<H
xi,j (2)

In the case of horizontal and vertical banded pooling layers, due to the long and
narrow shape of the kernel, it is easy to establish long-term dependencies between dis-
cretely distributed regions and encode them in a banded shape. Meanwhile, due to its
narrow kernel shape in another dimension, it also focuses on capturing local details. These
characteristics make the proposed strip pooling different from traditional spatial pooling,
which relies on square kernels.

Let x ∈ RC×H×W be an input tensor, where C, H, and W, respectively, represent the
number of channels, height, and width. We feed x into two parallel pathways, each of
which contains a horizontal or vertical strip pooling layer. The vertical and horizontal
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outputs are yh ∈ RC×H and yv ∈ RC×W , respectively. After combining the two, the output
is as follows, yielding y ∈ RC×H×W :

yc,i,j = yh
c,i + yv

c,j (3)

Then, the output z is computed as:

z = Scale(X, σ( f (y))) (4)

where Scale() represents multiplication, σ represents the sigmoid function, and f represents
1 × 1 convolution.

2.3. EPSANet and ECANet
2.3.1. EPSANet

The efficient pyramid split attention (EPSA) [26] module can handle the spatial infor-
mation of multi-scale input feature maps and effectively establish long-term dependencies
between multi-scale channel attention, achieving cross-dimensional channel attention inter-
action of important features, thus providing stronger multi-scale feature expression and
serving semantic segmentation tasks.

The implementation of EPSA mainly consists of four steps:
(1) Implement the proposed split and concat (SPC) module. SPC first divides the input

tensor into S groups, and the convolution kernel size K in each group increases sequentially.
Considering that when K is relatively large, the computational workload will also be higher,
each group is further grouped and convolved, with a specific number of groups G = 2

K−1
2 .

After undergoing convolutions of different sizes, they are concatenated on the channel. The
operation of the SPC module is shown in Figure 4.
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Where “split” represents uniform segmentation in the channel dimension and “concat”
represents connecting features in the channel dimension.
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(2) Extract attention from feature maps of different scales using the SEWeight [27]
module to obtain channel attention vectors. The SEWeight is shown in Figure 5.
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(3) Use softmax to recalibrate the attention vectors of each channel and obtain recali-
brated weights for multi-scale channels.

(4) Perform a product operation on the recalibrated weights and corresponding feature
map application elements.

Finally, a refined feature map with richer multi-scale feature information is obtained
as the output. The complete EPSA module is shown in Figure 6.
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The EPSA module can integrate multi-scale spatial information and cross-channel
attention into the blocks of each separated feature group, achieving better information
interaction between local and global channel attention.

2.3.2. ECANet

ECANet [28] is an efficient neural network module that effectively captures channel re-
lationships in images and enhances feature representation by introducing channel attention
mechanisms. The structure of ECA module is shown in Figure 7. ECANet mainly consists
of three parts. Firstly, using global pooling to transform the spatial matrix into a one-
dimensional vector, a feature map of size 1× 1× C is obtained. Secondly, the convolution
kernel size k is adaptively determined based on the number of network channels:

k = ψ(C) =
∣∣∣∣ log2(c)

γ
+

b
γ

∣∣∣∣
odd

(5)

where |t|odd represents the odd number closest to t, Set a and b to 2 and 1, respectively.
Finally, an adaptive size convolution kernel is used for convolution operations, and

the weights of each channel corresponding to the feature map are weighted to obtain the
feature map of the input image. We multiply the normalized weights with the original
input feature map channel by channel to generate a weighted feature map:

wx = σ(C1Dk(y))x (6)

where σ represents the sigmoid function, C1D represents one-dimensional convolution,
and y represents the pooling output of x.
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ECANet avoids dimensional reduction and effectively captures cross-channel inter-
action information. It not only enhances spatial features, making the model pay more
attention to important information parts, but also enhances feature expression ability,
significantly increasing the receptive field.

2.4. CL Loss

The loss function is a method of measuring the difference between the predicted and
true values of a model.

2.4.1. CE Loss

The cross-entropy loss (CE Loss) function is a commonly used loss function in image
segmentation tasks, which reflects the distance between the predicted probability distribu-
tion of the model and the true label probability distribution, and performs well in image
segmentation tasks. For multi-class tasks, the value of CE loss is:

CE(pi, p̂i) = −
N

∑
i=1

pilog( p̂i) (7)

where N is the number of categories, pi is the true label of the i-th category, and p̂i is the
predicted distribution of the i-th category.

2.4.2. Lovasz Loss

Lovasz–softmax loss [29] is a loss function that directly optimizes the semantic seg-
mentation metric mean intersection over union (mIoU). For the multi-class segmentation
problems, Lovasz uses softmax to map the model output to a probability distribution
f ∈ [0, 1].

loss( f ) =
1

N × P

N

∑
n=1

P

∑
p=1

(
yn

pŷn
p

yn
p + ŷn

p − yn
pŷn

p

)
(8)

where N is the total number of categories, P is the total number of pixels, yn
p is the true label

of the category n of pixel p, and ŷn
p is the predicted probability of the category n of pixel p.

3. Results
3.1. Dataset and Experimental Configuration
3.1.1. Dataset

The Cityscapes dataset, also known as the City Landscape dataset, is a large-scale
dataset that records street scenes in 50 different cities. This data aggregation focuses on
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the semantic understanding of city street scenes, with 5000 images of driving scenes in city
environments and dense pixel annotations of 19 categories.

3.1.2. Experimental Configuration

Our experimental environment is shown in Table 1. We use GTX3090 (24G), CUDA
version 11.8, Pytorch 2.0.0, and Python version 3.8.

Table 1. Experimental environment.

Name Configuration

CPU Intel(R) Xeon(R) Gold 6330 CPU
GPU RTX3090 (24G)

CUDA version 11.8
PyTorch 2.0.0

Python version 3.8

3.2. Evaluating Indicator

In image segmentation, the mIOU and the mPA (mean pixel accuracy) are commonly
used to measure the performance of segmentation models. The larger the values of mIoU
and mPA of a model, the higher the image segmentation accuracy of the model.

The mIoU is the ratio of the intersection and union of the predicted results of the
model segmentation and the actual results, expressed as:

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(9)

The mPA is the proportion of the total number of correctly classified pixels in each
category averaged to the total number of that category. The specific expression is as follows:

mPA =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij

(10)

where k + 1 represents the total number of categories; pij represents the number of pixels
whose real category is i, but whose predicted category is j; pji represents the number of
pixels whose real category is j, but whose predicted category is i; and pii represents the
number of pixels whose true category is i and who are correctly predicted as category i.

Params is the total number of parameters that need to be trained in model training
and is used to measure the size of the model, i.e., the computational space complexity.

Floating point operations (FLOPs) refer to the computational complexity of a model,
which can be used to measure the complexity of an algorithm. However, there is controversy
over using FLOPs to evaluate models, as the computational speed of the model is also
related to memory throughput, etc. Therefore, this paper considers FLOPs as a secondary
evaluation indicator.

3.3. Results and Analysis
3.3.1. Experimental Parameter Settings

Crop_ size is the image size, Batch_ size is the number of images processed in a
single training session, Val_ batch_ size is the number of word processing images during
validation, Output_ stride is the ratio of the input graph to the output graph, Lr is the
learning rate, Lr_ policy is the learning rate strategy, Step_ size is the number of times the
weight is updated, iterations is the total number of iterations, and Weight_ decay is weight
decay. If Batch_size is set to a larger size (such as 8 or 16), the effect will be better, but this
also requires more computing resources. Considering the limited hardware resources in
the experimental environment, we set Batch_ size to 4. When Output_ stride is set to 8, the
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segmentation accuracy slightly improves, but this requires more computational resources,
and so we set Output_stride to 16.

After training and comparison, we determined the most suitable parameter settings,
as shown in Table 2.

Table 2. Experimental Parameter Settings.

Parameter Value

Crop_size 768 × 768
Batch_size 8

Val_batch_size 4
Output_stride 16

Lr 0.1
Lr_policy poly
Step_size 10,000
Iterations 30,000

Weight_decay 0.0001

3.3.2. Comparison of Different Models

In order to better validate the segmentation performance of the proposed model in
this article, we selected different models for comparative analysis. Table 3 shows the
experimental results of different models on the Cityscapes dataset. When using the same
backbone network, both the mIoU and mPA of the DeeplabV3+ model are improved
compared to the DeeplabV3 model. We found that the LM-DeeplabV3+ model showed
significant improvement compared to the original DeeplabV3+ model with Xception as the
backbone network. The mIoU and mPA increased by 3.69% and 2.53%, respectively, while
params was one-fifth of the original model and FLOPs were one-quarter of the original
model. Compared to LM-DeeplabV3+ with Resnet101 as the backbone network, the mIoU
and mPA of LM-DeeplabV3+ decreased by 1.79% and 0.34%, respectively, but params was
one eighth of the former and FLOPs was one-seventh of the former. Compared to the
Deeplabv3+ model with MobileNetV2 as the backbone network, although the params and
FLOPs of LM-DeeplabV3+ slightly increased, its mIoU and mPA increased by 2.35% and
2.01%, respectively.

Table 3. Comparison of Cityscapes validation set performance on different models.

Model Backbone mIoU/% mPA/% Params/M FLOPs/G 1

Deeplabv3 Xception 65.20 76.10 36.93 302.85
Deeplabv3 Resnet50 74.58 82.37 39.64 368.87
Deeplabv3 Resnet101 75.61 84.02 58.64 544.06
Deeplabv3 Mobilenetv2 71.43 79.89 5.11 48.46

Deeplabv3+ Xception 71.21 80.48 37.05 324.65
Deeplabv3+ Resnet50 75.92 83.35 39.76 389.88
Deeplabv3+ Resnet101 76.69 83.35 58.75 565.07
Deeplabv3+ Mobilenetv2 72.55 81.00 5.22 69.07

LM-Deeplabv3+ 74.90 83.01 7.20 83.56
1 The size of the image is (3,768,768).

On most tasks and datasets, Xception probably has a higher accuracy than Mo-
bileNetV2. In our experiment, the results show that that the effect of Xception is worse
than MbilieNetV2 on the Cityscapes dataset, the for which reasons can be summarized as:

(1) Xception performs poorly on the Cityscapes dataset.
(2) In order to improve the convergence speed, all networks use pre-training weights,

but the effect of Xception’s pre-training weights is relatively poor.
(3) Xception training requires a longer training cycle, and the epochs in our paper do

not allow Xception to obtain the best training effect.
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Nevertheless, this paper mainly improves the lightweight model, and experiments
show that this paper can effectively reduce the size, calculation, and parameters of the
model, and improve the accuracy of the lightweight model. DeeplabV3+ with Xception as
the backbone network is only used as a comparison, which has no impact on the experiment
in our paper. Meanwhile, comparisons with other networks (Resnet50 and Resnet101) do
illustrate that lightweight models are less accurate than more complex models.

From Figure 8, we can see that LM-DeeplabV3+ has a significant improvement in seg-
mentation performance, which is closer to the label compared to DeeplabV3+. Compared
to DeeplabV3+, LM-DeeplabV3+ has more accurate pixel recognition and fewer incorrect
pixel recognitions.
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From Table 4 and Figure 9, we can find that our proposed model improved the
segmentation performance of most street-view elements, with significant improvements in
IoU for elements such as pole, traffic light, traffic sign, terrain, person, rider, and bicycle,
which has a significant positive impact on segmentation performance. Among them, the IoU
growth of traffic light and pole was the highest, reaching 17.73% and 13.74%, respectively.
At the same time, only the IoU of truck showed a relatively significant decrease. However, it
was still at a high level, with almost no negative impact on the overall segmentation effect.

Table 4. The IoU of each street-view element on the Cityscapes validation set.

Elements DeeplabV3+ LM-DeeplabV3+ Improvement

Road 0.9747 0.9743 −0.0004
Sidewalk 0.8048 0.8092 0.0043
Building 0.9025 0.9094 0.0068

Wall 0.4918 0.4876 −0.0042
Fence 0.5541 0.5454 −0.0088
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Table 4. Cont.

Elements DeeplabV3+ LM-DeeplabV3+ Improvement

Pole 0.4704 0.6078 0.1374
Traffic Light 0.5259 0.7032 0.1773
Traffic Sign 0.6683 0.7732 0.1049
Vegetation 0.9085 0.9122 0.0038

Terrain 0.6044 0.6229 0.0184
Sky 0.9427 0.9441 0.0013

Person 0.7297 0.8028 0.0731
Rider 0.5170 0.6204 0.1033
Car 0.9247 0.9340 0.0093

Truck 0.7632 0.7189 −0.0443
Bus 0.8139 0.8338 0.0198

Train 0.6790 0.6983 0.0193
Motorcycle 0.5658 0.5739 0.0081

Bicycle 0.6888 0.7599 0.0712
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3.3.3. Ablation Experiment

To ensure the final improvement effect of the model, this paper used the control
variable method to conduct experiments on each improved module.

This paper conducted a series of ablation experiments. From Table 5, it can be observed
that replacing ASPP pooling with strip pooling resulted in a 0.73% increase in mIoU and a
0.56% increase in mPA. From Table 6, it can be found that only after MobileNetV2 extracts
shallow features and adds an ECA attention mechanism does mIoU increase by 0.55% and
mPA increase by 0.3%. Only after incorporating the EPSA attention mechanism in the
ASPP module, mIoU increased by 1.31% and mPA increased by 1.08%. It can be found
from Table 7 that, on the improved light deeplbav3+, the mIoU and mPA using Lovasz loss
are increased by 2.22% and 1.71%, respectively, compared with those using CE loss. Using
CL loss increased mIoU by 2.35% and mPA by 2.01% compared with using CE loss. From
Table 8, it can be observed that the improvements in each modulep layed a positive role,
effectively enhancing the accuracy of the algorithm.
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Table 5. Comparison of different pooling layers on DeeplabV3+.

Backbone Pooling mIoU/% mPA/%

MobilenetV2 ASPP Pooling 72.55 81.00
MobilenetV2 Strip Pooling 73.28 81.56

Table 6. Comparison of different attention mechanisms on DeeplabV3+.

Backbone Attention mIoU/% mPA/%

MobilenetV2 72.25 81.00
MobilenetV2 ECA 72.80 81.30
MobilenetV2 EPSA 73.56 82.08

Table 7. Comparison of different loss functions on LM-DeeplabV3+.

Backbone Loss Function mIoU/% mPA/%

MobilenetV2 CE loss 72.55 81.00
MobilenetV2 Focal loss 73.55 81.64
MobilenetV2 Lovasz loss 74.77 82.71
MobilenetV2 CL loss 74.90 83.01

Table 8. Different combinations of ablation experiments.

Group Strip
Pooling EPSA ECA CL Loss 2 mIoU/% mPA/%

1 × × × × 72.55 81.00
2

√
×

√
× 73.49 81.67

3
√ √

× × 73.60 82.02
4

√ √ √
× 73.83 81.95

5
√ √ √ √

74.90 83.01
2 when CL loss is ×, the default CE loss function is used.

√
represents using the module, × represents not using

the module.

4. Conclusions

This paper proposes an improved LM-DeeplabV3+ model to solve the problems of
large parameter counts, high computational resource requirements, insufficient attention to
detail information, and the insufficient accuracy of lightweight models in existing seman-
tic segmentation models. Firstly, the backbone network is replaced with the lightweight
network MobilenetV2, and the ECA attention mechanism is introduced after the shallow
features of MobilenetV2 to improve segmentation performance without damaging the
network structure. The method of replacing the ASPP pool of the original ASPP module
with a strip pool can be applied to more complex image scenes. Furthermore, the EPSA
attention module is introduced to effectively establish long-term dependencies between
multi-scale channel attention and achieve the cross-dimensional channel attention inter-
action of important features. Then, we designed a loss function suitable for multi-class
tasks. Although CE loss performs well in segmentation tasks, there may be a problem of
training results shifting towards a larger number of categories when faced with imbalanced
categories, and the measurement of CE loss on the validation set usually cannot indicate
the quality of segmentation well. Therefore, we designed a loss function that combines CE
loss and Lovasz loss. After using CE to find the direction of gradient descent, the Lovasz
loss is used to directly optimize the semantic segmentation metric mIoU. Compared to
using only CE loss or Lovasz loss, this can achieve better segmentation results and we
named it CL loss.

This paper was validated on the Cityspaces dataset and found that:
(1) LM-DeeplabV3+ effectively improves accuracy while significantly reducing param-

eter and computational complexity. The mIoU reaches 74.9%, which is 3.56% higher than
DeeplabV3+. The mPA reaches 83.01%, which is 2.53% higher than the basic network.



Appl. Sci. 2024, 14, 1558 13 of 14

(2) LM-DeeplabV3+ significantly improves the IoU of elements such as pole, traffic
light, traffic sign, terrain, person, rider, bicycle, etc. Among these, the improvement in
traffic light and pole was the largest, reaching 17.73% and 13.74%, respectively. Overall,
it has a significant positive impact on segmentation performance. At the same time, only
Truck’s IoU showed a relatively significant decrease, but still remained at a high level, with
almost no negative impact on the overall segmentation effect.

(3) The improved LM-DeeplabV3+ has been proven to be the optimal result through
ablation experiments, and new pre-training weights that are more suitable for the semantic
segmentation of city street scenes have been trained.

In the future, we will further optimize the backbone network to achieve better segmenta-
tion results while reducing the number of model parameters and computational complexity.
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