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Abstract: With the rapid advancement of deep learning, 3D human pose estimation has largely
freed itself from reliance on manually annotated methods. The effective utilization of joint features
has become significant. Utilizing 2D human joint information to predict 3D human skeletons is of
paramount importance. Effectively leveraging 2D joint data can improve the accuracy of 3D human
skeleton prediction. In this paper, we propose the SCGFormer model to reduce the error in predicting
human skeletal poses in three-dimensional space. The network architecture of SCGFormer encom-
passes Transformer and two distinct types of graph convolution, organized into two interconnected
modules: SGraAttention and AcChebGconv. SGraAttention extracts global feature information from
each 2D human joint, thereby augmenting local feature learning by integrating prior knowledge of
human joint relationships. Simultaneously, AcChebGconv broadens the receptive field for graph
structure information and constructs implicit joint relationships to aggregate more valuable adjacent
features. SCGraFormer is tested on widely recognized benchmark datasets such as Human3.6M and
MPI-INF-3DHP and achieves excellent results. In particular, on Human3.6M, our method achieves
the best results in 9 actions (out of a total of 15 actions), with an overall average error reduction of
about 1.5 points compared to state-of-the-art methods, demonstrating the excellent performance
of SCGFormer.

Keywords: human pose estimation; graph convolution; adjacency matrix; transformer

1. Introduction

Traditional deep learning models, such as LSTM [1] and CNN [2], have demonstrated
notable performance in Euclidean space data (language, images, videos, etc.). However,
they exhibit certain limitations when processing non-Euclidean space data, such as social
networks and information networks. Graph convolutional networks (GCNs) [3,4], as a
recently emerged class of generalized neural network structures based on graph structures,
have garnered significant attention and research due to their unique computational ca-
pabilities. Scholars have introduced the abstract concept of graphs from graph theory to
represent non-Euclidean structured data and leveraged graph convolutional networks to
process graph data, delving deeper into its features and patterns. The human skeleton,
representing joints as nodes and bones as edges, can be conceptualized as a graph structure,
providing a new direction for advancements in human pose estimation tasks.

In recent years, 3D human pose estimation has gained significant attention in computer
vision, with applications spanning virtual reality [5,6], motion recognition [7–10], motion
tracking [11], and more. This field has seen advancements in both single-stage [12–18] and
multi-stage regression approaches [19–24]. Single-stage regression directly extracts features
from images to reconstruct 3D skeleton coordinates but is sensitive to external factors
such as background and lighting. In contrast, multi-stage regression initially predicts
the planar coordinates of the skeleton and subsequently estimates 3D features using 2D
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joint information. The latter approach has reached maturity, benefiting from a plethora of
methods for detecting 2D skeletons in RGB images.

Nonetheless, 3D pose estimation encounters challenges including depth ambiguity,
self-obscuration, and a scarcity of outdoor datasets. Graph structures, which represent
skeletal connections among 2D joints, have been harnessed by graph convolutional neural
networks (GCNs) to acquire effective 3D human body representations [25–28]. However,
prior GCN-based approaches [29] exhibited certain limitations. They often relied on first-
order neighborhood matrices, constraining their ability to capture information from distant
joints, and employed the same kernel matrix for all edges, resulting in underutilization
of relationships between adjacent nodes. SemConv [27] improved the operation of graph
convolution. Its key idea is to learn channel-wise weights for edges as priors implied in
the graph and then combine them with kernel matrices. This significantly improves the
power of graph convolutions. The work [28] introduces a graph-oriented Transformer
structure that incorporates a self-attention mechanism to better capture the relationships
between joint points and a graph convolutional structure to infer pose information in the
graph structure.

In order to improve the utilization of joint features, we propose SCGFormer, a se-
mantic Chebyshev graph convolutional Transformer. SCGFormer harnesses the strengths
of Transformer and graph convolutions, comprising two pivotal components: semantic
graph—attention (SGraAttention) and Chebyshev graph convolution with combined ad-
jacency matrix information (AcChebGconv). SGraAttention amalgamates Transformer
and semantic graph convolution, facilitating the extraction of global information through
self-attention while preserving human kinematic constraints. Concurrently, AcChebGconv
improves Chebyshev graph convolution by fully exploiting 2D joint features and reinforc-
ing local connections. We assess the performance of SCGFormer on the Human3.6M [30,31]
and MPI-INF-3HP [12] datasets, achieving outstanding results across various action cate-
gories. The task achieved the best results on 9 actions (from a total of 15 actions), with an
overall average error decrease of approximately 1.5 points compared to the baseline.

In summary, our contributions are as follows:

• We propose SCGFormer, a novel network incorporating the SGraAttention and Ac-
ChebGconv modules, which improve the effectiveness of the network by applying
effective human body structural constraints.

• We amplify the correlations between joints and their remote neighbors by blending
first-order and second-order adjacency matrices in the AcChebGconv module, thereby
maximizing the utilization of 2D joint features in our approach.

• We conducted experiments on well-established benchmarks to showcase the robust-
ness and precision of the SCGraFormer in the domain of 3D pose estimation.

2. Related Work

In this section, we will present an overview of research pertaining to 3D human pose
estimation. Following this, we will introduce approaches that are particularly pertinent to
the subject of this paper, encompassing both Transformer-based and graph-convolution-
based methods.

2.1. 3D Human Pose Estimation

Three-dimensional (3D) human pose estimation represents an important research area
within computer vision [32,33]. Its fundamental aim is to ascertain the spatial coordinates
of human joints in three-dimensional space, primarily utilizing RGB images or video data.
In its early stages, this task [31,34–36] heavily relied on handcrafted features and geometric
constraints as the means to predict 3D human pose. Nevertheless, with the rapid evolution
of deep learning, deep neural networks have emerged as a predominant approach for 3D
human skeleton prediction. These approaches can be broadly categorized into two primary
types: single-stage regression and multi-stage methods.
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Single-stage regression stands as a direct approach to the end-to-end estimation of 3D
human pose from images, characterized by its simplicity and effectiveness. For instance,
Pavlakos et al. [13] employed voxel likelihood to represent the confidence of joint positions
in 3D space and inferred joint details via 3D heat maps. Nevertheless, their model exhibits
sensitivity to less pertinent factors, such as background and lighting conditions, and its
generalization is impeded by a restricted volume of indoor data. In a different vein,
Zhou et al. [15] adopted a weakly supervised training model that combined annotated
2D outdoor images with annotated 3D indoor images as inputs, effectively mitigating
the prediction ambiguity from 2D to 3D. Additionally, Yang et al. [14] employed an
adversarial network featuring a multi-source discriminator to compel the generator to
produce plausible 3D human poses.

In contrast, multi-stage methods first employ CNN networks to detect 2D joint coordi-
nates, followed by the utilization of this information in a 3D information detector to infer
3D human pose. These approaches heavily rely on a mature 2D pose detector [23,24] and
primarily focus on the transition from 2D to 3D, a strategy that often yields heightened data
accuracy. For instance, Martinez et al. [37] introduced a straightforward yet highly effective
3D pose detector that achieves precise predictions through a simplistic network structure.
In another vein, Wandt et al. [38] proposed a generative adversarial training approach
to address the shortage of labeled 3D datasets. They employed two parallel networks to
simultaneously predict 3D human pose and camera parameters, harnessing a discriminator
to enhance pose generation accuracy. Additionally, they re-projected generated 3D poses
back to 2D poses, thereby enriching the training data.

The characteristics of 2D joint data differ from image data. While it avoids interference
from factors such as background lighting in images, the compressed and concise feature
information in 2D joint data necessitates an appropriate prior constraint for further discern-
ing useful information between joints. Moreover, dealing with the continuity of a sequence
of movements requires addressing the connections between joint data frames, emphasizing
the significance of enlarging the receptive field. Disregarding these issues may compromise
the accuracy of 3D human pose estimation. Therefore, effectively leveraging 2D joint
data in multi-stage regression tasks becomes crucial. Based on this, our approach adopts a
multi-stage regression method that integrates both graph convolution and Transformer tech-
niques. In the subsequent sections, we will introduce recent research endeavors pertaining
to human pose prediction through the utilization of graph convolution and Transformer.

2.2. Graph-Convolution-Based Methods

In recent years, significant strides have been made in the field of 3D human pose
estimation through graph convolution, resulting in cutting-edge outcomes [26–28,39].
Zhao et al. [27] introduced a semantic graph convolutional network featuring a stacked
structure as a non-local module. This architectural choice facilitated the learning of weights
between neighboring nodes, consequently enhancing the connections among 2D joints.
Furthermore, Xu and Takano [26] proposed an innovative graph hourglass network model.
This model employed a distinctive combination of pooling and anti-pooling layers to
acquire intermediate features, which were subsequently fused with the SE block [40]. In an-
other notable development, Zhao et al. [28] amalgamated the strengths of both Transformer
and graph convolutions. Initially, they extracted global features using the conventional
Transformer [41], excluding the MLP [42]. Subsequently, they harnessed the implicit higher-
order connections between joints by employing Chebyshev graph convolution [43]. This
integrated approach yielded state-of-the-art results on the Human3.6M dataset, surpassing
other graph-convolution-based methods. However, it is essential to acknowledge that this
approach, despite its advantages in terms of parameter count, utilizes a learnable adjacency
matrix following the global feature extraction stage. This allows the network to learn
without constraints, introducing an element of uncertainty. The learned adjacency matrix
may potentially disrupt the kinematic structure of the human skeleton and influence the
accuracy of the data refined by subsequent network layers.
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2.3. Transformer-Based Methods

The Transformer [41], initially prominent in the domain of natural language processing,
has recently gained traction in the realm of computer vision tasks. Veličković et al. [44]
introduced graph-attention networks that employ self-attention mechanisms to learn node
weights within a graph, highlighting the challenging issue of limited receptive field size for
graph convolution. In a pioneering effort, Zheng et al. [45] developed the first 3D human
pose estimation model based on Transformer. They globally modeled relationships among
human body joints within frames and temporal correlations between frames, ultimately
predicting 3D human poses based on intermediate structures derived from frame averaging.
On a related note, Lin et al. [16] proposed an end-to-end network rooted in the Transformer
framework for the reconstruction of 3D human body poses and mesh vertices from a single
image. Although both of these approaches [16,45] employ a Transformer to capture global
features, thus addressing the issue of limited receptive field size, they neglect the potential
utility of joint graphs. Neglecting human geometric constraints can lead to an incapacity to
infer plausible joint information, ultimately resulting in a reduction in prediction accuracy.

Our approach leverages self-attention to extend the receptive field, simultaneously
enhancing the interconnection among human joints through the integration of the graph
convolution layer, thereby contributing to an overall enhancement in model performance.
A detailed exposition of this approach will be provided in the third section.

3. Main Work

The model presented in this paper, SCGFormer, represents a fusion of Transformer
and Graph Convolution methods. Figure 1 provides an overview of the comprehensive
framework, wherein it takes 2D joint coordinates as input and yields predicted 3D poses as
output. In this section, we will commence by introducing the Preliminaries in Section 3.1,
with further elaboration provided in subsequent subsections under Section 3.2.

Figure 1. The general framework and core module structure of SCGFormer. By leveraging the
provided 2D joint information, SCGFormer establishes a vital linkage between 2D and 3D skeletal
information, facilitated by the incorporation of SGraAttention and the AcChebGConv block. This
orchestrated process culminates in the accurate prediction of intricate 3D skeletal details.

3.1. Preliminaries

A human skeleton can be represented as a graph and predicted using graph convo-
lution. Let J denote the number of joints, and Dl represent the dimension of the input
data. Xl ∈ RJ×Dl is the input of the L-th layer. The two-dimensional joint coordinates are
initialized as X0 ∈ RJ×2, which is the input of SCGFormer. Then, the output Xl+1 of the
L-th layer is:

Xl+1 = σ(D̃− 1
2 ĀD̃− 1

2 XlW), (1)

where σ is the activation function RELU, Ā = A + I, A ∈ RJ×J denotes the adjacency
matrix of the joints, I is the unit matrix, D̃ means the diagonal matrix whose elements
are the degrees of the nodes, and W ∈ RDl×Dl+1 indicates a learnable parameter matrix
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of the layer. The adjacency matrix A cannot aggregate the feature information of its joint,
so the matrix Ā is obtained from A by adding the self-loop, which can learn the feature
information of the joint itself. In the following two graph convolutions, we use Ā, which
helps to understand the correlation between joints.

Inspired by the work [27], we add a semantic graph convolution (SemGconv) to the
SGraAttention module, which better uses the adjacent node relations and graph structure.
The general output Xl+1 of the L-th layer of the semantic graph convolution is as follows:

Xl+1 = σ(WXlρi(M ⊙ Ā)), (2)

M ⊙ Ā =

{
−∞ if aij ̸= 1
mij if aij = 1

, (3)

In Equation (2), ρi is the activation function to normalize the numerical weights;
M ∈ RJ×J is a learnable weight transformation matrix that performs elemental operations ⊙
on the adjacency matrix Ā = [aij], the specific formula of which is as shown in Equation (3).
If aij = 1, then the value of the corresponding position mij is returned; otherwise, negative
infinity is returned. In the actual network layer, a smaller value (−9 × 1015) will be taken
instead of negative infinity. W is the parameter matrix of the layer and is divided into two
parts, W0 and W1. W0 relates to the feature-transformed representation of the node itself,
while W1 learns the feature representations of all nodes except its own. Then, the detailed
output Xl+1 of the L-th layer in the semantic graph convolution is as follows:

Xl+1 = σ(I ⊗ W0Xlρi(M ⊙ Ā) + (1 − I)⊗ W1Xlρi(M ⊙ Ā)), (4)

where ⊗ represents the element-by-element multiplication in the matrix, all nodes of the pre-
vious graph convolution share a parameter matrix [29], and semantic graph convolution [27]
expresses the correlation between individual nodes better.

The Transformer model, which is now the mainstream for natural language, has
achieved good results in computer vision [16,44–46] due to its self-attention mechanism [41].
The self-attention mechanism processes the feature tensor Xl through three multilayer
perceptions (MLPs) [42] to output three matrices: Ql , Kl , and V l . Then, the output feature
is obtained by matrix multiplication. The output of the L-th layer of the Transformer is
formulated as follows:

Xl+1 = σ(
QlKlT

√
dk

)V l , (5)

where σ represents softmax [47,48]. Its elements are scaled individually with
√

dk to avoid
a sharp distribution of matrix elements.

We chose the network layers introduced above to compose our network architecture.
Initially, we employ the Transformer to globally extract joint features, addressing the issue
of a relatively small receptive field. This aids in establishing connections between joint
frames. Subsequently, for the globally extracted information, which does not inherently
contain knowledge of human kinematic structure, we utilize semantic graph convolution
with a first-order adjacency matrix incorporating information about human joints to refine
the local information of joints. Following this, Chebyshev graph convolution with K-order
Chebyshev functions is applied to extend more comprehensive local feature information.
This approach is adopted to construct a more effective human skeleton.

3.2. SCGFormer

The architecture of the novel network model proposed in this paper is visually rep-
resented in Figure 1. Specifically, the Chebyshev graph convolution serves a dual role,
encompassing the preprocessing of the initial feature data as well as the regression of the
final decoded features. In the ensuing sections, we will provide an in-depth exploration of
the two central modules integral to SCGFormer, namely the SGraAttention module and the
AcChebConv module.



Appl. Sci. 2024, 14, 1646 6 of 20

3.2.1. SGraAttention Module

The SGraAttention module is equipped with two residual connections [49], primarily
comprising a multi-head self-attention mechanism and two layers of semantic graph con-
volution, along with a LayerNorm (LN) layer [50] and a dropout layer [51]. As illustrated
in Figure 2, the 17 joints undergo pre-encoding in the Chebyshev graph convolution layer
before being fed into the SGraAttention module. The input feature vectors are initially
normalized by the LayerNorm (LN) layer [50] and subsequently passed through the multi-
head self-attention layer. The multi-head self-attention module employed here corresponds
to the traditional Transformer [41] architecture. Initially, global feature information is
extracted through the self-attention mechanism, as depicted in Figure 3a, aiding the model
in comprehending contextual relationships among human joint points.

Figure 2. Structure of SGraAttention module.

Figure 3. Strategies for human skeleton feature extraction in the model structure. (a) the weight matrix
V in self-attention is capable of capturing global information; (b) the adjacency matrix in semantic
graph convolution, with constraints based on human body structure, is utilized to enhance local
information; (c) the adjacency matrix in Chebyshev graph convolution, combining adjacency matrix
information, is employed to broaden the receptive field, further strengthening local information. The
thickness of the yellow arrows represents the strength of the correlation and the black arrow indicate
the order of feature extraction.
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Following the self-attention mechanism, we eliminate the MLP [42] and introduce
semantic graph convolution layers. While the MLP layer possesses robust data fitting
capabilities, its excessive parameter count results in some neurons not contributing to the
transmission of network information, leading to a wastage of spatial resources. Hence,
we opt for semantic graph convolution layers as a replacement for the MLP. Semantic
graph convolution layers are more suitable for handling graph-structured data like human
skeletal data. Each layer enhances the local feature information of human joint points by
learning correlated weights between joints, as illustrated in Figure 3b.

The structure of the SGraAttention module is depicted in Figure 2, where ’h’ represents
the number of heads. The module initially utilizes a multi-head self-attention mechanism
to capture the global information of joint points, followed by semantic graph convolution
to refine the preliminary features of joint points.

3.2.2. AcChebGConv Module

The second crucial module is the Chebyshev graph convolution [43]. We introduce
second-order neighborhood information into the prior constraints of Chebyshev graph
convolution. Specifically, the adjacency matrix that combines both first-order and second-
order information is employed as the primary constraint. This enhanced module is referred
to as the AcChebGconv module, denoting Chebyshev graph convolution with a fusion
of adjacency matrix information. The AcChebGConv module comprises two instances
of AcChebGconv and two rectified linear unit (ReLU) layers, as depicted in Figure 4.
Building upon the globally refined preliminary features extracted in the preceding module,
this module further refines local feature information by expanding the receptive field, as
illustrated in Figure 3c.

Figure 4. Structure of AcChebGconv module.

The output Xl+1 at the L-th layer of the AcChebGConv module is given by:

Xl+1 = ∑K−1
k=0 Tk(L̃)Xlθk, (6)

where Tk is the k-th order chebyshev correlation function (i.e., Tk(x) = 2xTk−1(x) −
Tk−2(x)), k ≥ 2, T0 = 1, and T1 = x. θk ∈ RDl×Dl+1 is the matrix of trainable parame-
ters in the graph convolution of this layer. L̃ = 2L/λmax − I denotes the Laplacian operator
based on the maximum eigenvalue rescaling, and λmax is the maximum eigenvalue in the
normalized graph Laplacian L. The normalized graph Laplacian L is formulated as follows:

L = I − D̃− 1
2 ÃD̃− 1

2 , (7)
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where the adjacency matrix Ã = A + A2, it incorporates more extensive adjacency informa-
tion by summing the first-order adjacency matrix with the second-order adjacency matrix.

In alignment with the existing literature [28], the updated Chebyshev graph convolu-
tion layer inherits the K-order polynomial function from its foundational Chebyshev graph
convolution, thereby affording the advantage of an expanded receptive field. This exten-
sion allows for the aggregation of information from the K nearest neighbors. Furthermore,
the innovative constraint introduced here, which integrates the second-order adjacency
matrix, enhances the local structural constraints of the human body. This augmentation, in
conjunction with the semantic graph convolution, leads to a noteworthy enhancement in
the model’s performance, as will be substantiated in the forthcoming experimental sections.

Our model incorporates two variants of graph convolution: the semantic graph convolu-
tion and the Chebyshev graph convolution enriched with fused adjacency matrix information.
In comparison to prior graph convolution methods [28], although the computational load
is notably increased, the required dataset remains relatively uncomplicated, involving only
17 nodes. As a result, the computation entails the calculation of a 17× 17 matrix.

3.2.3. Loss Function

Given the human joint set S =
{

J2d
i , J3d

i

}N

i=1
, where J2d

i ∈ Rj×2 is the 2D ground truth

of the human joint, J3d
i ∈ Rj×3 is the corresponding 3D ground truth, and N = 17 is the

number of joints that make up the human skeleton. We use the 3D ground truth in the
dataset to correct the predicted 3D value, and the 2D ground truth is used to evaluate
the model’s performance. We train the SCGFormer with the mean square error L (i.e.,
Equation (8)) to minimize the error between the predicted and ground truth.

L =
1
N ∑N

i=1(
∥∥∥ J̃3d

i − J3d
i

∥∥∥2
), (8)

where J̃3d
i ∈ Rj×3 is the 3D coordinate value predicted by the network. The error measure

is in millimeters.
The algorithm is shown in Algorithm 1.

Algorithm 1 Training

Input: 2D joint data of CPN network J̃2d, first order adjacency matrix Ā, adjacency matrix
Ã that combines first- and second-order adjacency information, the ground truth of 3D
human joint data J3d.
Output: 3D human skeleton J̃3d predicted by the network

repeat
Input J̃2d into the preprocessing layer and project it onto high-dimensional features

J̃H .
Use Transformer to extract features from J̃H based on Equation (5)
Apply SemGConv and combine with prior constraint Ā to extract features according

to Equation (3).
Apply AcChebGConv and combine with prior constraint Ã to extract features

according to Equation (6).
Map the extracted high-dimensional feature values back to the 3D human skeleton

J̃3d through a decoder.

Take gradient descent step on ∇θ

∥∥∥ J̃3d − J3d
∥∥∥2

until converged

4. Experiments

In this section, we will commence by providing an elaborate account of the experimen-
tal procedures, encompassing the configuration of various training parameters employed
throughout the experiments. Subsequently, we will conduct an in-depth analysis of the
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experimental outcomes achieved by SCGFormer, comparing them with those of state-of-
the-art methods. Finally, we will substantiate the effectiveness of SCGFormer through a
series of ablation experiments.

4.1. Experimental Details

The dataset, evaluation metrics, and training details used in this work are described below.
Dataset: We use two popular human pose datasets, Human3.6M [30,31] and MPI-INF-

3DHP [12], to evaluate the SGraFormer.
Human3.6M [30,31] is the most widely used dataset for 3D human pose estimation

tasks [28,30,52]. It encompasses a diverse set of 15 actions, ranging from common activities
such as greeting and smoking to walking a dog, all enacted by a total of 11 different actors,
captured across four cameras. Within the dataset, subjects denoted as S1, S5, S6, S7, and S8,
sourced from seven actors, serve as the training and validation sets. Conversely, subjects S9
and S11, corresponding to the remaining four actors, are exclusively designated for testing
purposes. In aggregate, the dataset comprises 1,559,752 frames for training and 543,344
frames for testing.

MPI-INF-3DHP [12] presents images captured in three distinct scenarios: a studio
environment with a green screen (GS), a studio environment without a green screen (noGS),
and an outdoor setting (Outdoor). We have employed this dataset to assess the generaliza-
tion capabilities of the proposed architecture.

Evaluation metrics: In the case of Human3.6M [30,31], two distinct evaluation protocols,
Protocol 1 and Protocol 2, have been established, delineating different approaches based on
subject selection within the dataset [26,27,37]. Protocol 1 involves the utilization of subjects S1,
S5, S6, S7, and S8 as the training set, with subjects S9 and S11 designated for testing. Conversely,
Protocol 2 employs subjects S1, S5, S6, S7, S8, and S9 for training, reserving S11 as the sole
component of the testing set. In accordance with recent research practices [26–28,37,52,53], we
have adhered to the first evaluation protocol. Regarding the MPI-INF-3DHP dataset [12], we
have adhered to established conventions [26,28] by employing 3D-PCK (percentage of correct
keypoints) and AUC (area under the curve) as the chosen evaluation metrics.

Protocol 1 uses the mean error per joint position (MPJPE) EMPJPE( f , S) as the evalua-
tion metric, as shown in Equation (9). Given skeleton S with NS joints, it first aligns the
root joint (the pelvic joint), then calculates the mean error of the joint position. The smaller
the value, the more accurate the prediction.

EMPJPE( f , S) =
1

NS
∑NS

i=1

∥∥∥m( f )
pe,S(i)− m( f )

gt,S(i)
∥∥∥

2
, (9)

where m( f )
pe,S(i) is a function that returns the coordinates of the i-th joint of skeleton S, at

frame f , from the pose estimator pe, and m( f )
gt,S(i) is the i-th joint of the ground truth frame f .

Protocol 2 employs P-MPJPE (Procrustes mean per joint position error) as the evalua-
tion metric, wherein the predicted values are aligned with the ground truth through rigid
transformations, encompassing translation and rotation. Subsequently, MPJPE is computed
to quantify the error, with millimeters serving as the unit of measurement. It is noteworthy
that the performance outcomes under both protocols typically exhibit consistency. There-
fore, in alignment with established practices in the literature [27,28], we have chosen to
utilize Protocol 1, specifically the mean error per joint position (MPJPE), as the designated
evaluation metric for our experiments.

Training parameter settings: During the training phase, we configured the SCGFormer
model with a total of five SGraAttention modules (as denoted by N in Figure 1), and each
multi-headed self-attention utilized four heads (H). The intermediate feature dimension for
data processing within the model was set to 96, accompanied by a dropout rate of 0.25. For
optimization during training, we employed the classical Adam [54] optimizer, commencing
with an initial learning rate of 0.001. The training data was organized into batches of size
64, and a learning rate decay rate of 0.9 was applied. Specifically, the current learning rate
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was decreased by a factor of 0.9 every 50,000 steps throughout the training process, which
spanned a duration of 100 epochs in total to train the SCGFormer model.

4.2. Comparison with State-of-the-Art Methods

In previous research, 3D human pose estimation methods have been categorized into two
distinct groups based on their network inputs. The first category involves the direct extraction of
essential feature information from images to predict joint points [12–15,17,18,55,56]. The second
category utilizes a well-established 2D pose detector to forecast crucial point information, after
which the network deduces the 3D spatial positions of the joints [25–28,37,53,57,58]. The results
comparing the model presented in this paper with previous works [12–15,18,25–28,37,53,55–58]
are summarized in Table 1.

Among the aforementioned studies, some [12–15,18] have adopted an end-to-end
approach that takes images as input. However, these approaches have yielded unsatis-
factory estimation results primarily due to the limited feature information available in
the images. When confronted with occlusion issues, these models, which rely solely on
a single view, struggle to accurately infer hidden features. Furthermore, these models
exhibit heightened sensitivity to various factors, such as background and lighting con-
ditions, which contributes to reduced model robustness and generalization. In contrast,
leveraging the two-dimensional skeleton provides access to a wealth of spatial kinematic
information [28,37], enabling the exclusion of extraneous image features during model
training. As depicted in Table 1, all of these models utilize the output from the cascaded
pyramid network (CPN) [21] as their input. Notably, among the 15 actions assessed in the
Human3.6M [30,31] dataset, our approach achieves the lowest overall prediction error for
nine actions and excels in scenarios involving occluded frames, such as greeting, phoning,
and sitting. The average error across all actions experiences a substantial reduction of
nearly one and a half points compared to the most recent work [28]. The bar chart is
shown in Figure 5. These results demonstrate the superior performance of our method in
comparison to state-of-the-art techniques, with the exception of action poses. Furthermore,
when compared to other methods [26,27,53] that employ graph convolution, our approach
consistently delivers superior results for almost all actions.

Figure 5. Bar chart of the overall average MPJPE (in mm) corresponding to the methods in Table 1.
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In Table 2, we conducted experiments using the ground truth (GT) values of the 2D
key points. Our method outperforms others by achieving the best results for nine actions
and yielding the lowest overall mean error. When compared to recent works utilizing
graph convolution [26–28,53], our model excels in handling accurate 2D information,
demonstrating our significant advancements in processing 2D information with noise. The
bar chart of average error is shown in Figure 6.

Figure 6. Bar chart of the overall average MPJPE (in mm) corresponding to the methods in Table 2.

We visualized the predictive performance of a majority of actions, as depicted in Figure 7,
encompassing various movements such as posing (Pose), waiting (Wait), sitting down (SittingD),
walking (Walk), and walking together (WalkT). The corresponding errors for these actions
are tabulated in Table 1, measured in millimeters, as 48.3 for pose, 48.0 for wait, 66.4 for
sitting, 38.9 for walking, and 42.1 for walking together. Among these actions, Wait, Walk, and
WalkT demonstrate superior outcomes, with Pose achieving the second-best performance. For
additional actions, including directions, walking dog (WalkD), phone usage (Phone), greeting
(Greet), and sitting, the corresponding errors, reported in millimeters in Table 1, are 44.6, 52.7,
52.7, 49.4, and 58.2, respectively. In comparison to previous methodologies, Directions, Phone,
Greet, and Sitting exhibit the best predictive performance, denoted by the lowest prediction
errors within their respective action categories. A visual representation of these outcomes is
presented in Figure 8. Remarkably, the predictions made by SCGFormer closely align with the
ground truth labels in these scenarios. These findings underscore the model’s good learning
capability and predictive performance.

To assess the generalization prowess of our model, we trained it exclusively on the Hu-
man3.6M dataset [30,31] and subsequently evaluated it on the test set of MPI-INF-3DHP [12].
The outcomes are presented in Table 3. Impressively, our method outperforms the majority
of other approaches, achieving an average PCK (percentage of correct keypoints) of 79.2
and an AUC (area under curve) of 43.9. These results underscore the robust generalization
capabilities of our architecture, even when applied to previously unseen datasets.
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Table 1. Results (in mm) of the quantitative evaluation using MPJPE on Human3.6M [30,31] according to protocol I. The notation (*) in the table indicates that the
model uses the picture as input, while the rest use the 2D skeleton key points detected by the CPN network [21] as input, and the notation (+) indicates that the
model was trained using additional data from MPII [59]. The best-performing data have been bolded.

Protocol#1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg.

Pavlakos [13] (*) 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Metha [12] (*) 52.6 64.1 55.2 62.2 71.6 79.5 52.8 68.6 91.8 118.4 65.7 63.5 49.4 76.4 53.5 68.6
Martinez [37] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Zhou [15] (*) 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.1 66.0 51.4 63.2 55.3 64.9
Tekin [17] 54.2 61.4 60.2 61.2 79.4 78.3 63.1 81.6 70.1 107.3 69.3 70.3 74.3 51.8 63.2 69.7
Sun [18] (+) (*) 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7 86.7 61.5 67.2 53.4 47.1 61.6 53.4 59.1
Fang [57] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 50.4
Yang [14] (+) (*) 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Hossain [58] 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3
Pavlakos [55] (+) 48.5 54.4 54.5 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
Zhao [27] 48.2 60.8 51.8 64.0 64.6 53.6 51.1 67.4 88.7 57.7 73.2 65.6 48.9 64.8 51.9 60.8
Sharma [56] 48.6 54.5 54.2 55.7 62.2 72.0 50.5 54.3 70.0 78.3 58.1 55.4 61.4 45.2 49.7 58.0
Ci [25] (+) 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7
Liu [53] 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4
Xu [26] 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9
Zhao [28] 45.2 50.8 48.0 50.0 54.9 65.0 48.2 47.1 60.2 70.0 51.6 48.7 54.1 39.7 43.1 51.8
Ours 44.6 49.7 46.2 49.4 52.7 61.1 48.3 46.5 58.2 66.4 50.7 48.0 52.7 38.9 42.1 50.4

Table 2. Results (in mm) of quantitative evaluation using MPJPE on Human3.6M [30,31] according to protocol I. The models in the table all use 2D key point ground
truth as input, and the notation (+) indicates that the model was trained using additional data from MPII [59]. The best-performing data have been bolded.

Protocol#1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg.

Martinez [37] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Hossain [58] 35.2 40.8 37.2 37.4 43.2 44.0 38.9 35.6 42.3 44.6 39.7 39.7 40.2 32.8 35.5 39.2
Zhao [27] 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8
Ci [25] (+) 36.3 38.8 29.7 37.8 34.6 42.5 39.8 32.5 36.2 39.5 34.4 38.4 38.2 31.3 34.2 36.3
Liu [53] 36.8 40.3 33.0 36.3 37.5 45.0 39.7 34.9 40.3 47.7 37.4 38.5 38.6 29.6 32.0 37.8
Xu [26] 35.8 38.1 31.0 35.3 35.8 43.2 37.3 31.7 38.4 45.5 35.4 36.7 36.8 27.9 30.7 35.8
Zhao [28] 32.0 38.0 30.4 34.4 34.7 43.3 35.2 31.4 38.0 46.2 34.2 35.7 36.1 27.4 30.6 35.2
Ours 33.3 36.9 30.8 33.5 36.6 41.2 35.4 31.2 37.5 48.3 35.1 35.6 34.5 26.9 30.2 35.1
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Figure 7. Visualization results of actions such as Pose, Wait, SittingD, Walk, and WalkT.

Figure 8. Visualization results of actions such as Directions, WalkD, Phone, Greet, and Sitting.

Table 3. Results on MPI-INF-3DHP [12] test set, and the best-performing data have been bolded.

Methods Training Data
PCK AUC

GS noGS Outdoor Avg All

Martinez [37] H36M 49.8 42.5 31.2 42.5 17.0
Mehta [12] H36M 70.8 62.3 58.8 64.7 31.7
Yang [14] H36M + MPII - - - 69.0 32.0
Zhou [15] H36M + MPII 71.1 64.7 72.7 69.2 32.5
Luo [60] H36M 71.3 59.4 65.7 65.6 33.2
Ci [25] H36M 74.8 70.8 77.3 74.0 36.7
Zhou [61] H36M + MPII 75.6 71.3 80.3 75.3 38.0
Xu [26] H36M 81.5 81.7 75.2 80.1 45.8
Zhao [28] H36M 80.1 77.9 74.1 79.0 43.8
ours H36M 80.3 77.6 74.0 79.2 43.9

4.3. Ablation Experiments

In this section, we conduct ablation experiments to investigate the impact of different
graph convolution layers and determine the most optimal structure for the model.

Impact of Different Graph Convolutions: Zhao et al. [28] initially employed a
self-attention layer to capture global features, followed by the utilization of an LAM (learn-
able adjacency matrix) graph convolution layer to acquire information about adjacent
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joints. They subsequently applied a Chebyshev graph convolution layer to learn implicit
higher-order connectivity relationships between non-adjacent joints. While the LAM graph
convolution enables the network to learn valuable information between neighboring nodes
using the Laplacian operator, it may introduce instability during the learning process, poten-
tially disrupting human kinematic structural constraints and weakening local connections
between neighboring nodes. In this study, we replace the LAM graph convolution with
semantic graph convolution (SemGconv) after extracting global features with self-attention.
The semantic graph convolution layer provides stability to the results by using a fixed
adjacency matrix. The visualization of the adjacency matrices used for semantic graph
convolution and LAM graph convolution is presented in Figures 9 and 10, respectively.
Brighter matrices indicate stronger associations between two nodes. In LAM, the network
learns the adjacency matrix, as shown in Figure 9, capturing more distant neighborhood
relationships. However, this fragile relationship comes at the cost of compromising the
fundamental human kinematic structure. Semantic graph convolution employs a fixed
adjacency matrix to learn node features after global feature extraction, reinforcing local ad-
jacency relationships based on fixed human structural constraints. While this increases the
number of parameters, it provides a more reasonable basis for the subsequent Chebyshev
graph convolution to learn distant neighborhood relationships between nodes.

We introduced modifications to the adjacency matrix, which serves as a prior constraint
for Chebyshev graph convolution, by incorporating second-order adjacency information.
Ablation experiments revealed that replacing the original Chebyshev graph convolution
with this new version alone did not lead to improvements in test results or affect the per-
formance of the original model. However, when combined with the improved Chebyshev
graph convolution and semantic graph convolution, the prediction error decreased once
again. This observation suggests that the LAM (learnable adjacency matrix) graph convolu-
tion may compromise body structure information and impact subsequent feature extraction.
The experimental results, as presented in Table 4, utilize the 2D node information provided
by the CPN (cascaded pyramid network) [21]. In cases where the authors did not provide
a pre-trained model, the data in the table was reproduced using the configuration and
parameters outlined in the original literature. Without modifying the prior constraint of
ChebGConv, the result of the model with semantic graph convolution (SGraAttention) de-
creased from 52.0 mm to 51.3 mm, a reduction of almost one point compared to the original
LAM graph convolution model. When the ChebGConv prior constraint was modified
(AcChebGConv), the error values further decreased with the use of semantic graph convo-
lution, decreasing from 51.3 mm to 51.1 mm. This indicates that the new Chebyshev blocks
are effective. The ablation experiments presented in Table 4 demonstrate that strengthening
stable local inter-joint adjacency relationships leads to the extraction of more valuable and
practical features.

Figure 9. Visualization of the adjacency matrix used by the SCGormer, with the semantic graph
convolution using a first-order adjacency matrix (first from the left) and the Chebyshev graph
convolution in the AcChebGConv block using an adjacency matrix that combines first- and second-
order adjacency information (first from the right).
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Figure 10. Visualization of the learnable adjacency matrix used in the five-layer LAM graph convolution,
with the lowercase letters indicating the results for visualization of the corresponding layer.

Table 4. MPJPE results (in mm) for different graph convolution structures in the model on the
Human3.6M [30,31] dataset.

Method MPJPE

LAM-GConv × 2
ChebGConv Block(ChebGConv × 2)

52.0

SemGConv × 2
ChebGConv Block(ChebGConv × 2)

51.3

LAM-GConv × 2
AcChebGConv Block(AcChebGConv × 2)

52.0

SemGConv × 2
AcChebGConv Block(AcChebGConv × 2)

51.1

In the case of modified prior constraint information, we conducted further discussions
regarding the number of SemGconv (semantic graph convolution) and AcChebGconv
(Chebyshev graph convolution with fused adjacency matrix information) modules to
determine the optimal configuration for achieving the best results. We set up 12 groups of
modules with varying numbers but identical structures to perform ablation experiments.
As shown in Table 5, when the number of one type of graph convolution module is fixed
while the other is changed, it is evident that having two semantic graph convolution
modules and four new Chebyshev graph convolution modules produces the best results.
In comparison to the state-of-the-art method [28], our approach achieves a reduction in
error by one and a half points and outperforms the competition in multiple actions.

Table 5. The test results (in mm) of MPJPE on Human3.6M [30,31] for different structures in the
model. SemG represents SemGConv, A-C represents AcChebGConv.

MPJPE A-C × 2 A-C × 3 A-C × 4 A-C × 5

SemG × 2 51.2 51.1 50.4 51.1
SemG × 3 51.3 50.9 50.5 51.8
SemG × 4 51.4 50.7 51.0 -
SemG × 5 - 51.3 - -

For actions involving occlusion, leveraging the full utilization of 2D joint relations can
significantly enhance the accuracy of 3D joint predictions. In Figure 11, we selected actions
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like Phone, Photo, and WalkD for visualization. The human skeleton predicted by GraFomer,
particularly the arms, deviates significantly from the ground truth. In contrast, our results
are almost in perfect alignment with the ground truth. These visualizations provide a more
intuitive demonstration of how employing suitable constraints to extract useful 2D features
can accurately predict 3D information and mitigate issues caused by occlusion.

Figure 11. Visual comparison of some occluded frames between GraFormer [28] and our model in
the test set of Human3.6M [30,31].

4.4. Analysis of Computational Complexity

A comparison of the complexity between our model and GraFormer is shown in
Table 6. Compared to GraFormer, SCGraFormer exhibits an increase in both parameter
count and computational complexity. Specifically, SCGraFormer has a parameter count
of 1.24 million, which is 0.28 million more than GraFormer. In terms of computational
complexity, SCGraFormer achieves a floating-point operations per second (FLOPs) rate of
1.53 billion, surpassing GraFormer by 0.41 billion. Despite these heightened metrics, our
approach ultimately achieves an error value nearly 1.5 points lower than GraFormer.

Table 6. SGraFormer complexity comparison.

Methods MPJPE Params FLOPs

GraFormer 51.8 0.96 M 1.12 G
SCGraFormer 50.4 1.24 M 1.53 G

5. Discussion

Through experimental validation, SCGraFormer has demonstrated promising results.
In comparison to Graformer [28], we excluded LAM-GConv and employed SemGConv as
a subsequent network layer for Transformer. As indicated by the ablation experiments in
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Table 4, the use of a learnable adjacency matrix in LAM-GConv (as shown in Figure 10)
leads to larger errors compared to the fixed adjacency matrix used in SemGConv (as shown
on the left side of Figure 9). Subsequently, we refined the adjacency matrix of ChebGConv
and named this network layer AcChebGConv. The error was further reduced, with a
decrease of approximately one and a half points compared to GraFormer.

However, our work has limitations: the model’s performance suffers when capturing
rapid and significant movements, as illustrated in Figure 12. For instance, when a person
rapidly raises their arm from bottom to top (top side of the figure), our model’s prediction
places the arm too high compared to the ground truth. In another scenario, when a
person transitions from running to a sudden stop (bottom side of the figure), the model
exhibits errors at the ends of the arms compared to the ground truth. These actions involve
rapid and wide-ranging motions occurring in a short duration. The red circles highlight
these noticeable errors. In future research, exploring more refined human body structural
constraints to capture critical information about extremities (e.g., hand and foot joints)
could be a promising avenue for improvement.

Figure 12. Limitations of our work.

In terms of application, 3D human pose estimation has broad prospects in the field of
action recognition. It can provide detailed joint positions and motion information, provid-
ing a strong foundation for motion analysis and recognition. This is of great significance for
understanding human actions in different scenarios, such as sports competitions, medical
research, and interactive actions in virtual reality applications.

6. Conclusions

We propose a novel model architecture, SCGFormer, which significantly enhances
the local feature extraction capabilities of graph convolution. The improved Chebyshev
graph convolution enables the learning of connections between more distant joints, thereby
maximizing the utilization of 2D human body pose information and enhancing the accuracy
of 3D human pose estimation. Our results on widely used datasets outperform state-of-the-
art methods based on graph convolution.

Nevertheless, our work still has limitations. When there is a short period of large-
amplitude movement, leaf nodes such as hands will have significant differences from the
ground truth. In the future, exploring more reasonable human skeleton constraints or
obtaining more information from multiple perspectives will help to address the limitations
of our work.
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