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Abstract: Existing methods for restoring color-distorted images in specific environments typically
focus on a singular type of distortion, making it challenging to generalize their application across
various types of color-distorted images. If it were possible to leverage the intrinsic connections
between different types of color-distorted images and coordinate their interactions during model
training, it would simultaneously enhance generalization, address potential overfitting and underfit-
ting issues during data fitting, and consequently lead to a positive performance boost. In this paper,
our approach primarily addresses three distinct types of color-distorted images, namely dust-laden
images, hazy images, and underwater images. By thoroughly exploiting the unique characteristics
and interrelationships of these types, we achieve the objective of multitask processing. Within this
endeavor, identifying appropriate correlations is pivotal. To this end, we propose a knowledge
selection and allocation strategy that optimally distributes the features and correlations acquired by
the network from the images to different tasks, enabling a more refined task differentiation. More-
over, given the challenge of difficult dataset pairing, we employ unsupervised learning techniques
and introduce novel Transformer blocks, feedforward networks, and hybrid modules to enhance
context relevance. Through extensive experimentation, we demonstrate that our proposed method
significantly enhances the performance of color-distorted image restoration.

Keywords: image enhancement; multi-task knowledge allocation; transformer; unsupervised learn-
ing; image denoising; color correction

1. Introduction

The issue of image color distortion caused by varying capture environments has
been a pivotal research topic in the field of image enhancement. Prominent cases include
various similar environmental conditions such as haze, dust, underwater scenarios, rainy
weather, and snowfall. The color distortion stemming from environmental factors results
in an overall degradation of image quality, thereby adversely affecting computer vision
tasks reliant on image data, including applications like surveillance systems, autonomous
driving, underwater exploration, and more [1]. Existing methods for enhancing color-
distorted images often focus solely on addressing individual cases, such as haze removal,
dust reduction, and underwater image enhancement. However, introducing an algorithm
or allocation strategy that effectively harnesses the intrinsic relationships among different
types of color-distorted images for multi-task learning (MTL) has the potential to tap
into the untapped opportunities in this domain, leading to significant improvements in
processing outcomes.

In the current domain, the limitations of traditional algorithms mainly stem from
their reliance on prior knowledge and parameters, rendering them unable to meet the
demands of multi-task scenarios. The previously proposed RGB color balance algorithm [2]
demonstrated a degree of effectiveness in enhancing dust and underwater images, yielding
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favorable results. Nevertheless, due to the absence of non-uniform RGB channel adjust-
ments in haze images, its performance remains suboptimal for such cases. In recent years,
deep learning has exhibited substantial competitiveness in the field of computer vision.
Some algorithmic models address multi-task challenges by employing distinct pre-trained
weights, as exemplified by [3,4]. Other network models introduce gating mechanisms,
enabling differentiated task handling across diverse network branches, thereby achieving
improved results. However, the underlying principle of these approaches still hinges on
accentuating the disparities between tasks to realize multi-task processing. This methodol-
ogy fundamentally overlooks the inherent relationships among distinct types of images.
Effective information exchange is lacking between different tasks, resulting in each task
being influenced solely by other isolated tasks. This deficiency hampers the collabora-
tive advancement of each task, leading to models of this nature often underperforming
compared to models specifically tailored for individual tasks [3].

This study delves into a comprehensive exploration of haze, dust, and underwater
images, all of which suffer color distortion due to environmental factors. Through the
application of neural networks, we engage in feature exploration of these images with the
aim of unearthing their intrinsic connections. Our focus lies in the deep-level features,
where we design a strategy encompassing multi-task learning and knowledge allocation.

Our main contributions in this paper are as follows:

• In general, we have developed a multi-task learning and knowledge allocation strat-
egy tailored for enhancing three categories of images: haze, dust, and underwater
images. This strategy has been applied to our network model. By uncovering the
interconnections and unique characteristics of these three image categories, we aim
to mutually enhance the overall model performance and the enhancement effects for
individual tasks. This approach also mitigates the performance degradation caused by
the interplay between different tasks;

• We have introduced a novel approach called the Frequency Domain Similarity-Gated
Selection Vision Transformer (FSGS-ViT) and a Mixed-Scale Frequency Domain Feed-
forward Network (MDFN). In these methods, we have incorporated the Discrete
Cosine Transform (DCT) operator for self-attention value decomposition and similar-
ity calculation. This enables adaptive selection of relevant self-attention values during
training and incorporates gating operations to mitigate feature redundancy;

• We have devised a Hybrid-Scale Knowledge Selection Module (MKSM) to explore
the retention of low-frequency and high-frequency information within a multi-scale
representation. This module aims to enhance the accuracy of knowledge allocation
and the potential restoration of clear images by determining which information to
retain at various scales;

• We have introduced an Adaptive Gate Mixed Module (AGMM), which employs
gating to selectively retain appropriate shallow features and then adaptively integrates
information from both deep and shallow layers;

• Extensive experimental results on various tests demonstrate that our approach outper-
forms state-of-the-art (SOTA) methods, showcasing strong performance.

2. Related Works
2.1. Enhancement of Haze Images

In the early stages of research, Tan et al. [5] introduced the concept of Markov Random
Fields, aiming to enhance haze images by maximizing local contrast. Subsequently, He
et al. [6] proposed the widely acclaimed dark channel prior estimation method, which
gained significant popularity. Following this, dark channel-based dehazing techniques
underwent continuous improvements, such as the fast image dehazing method based on
the dark channel introduced by Wu et al. [7], the sky-constrained dark channel prior-based
dehazing method presented by Xiao et al. [8], and the remote sensing image cloud detection
algorithm based on dark channel by Yang et al. [9]. Fattal et al. [10] introduced the color-
line method based on the one-dimensional distribution of image blocks in the RGB color
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channels. Despite the notable achievements of traditional algorithms in dehazing, there
still exist several limitations, including issues related to poor robustness.

DehazeNet [11] was the pioneering model that utilized deep learning for dehazing,
employing Convolutional Neural Networks (CNNs) for feature extraction, followed by the
application of the Atmospheric Scattering Model (ASM) to obtain clear images through
transmission map estimation. On the other hand, AOD-Net [12] aimed to eliminate the
complex transmission map and atmospheric light estimation steps in previous models,
achieving simultaneous estimation of transmission map and atmospheric light through
a redesigned ASM. However, these ASM-based models tend to exhibit color distortion
issues when handling dust and underwater images, prompting a shift towards end-to-end
restoration approaches. Qin et al. [13] introduced the FFA-Net with attention modules,
achieving promising results. Singh et al. [14] employed multiple UNet networks to output
different scale features and then combined them for multi-scale learning. Das et al. [15]
proposed the Fast Deep Multi-Patch Hierarchical Network, aggregating multiple features
from various spatial regions with fewer parameters to restore non-uniform hazy images.
Yu et al. [16] used a dual-branch neural network to address different aspects of the dehaz-
ing process, enhancing different aspects of hazy image restoration with distinct network
branches. Additionally, several other models [17,18] have been dedicated to enhancing the
clarity of haze images, yielding commendable outcomes.

2.2. Enhancement of Sand Dust Images

The primary task of enhancing dust-laden images is to address issues such as severe
color shifts and decreased contrast. Some commonly used color correction algorithms like
the Retinex algorithm [19], Grey World algorithm [20], Histogram Equalization [21], and
Wavelet Transform [22] were found ineffective in directly enhancing dust-laden images
based on experimentation. Yan et al. [23] attempted a combination of global fuzzy en-
hancement and constrained histogram equalization, which improved the contrast after
enhancing dust-laden images, but the color correction effect was not ideal. Shi et al. [24]
proposed a method that employs constrained contrast adaptive histogram equalization to
enhance contrast in dust-laden images, followed by gamma correction for normalization,
and finally obtains the enhanced image based on the Grey World principle. While this
method exhibited good results, it struggled with color restoration in severely degraded
images. Another category of methods relies on image restoration and frequently depends
on the Atmospheric Scattering Model (ASM). In the domain of image dehazing, the ASM
model has been widely employed. In the context of enhancing dust-laden images, many
methods still rely on ASM. Gao et al. [25] proposed a dust-laden image enhancement
algorithm based on ASM that reverses the blue channel. This method performed well in re-
moving dust, but its effectiveness diminished when handling images heavily contaminated
with dust.

Currently, dust-laden image enhancement algorithms based on deep learning have
garnered significant attention in the academic community. However, the development of
deep learning in the field of dust-laden image enhancement has not reached an ideal state
due to the lack of large-scale publicly available standard datasets for dust-laden images.
Currently, the primary approach involves training networks using synthesized dust-laden
images and then testing them using real captured dust-laden images. Nonetheless, this
method has evident drawbacks as synthetic images cannot fully capture the distinctive
features of real dust-laden images. Some researchers have attempted to address the data
scarcity issue through methods such as transfer learning [26] and unsupervised training [27],
achieving some degree of success.

2.3. Enhancement of Under Water Images

In the realm of traditional methods, Li et al. [28] devised a piecewise linear function
for histogram equalization, resulting in images with more details in the RGB channels.
The CLAHE color model [29] employed a mixed contrast adaptive histogram equalization
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approach in both RGB and HSV color spaces, effectively enhancing underwater image
quality. However, this method sometimes led to over-enhancement or under-enhancement
issues. Tang et al. [30] introduced a novel underwater image enhancement algorithm based
on adaptive feedback and the Retinex algorithm, enhancing color saturation, richness,
local contrast, and clarity. Nevertheless, it suffered from the problem of post-enhancement
blurring. Nicholas et al. [31] proposed using the attenuation differences between three
color channels underwater to estimate scene depth and subsequently perform image
enhancement. Drews et al. [32] introduced an approach based on observing the absorption
rates of the R channel in a significant number of underwater images to restore a high-quality
image using the underwater dark channel prior (UDCP). However, this method often
requires a substantial number of physical parameters and underwater optical characteristics,
making its generalizability limited.

Anwar et al. [33] introduced an end-to-end underwater image enhancement strategy,
achieving favorable results by optimizing a combination of MSE and SSIM loss functions. Li
et al. [34] devised a multi-term loss function and proposed a weakly supervised color trans-
fer method to rectify color, attaining state-of-the-art (SOTA) performance. Their approach
successfully addressed the weakening of model generalization caused by the disregard
of wavelength-dependent attenuation or assumptions about specific spectral profiles by
most algorithms and models. UGAN [35] employed Cycle-GAN as an image degradation
process to train a paired dataset and utilized the Pix2Pix model to enhance underwater
image quality. Liu et al.’s MLFcGAN [36] utilized global features to enhance local features
at each scale for color correction and image detail preservation. While MLFcGAN exhib-
ited some enhancement in synthesized underwater images, its effectiveness was limited
when dealing with severely degraded images. Naik et al. [37] proposed a light model
named Shallow-UWNet for underwater image enhancement, which achieved enhancement
performance comparable to the then SOTA model while employing fewer parameters.

2.4. Multi-Task Learning Strategy

Multi-task learning methods are generally classified into two categories based on
parameter sharing strategies. The first category is hard parameter sharing, where all tasks
share the same backbone encoder, and different tasks obtain their respective target results
through branch decoders. This type of method is widely used in current multi-task learning,
including [38,39]. The second category is soft parameter sharing, where each task has an
independent network branch. Different branches obtain different parameter assignments
through a designer-defined parameter sharing mechanism, such as [40,41]. Parameter
sharing methods employ a single network for multi-task training, where different tasks
can selectively choose different neural network functional layers to compose their own
execution network paths.

3. Proposed Method

This paper primarily focuses on the multi-task enhancement of degraded images
captured in hazy, dusty, and underwater environments. The aforementioned three im-
age categories share several common characteristics: (1) all three categories belong to
environmentally induced color-shifted images due to light refraction; (2) they all suffer
from reduced clarity caused by environmental medium occlusion; (3) they exhibit similar
distribution characteristics in their environmental backgrounds; (4) all three fall within
the research domain of image color restoration. Despite these shared traits, there are
also distinct differences: (1) the influencing environmental mediums for these categories
significantly differ, with dust and haze involving particle refraction, where dust particles
are larger than haze particles, while underwater images are color-shifted due to water
molecule absorption; (2) variations in medium lead to different image clarity; (3) in the
RGB color space, the attenuation patterns of the R, G, and B channels differ, as shown in
the figure. Beyond these general distinctions and commonalities, this paper predominantly
exploits neural networks to investigate both the differences and commonalities in deep



Appl. Sci. 2024, 14, 1836 5 of 20

feature domains among the three categories, with the aim of enhancing the enhancement
performance within this domain.

In this section, the overall network architecture employs Cycle-GAN for unsupervised
learning, a structure previously applied in various unsupervised contexts [27], which we
will not elaborate on extensively. The focus is on introducing the design of our generator
model, as shown in Figure 1. Firstly, we provide a description and introduction to the
details of FSGS-ViT and MDFN. These two modules serve as the backbone feature extrac-
tion and learning units within the network’s main structure. Secondly, the Mixed-Scale
Knowledge Selection Module (MKSM) is introduced, which serves as a pivotal design
element within the multi-task neural network model. Lastly, we present the Adaptive Gate
Mixed Module (AGMM).
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Figure 1. The overall architecture of the network generator proposed for image enhancement in this
paper is depicted. It mainly comprises MDFN, FSGS-ViT, and EB, along with MKSM and AGMM.
The detailed structures of MDFN, EB, and AGMM are presented beside the overall architecture.

3.1. Frequency Domain Similarity Gated Selection Vision Transformer

In the field of image restoration, noise interactions among unrelated features can have
a negative impact on image restoration. The conventional Transformer employs global
computation of self-attention to handle all token features, which is not an ideal operation for
image restoration. The emergence of the sparse Transformer [42] effectively addresses this
issue. It selects the top-k contributing scores with the aim of retaining the most significant
elements and removing unnecessary parts. This is achieved by computing the similarity
between all queries and keys in terms of pixel-wise similarity and masking out irrelevant
elements with lower attention weights in the transposed attention matrix. This dynamic
selection transforms the attention in the Transformer from dense to sparse, effectively
mitigating the impact of unrelated features. The outputs of the standard Transformer and
sparse Transformer are generally represented as follows:

SelfAtt(Q, K, V) = softmax(
QKT
√

dk
)V (1)

SpaAtt(Q, K, V) = softmax(TopK(
QKT
√

dk
))V (2)

where SelfAtt(Q, K, V) represents the output representation of the standard Transformer,
Q is a matrix composed of a set of query sequences, K is a matrix composed of a set of key
sequences, V is a matrix composed of a set of value sequences, and dk is the dimension of
the Query and Key vectors. SpaAtt(Q, K, V) represents the output representation of the
sparse Transformer. TopK denotes the learnable top-k selection operator.

The sparse Transformer provides a valuable insight by discarding irrelevant features
during the similarity calculation, thereby reducing computational complexity while increas-
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ing the utilization of useful features. Inspired by this idea, we have designed a novel block
specifically for multi-task learning called the Frequency Domain Similarity-Gated Selection
Vision Transformer block (FSGS-ViT). In our FSGS-ViT, we incorporate two branches, an
upper branch containing the Frequency Domain Adaptive Attention Block (FAB), and a
lower branch consisting of a Gate Selection Block (GSB). This design is guided by the notion
of enhancing the utilization of essential features while efficiently managing computational
resources, and the specific structures of both components are illustrated in Figure 2.
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Figure 2. The overall architecture of the proposed FSGS-ViT in this paper is depicted. It primarily
comprises the FAB and the GSB. The detailed structure of the ConV Block within GSB is illustrated
adjacent to the overall architecture.

3.1.1. FAB

We start with an input feature X, which undergoes a three-branch process involving
1 × 1 convolutions and 3 × 3 Depthwise Separable (DW) convolutions to obtain Q, K, and
V. Within the self-attention mechanism, our initial step involves applying Discrete Cosine
Transform (DCT) to Q and K, thereby transforming them into the frequency domain. This
transformation results in frequency representations, namely Qdct and Kdct.

Kdct/Qdct = D{ConV3×3[ConV1×1(X)]} (3)

where D represents Discrete Cosine Transform (DCT) in the frequency domain conversion.
Next, we compute the correlation scores between Qdct and Kdct. Let us assume we use

a matrix M to represent the correlation matrix, where M(i, j) indicates the correlation score
between query position i and key position j. We achieve this by element-wise multiplication
of these correlation scores.

M = Kdct ⊗ Qdct (4)

Next, we utilize the Gather function to collect or extract the relevant correlation
scores from the frequency-domain representation M obtained after the DCT transformation.
Firstly, we need to set a threshold value T for filtering attention weights. The threshold value
T can be a fixed number or a parameter dynamically adjusted based on the characteristics
of tasks and data. With the threshold value T, we compute an index array ijdx, which
contains the indices of all positions exceeding the threshold T. The specific calculation is
as follows:

ijdx = [i, j for i, j in range(N) if M[i, j] > T] (5)

For each index ijdx, the Gather function selects the element at position [i, j] from the
input tensor M and keeps it unchanged. For the elements that were not selected, a Gather
function is used to replace their probabilities with 0 at the given indices. Additionally, a
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learnable parameter matrix is introduced to appropriately process or adjust the collected
correlation scores Mgather.

Mgather[i, j] =
{

M[i, j] M[i, j] > T
0 otherwise

(6)

Madjusted = Mgather ⊗ Wrandn (7)

where W represents the learnable parameter matrix.
Utilizing the adjusted correlation scores, Mgather, the final attention weights A are

computed by applying the inverse DCT and the softmax function.

A = σ
[

D−1
(

Madjusted

)]
(8)

where σ represents the softmax function, and D−1 represents the inverse DCT frequency
domain transformation. Normalizing the correlation scores into attention weights ensures
they lie within the range of (0, 1) and sum up to 1. Finally, applying the attention weights
A to V yields the ultimate self-attention output. By implementing correlation computation
and adaptive adjustment of attention weights, the model’s perception of crucial features and
details within the image is enhanced, thereby boosting the performance and effectiveness
of image processing tasks. The overall output expression of FAB can be represented as:

FAB_OUT = MLP(LN(X + (ConV1×1(V⊗
σ(D−1(Wrandn(Gather(D(Q)⊗
D(K)))))))))

(9)

where LN represents Layer Normalization.

3.1.2. GSB

In the lower branch, we introduce the SiLU activation function as a gate for each feature
channel. The inclusion of ConV blocks enables adaptive feature selection, better capturing
detailed information within images, and avoiding feature redundancy in tasks. Inside the
ConV block, we adopt two kernel sizes, 3 × 3 and 5 × 5, for mixed-scale processing, and
the specific structures are presented in Figure 2 as shown. After concatenation, we apply
Channel Shuffle for mixed feature handling, addressing inter-group feature communication.

SiLU, functioning as a gate for each feature channel, is applied to the feature vectors
of each channel. It acts as a gating mechanism, activating elements within the feature
vector to adjust the importance of each channel. This leads to saturation of feature vectors
for each channel as they approach 0, enhancing non-linearity and adaptively adjusting
the significance of feature channels based on their element values. Larger element values
amplify the importance of the corresponding channel, focusing more on useful feature
mappings, while smaller element values reduce the weight of the corresponding channel,
minimizing the impact of irrelevant feature mappings on the model. Rejecting irrelevant
features prevents feature redundancy. Elements with values below 0, after passing through
the SILU function, are mapped to values close to 0. This implies rejection of feature
mappings for that channel. For input feature X, the branch is represented as:

F3×3/5×5 = ReLU(ConV3×3/5×5(LN(X))) (10)

FConc = CS(Concat(F3×3, F5×5)) (11)

GSB_OUT = FConc ⊗ SiLU(FC(
ReLU(FC(Pool(FConc)))))

(12)

where F3×3/5×5 represents the feature vector obtained through mixed-scale processing, CS
stands for Channel Shuffle operation, and FC represents the fully connected layer.
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Taking into consideration the introduction of both the FAB and the GSB, the output of
our FSGS-ViT can be represented as follows:

FSGS_OUT = FAB_OUT + GSB_OUT (13)

3.2. Mixed-Scale Frequency Domain Feedforward Network

Historically, the research and design of Feedforward Neural Networks (FNNs) often
focused on enhancing performance by introducing intricate convolutional structures. How-
ever, this approach overlooked the significance of correlations between multiscale image
features and their advantageous impact on image restoration. Contemporary studies have
substantiated the effectiveness of multiscale approaches in image processing tasks. Beyond
multiscale features, correlations between frequency domains also exert a noticeable influ-
ence on the image restoration process. Analogous to the principles of attention mechanisms,
not all high-frequency and low-frequency information in the frequency domain proves
beneficial for image restoration. Therefore, considering the amalgamation of these concerns,
we introduce the Mixed-Scale Frequency Domain Feedforward Network (MDFN), and the
specific structures are presented in Figure 1 as shown.

According to the depiction of MDFN in Figure 1, given an input tensor X, subsequent
to being processed through parallel branches of 3 × 3 and 5 × 5 convolutions, the im-
age is transformed into the frequency domain. Then, an adaptable parameter matrix is
incorporated to dynamically retain useful frequency domain information while discarding
irrelevant frequency domain information. This process achieves efficient information fil-
tering and retention. Taking the 3 × 3 branch as an example, the operational principle of
MDFN is defined as follows:

F3×3 = ConV3×3(ConV1×1(LN(X))) (14)

where F3×3 represents the feature tensor after undergoing 1 × 1 and 3 × 3 convolutions.
Subsequently, the DCT is applied to transform it into the frequency domain, utilizing a
learnable parameter matrix to control the retention of information:

Fdct
3×3 = ReLU(D−1(W ⊗ D(F3×3))) (15)

The 5 × 5 branch in the parallel processing follows a similar process to the previously
mentioned 3 × 3 branch. After obtaining the results from these two parallel branches, we
proceed to obtain the final output of the network module through the following steps:

MDFN_OUT = ConV1×1(Concat(Fdct
3×3, Fdct

5×5)) + X (16)

3.3. Knowledge Allocation Strategy

As a multi-task and knowledge allocation system, a well-designed knowledge allo-
cation strategy is crucial for achieving effective multi-task learning after the completion
of the backbone feature extraction phase. In our study, we employed a mixed dataset
training approach, combining dust images, haze images, and underwater images into a
comprehensive dataset. The purpose of this approach is to solely rely on the network itself
to differentiate between the features of the three categories and shared features. Through
this strategy, we aim to perform multi-task learning within a unified framework, allowing
the network to fully leverage the acquired knowledge and better address the challenges of
multiple tasks. Such a knowledge allocation strategy enhances the model’s generalization
capabilities and enables more efficient utilization of existing data resources.

To effectively distinguish between the features extracted by the backbone feature
extraction and classify them into the three distinct categories and shared features, we
employed four independent parallel Mixed-Scale Knowledge Selection Modules (MKSM)
for knowledge selection. Subsequently, knowledge allocation was performed using the
approach provided by [43], where the features belonging to each of the three categories
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were allocated to their respective Enhancement Modules (EB), while the shared features
were allocated to each Enhancement Module. Through this approach, we were able to
enhance the enhancement effects for the three categories of images.

Firstly, the backbone features were individually fed into the MKSM for the following
knowledge selection process:

XS = MKSMS(XB) (17)

XH = MKSMH(XB) (18)

XW = MKSMW(XB) (19)

XF = MKSMF(XB) (20)

where XB represents the backbone features, XS represents the independent features required
for dust image enhancement, XH represents the independent features required for haze
image enhancement, XW represents the independent features required for underwater
image enhancement, and XF represents the shared features. The knowledge allocation
strategy is carried out as follows:

RS = EBS(XS, XF) (21)

RH = EBH(XH , XF) (22)

RW = EBW(XW , XF) (23)

RF = EBF(XS, XH,XW) (24)

where EB represents the respective enhancement modules, R represents the results after
enhancing the three types of images, and RF represents the recognition results of the three
types of images. The structure of EB is illustrated in Figure 1 as shown.

The above constitutes the fundamental principle of the entire multi-task knowledge
allocation. By utilizing the knowledge selection capability of MKSM, an adaptive multi-
task processing is achieved, effectively leveraging the variations and connections among
different tasks. This approach facilitates the collaborative enhancement of task performance
through the interplay of relationships between different tasks, ultimately leading to a
balanced performance across tasks.

3.3.1. Mixed-Scale Knowledge Selection Modules

We employed four independent parallel MKSM modules for knowledge selection,
with all four modules sharing the same structure, as shown in Figure 3. The principle
behind knowledge selection is achieved through the gating property of the SiLU activation
function. During the feature transformation process, we utilized 3 × 3 and 5 × 5 depthwise
convolutions to enhance the extraction of multi-scale local information, thus improving the
effectiveness of knowledge selection. The specific procedure is illustrated as follows:

X3×3 = ReLU(ConV3×3(ConV1×1(XB))) (25)

X5×5 = ReLU(ConV5×5(ConV1×1(XB))) (26)

X3C5 = Concat(X3×3, X5×5) (27)

where XB represents the backbone features. The subsequent operations are identical. Taking
the 3 × 3 branch as an example:

X2
3×3 = XB+ConV1×1(ReLU(ConV3×3(X3C5))) (28)

X3
3×3 = ReLU(FC(Pool(X2

3×3) (29)
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Obtain X3
5×5 using the same method, resulting in the final output of MKSM.

X2
3C5 = Concat(X3

3×3, X3
5×5) (30)

MKSM_OUT= ConV(SiLU (FC(X2
3C5) (31)
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3.3.2. Enhancement Modules

We employed four EB structures to achieve the final decoding function, with each
EB module dedicated to the recovery of one of the three image categories. The EBS/H/W
modules corresponding to the three image categories are implemented with a three-layer
stacked convolutional structure.

EBS/H/W = ConV3(XS/H/W , XF) (32)

where ConV3 represents a three-layer convolutional structure.
The corresponding EBF module, which shares features, also employs a three-layer

stacked convolutional structure. However, what distinguishes it is the utilization of the
GEGLU (Gated Exponential Linear Units) activation function. The GEGLU function com-
bines the ELU function with the Sigmoid function, employing a gating mechanism to
modulate activation values, aiming to enhance the neural network’s modeling capability
for different features. The gating mechanism allows the network to dynamically adjust
activation values, adapting to various features in the input data. This combined design
contributes to the improvement of the neural network’s expressive capacity, making it more
suitable for a variety of complex tasks.

EBF = FC(Pool(ConV(GEGLU (ConV3(X)))) (33)

3.4. Adaptive Gate Mixed Module

To address the issue of shallow information loss in neural networks, conventional
residual connections lack the ability to selectively retain useful information adaptively. To
tackle this problem, we propose an Adaptive Gate-Mixing Module (AGMM), as shown in
Figure 1. This module achieves adaptive preservation of shallow-level information through
gate-based selection and a unique fusion strategy, enabling it to better aid the deep-level
features in fitting target objects.

Firstly, through network processing, we achieve gate-based selection of shallow-level
features using the SiLU activation function:

XG = SiLU(FC(ReLU(FC
(Pool(ConV1×1(XSI))))))

(34)

where XSI represents shallow-level features, and XG represents the features after gate
selection. Subsequently, the processed shallow-level features are adaptively fused with
deep-level features through a fusion process, which can be represented as:

AGMM_OUT = XG ⊗ exp end_as(ρ, XG)+
XDI ⊗ (1 − exp end_as(ρ, XDI))

(35)
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where XDI represents deep features, ρ is a learnable scaling factor that can be obtained
through training, and exp end_as is the expend_as() function used to match the tensor size.

3.5. Backbone Feature Extraction

In the context of image restoration tasks, the goal of designing the backbone feature
extraction network is to ensure that the model can effectively capture and represent the
crucial information in the images, enabling high-quality restoration in subsequent tasks. In
this regard, we meticulously crafted the arrangement sequence of various modules.

It is noteworthy that in the encoder part, a deliberate decision was made to abstain
from adopting the FSGS-ViT module. This decision was influenced by the perspective
presented in [44], which posits that shallow-level features extracted by the encoder tend
to be relatively ambiguous compared to the deep-level features extracted by the decoder.
Given the critical importance of accurate similarity estimation in image restoration tasks,
the inclusion of ambiguous features in the encoder could potentially lead to inaccurate
restoration results. Hence, we chose to avoid integrating the FSGS-ViT module in the
encoder, ensuring that the features we extract possess clarity and precision.

Contrarily, the FSGS-ViT module was exclusively employed in the decoder part. By
introducing this module in the decoder, we could leverage deep-level clear features for more
precise similarity estimation. This asymmetric encoder–decoder structure was intentionally
designed to meet the specific requirements of image restoration tasks.

The objective of this design decision is to optimize the network architecture to better
suit the demands of image restoration tasks. By emphasizing the critical role of deep-level
features in similarity computation, we aim to enhance the model’s understanding of the
internal structure and context of images, thereby achieving superior performance in image
restoration tasks. This clever structural arrangement contributes to achieving more accurate
and reliable image restoration outcomes.

4. Experiments

In this section, we evaluate our method through experiments and compare it with
state-of-the-art approaches using publicly available benchmark datasets.

4.1. Datasets and Experimental Settings

Datasets. For dust images, due to the lack of publicly available standard datasets in
the academic community, other related studies often rely on synthetic datasets. To address
this issue, we collected and curated a real dust image dataset named “D-Sand.” This
dataset consists of high-quality dust images that exhibit strong dust effects. The “D-Sand”
dataset consists of a total of 900 high-quality dust images, primarily collected through a
combination of web scraping and manual photography. The manually captured images
were taken in the northwestern regions of China, including locations such as Dunhuang
and Lanzhou. The dataset encompasses diverse content, featuring natural landscapes
(mountains, sand dunes), urban scenes (buildings, roads, vehicles), and human subjects.

For haze images, we utilized multiple datasets, including “RESIDE” [45], “O-Haze” [46],
“Dense-Haze” [47], and “NTIRE 2020” [48] datasets. In the underwater image domain, we
selected the “SUIM” [49], “UIEB” [50], and “RUIE” [51] datasets. To ensure a sufficient and
balanced number of samples for different categories in the mixed dataset, we ensured that
each class of images contained 10,000 images in the training set. To address the scarcity
of data, we excluded test images, split the remaining images into non-overlapping image
blocks, and applied appropriate image augmentation techniques to generate 10,000 training
images. Therefore, the mixed dataset contains a total of 30,000 pairs of training images.
Additionally, we employed collected paired datasets for network pretraining to enhance the
effectiveness of subsequent unsupervised training.

Training details. We employed the same loss function as in [52] to constrain the
network. The image size was fixed at 256 × 256. During the training process, we utilized
3 NVIDIA A100 GPUs in conjunction with the FSDP training mode proposed by Facebook.
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We employed the Adam optimizer for local parameter updates [10] and used default
parameters to accelerate training efficiency. The initial learning rate was set to 1 × 10−4,
and after 100 K iterations, we employed a cosine annealing strategy to gradually reduce
the learning rate. The minimum value of the learning rate was set to 1 × 10−6.

Comparison methods. To validate the effectiveness of our method, we conducted com-
prehensive comparisons with both traditional and learning-based approaches. In the realm
of traditional methods, techniques like DCP [6], RCP, MSRCR, RGHS, ACE, and Park [53]
have maintained a certain status in the field of image enhancement due to their good
results and simple processing pipelines. In our experiments, we evaluated these traditional
methods on the three types of images based on their respective application domains.

For learning-based methods, we selected TBNN [16], USDR-Net [54] for sandstorm
image enhancement comparison, TBNN [16], DehazeC [55], FSAD [15] for haze image
enhancement comparison, and FUnIEGAN [56], UWNet [37], NUˆ2NET [57], and PUIE-
NET [58] for underwater image enhancement comparison. For models that did not provide
pre-trained parameters, we retrained the models with the provided code. For models with
existing pre-trained parameters, we performed fair comparisons using their online code
and parameters.

Evaluation metrics. We employed PSNR and SSIM as the evaluation metrics for the
aforementioned benchmarks. Following prior research practices, we computed the PSNR
and SSIM metrics for the Y channel of the YCbCr color space. For images without paired
ground truth values, we utilized non-reference metrics such as e-score, r-score, UIQM, and
UCIQE algorithms.

4.2. Comparison with the State-of-the-Art

Quantitative evaluation. For dust-laden images, Table 1 displays the e-score and
r-score values of various enhancement methods. It can be observed that both the traditional
methods, MSRCR and Park, as well as the learning-based methods TBNN and USDR-Net,
exhibit remarkable performance in terms of evaluation metrics. Park, as a traditional
method, not only boasts a notable advantage in runtime but also secures top-three rankings
in the evaluation scores. USDR-Net achieves second-best results through unsupervised
adversarial learning, showcasing impressive generalization capability. However, in com-
parison, our method attains the best performance with significant improvements. This
underscores the relatively gradual progress in the field of dust-laden image enhancement
and demonstrates the accomplishments stemming from our exploration of correlations and
uniqueness among similar images.

Table 1. Quantitative comparison of real-word sand dust images.

Datasets
DCP

e-Score/
r-Score

MSRCR
e-Score/
r-Score

RGHS
e-Score/
r-Score

Park
e-Score/
r-Score

TBNN
e-Score/
r-Score

USDR-Net
e-Score/
r-Score

Our
e-Score/
r-Score

D-Sand 0.1214/1.2073 0.7192/1.8406 0.4307/1.3385 0.6832/1.5354 0.5204/1.6448 0.8643/1.8511 1.2308/2.2216

Moving to the haze dataset as seen in Table 2, our approach showcases outstanding
performance across various haze image datasets. It achieves the highest PSNR and SSIM
indices in the challenging Dense-Haze dataset. TBNN not only demonstrates superior per-
formance compared to other contrast methods but also maintains consistent performance
across datasets.
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Table 2. Quantitative comparison of haze images.

Datasets DCP
PSNR/SSIM

MSRCR
PSNR/SSIM

ACE
PSNR/SSIM

TBNN
PSNR/SSIM

DehazeC
PSNR/SSIM

FSAD
PSNR/SSIM

Our
PSNR/SSIM

RESIDE 17.6384/0.8544 16.3526/0.8096 16.9427/0.7925 36.6923/0.9819 30.5733/0.9736 27.3653/0.9573 37.3959/0.9912
O-Haze 13.1259/0.4843 12.9329/0.4893 13.2128/0.5102 25.3586/0.7883 19.5411/0.6823 18.3945/0.5730 27.8472/0.8265

Dense-Haze 11.3957/0.4691 10.7468/0.4135 9.6284/0.4409 16.2190/0.5722 12.5832/0.4782 12.2284/0.4937 17.2514/0.6342
NTIRE 2020 12.4926/0.4463 12.1688/0.4274 12.1039/0.4392 20.9754/0.7164 17.4927/0.6055 16.4856/0.5853 21.2485/0.7182

Table 3 presents the performance of different methods on underwater image datasets.
Our method outperforms the comparative algorithms on all three underwater image
datasets. Compared to the second-best overall performer, FUnIEGAN, significant enhance-
ments are achieved in UIQM and UCIQE metrics.

Table 3. Quantitative comparison of underwater images.

Datasets RCP
UIQM/UCIQE

Park
UIQM/UCIQE

FUnIEGAN
UIQM/UCIQE

UWnet
UIQM/UCIQE

NUˆ2NET
UIQM/UCIQE

PUIE-NET
UIQM/UCIQE

Our
UIQM/UCIQE

SUIM 4.1746/0.3526 4.4736/0.3380 4.9362/0.3865 4.5729/0.3702 4.8352/0.4117 4.8794/0.4125 4.9746/0.4115
UIEB 4.1182/0.3163 4.3283/0.3374 4.7045/0.3610 4.4973/0.3479 4.6281/0.4013 4.5310/0.3825 4.7493/0.4037
RUIE 4.4931/0.3237 4.7209/0.3645 5.5312/0.4183 5.4581/0.4105 5.2938/0.4166 5.3832/0.3941 5.6841/0.4130

Qualitative evaluation. Figure 4 showcases the training results for real dust-laden
images. Among traditional methods, only the MSRCR and Park algorithms exhibit effective
dust removal, while other traditional methods fail to eliminate dust and introduce color
distortions. Learning-based methods show varying degrees of enhancement, with our
method demonstrating the best visual effect by achieving comprehensive dust removal and
color restoration.
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Figure 4. Qualitative comparisons with SOTA methods on two real sand dust images. (a) Input;
(b) DCP; (c) MSRCR; (d) RGHS; (e) Park; (f) TBNN; (g) USDR-Net; (h) Ours.

Moving to Figure 5, we present enhancement results for synthetic and real haze images.
Most methods display good defogging effects on synthetic haze images, but residual haze
remains evident in enhancing real haze images. TBNN attains remarkable visual quality. In
comparison, our method removes more haze and restores clearer image details.

Figure 6 vividly displays the enhancement outcomes for underwater images. In
contrast to other methods, our approach successfully mitigates underwater light refraction-
induced occlusion and color bias issues, effectively restoring image details. By delving
into the connections and characteristics among the three image categories, we employ a
multi-task knowledge processing mechanism to avoid interference between different tasks.
This allows us to fully exploit these connections, enhancing the performance of individual
tasks and ultimately achieving outstanding results.



Appl. Sci. 2024, 14, 1836 14 of 20

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 20 
 

Table 3. Quantitative comparison of underwater images. 

Da-
tasets 

RCP 
UIQM/UCIQE 

Park 
UIQM/UCIQE 

FUnIEGAN 
UIQM/UCIQE 

UWnet 
UIQM/UCIQE 

NU^2NET 
UIQM/UCIQE 

PUIE-NET 
UIQM/UCIQE 

Our 
UIQM/UCIQE 

SUIM 4.1746/0.3526 4.4736/0.3380 4.9362/0.3865 4.5729/0.3702 4.8352/0.4117 4.8794/0.4125 4.9746/0.4115 
UIEB 4.1182/0.3163 4.3283/0.3374 4.7045/0.3610 4.4973/0.3479 4.6281/0.4013 4.5310/0.3825 4.7493/0.4037 
RUIE 4.4931/0.3237 4.7209/0.3645 5.5312/0.4183 5.4581/0.4105 5.2938/0.4166 5.3832/0.3941 5.6841/0.4130 

Qualitative evaluation. Figure 4 showcases the training results for real dust-laden 
images. Among traditional methods, only the MSRCR and Park algorithms exhibit effec-
tive dust removal, while other traditional methods fail to eliminate dust and introduce 
color distortions. Learning-based methods show varying degrees of enhancement, with 
our method demonstrating the best visual effect by achieving comprehensive dust re-
moval and color restoration. 

Moving to Figure 5, we present enhancement results for synthetic and real haze im-
ages. Most methods display good defogging effects on synthetic haze images, but residual 
haze remains evident in enhancing real haze images. TBNN attains remarkable visual 
quality. In comparison, our method removes more haze and restores clearer image details. 

Figure 6 vividly displays the enhancement outcomes for underwater images. In con-
trast to other methods, our approach successfully mitigates underwater light refraction-
induced occlusion and color bias issues, effectively restoring image details. By delving 
into the connections and characteristics among the three image categories, we employ a 
multi-task knowledge processing mechanism to avoid interference between different 
tasks. This allows us to fully exploit these connections, enhancing the performance of in-
dividual tasks and ultimately achieving outstanding results. 

        

        
(a) (b) (c) (d) (e) (f) (g) (h) 

Figure 4. Qualitative comparisons with SOTA methods on two real sand dust images. (a) Input; (b) 
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Figure 5. Qualitative comparisons with SOTA methods on three hazy images. (The upper image is a
synthesized hazy image, and the two lower images are authentic simulated hazy images.) (a) Input;
(b) DCP; (c) MSRCR; (d) ACE; (e) TBNN; (f) DehazeC; (g) FSAD; (h) Ours.
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5. Analysis and Discussion

In the previous section, we demonstrated that the proposed model’s characteristics
can yield results comparable to advanced methods. In this section, we will delve into the
analysis of the proposed approach through ablation experiments and showcase the effects
of key modules and designs. The data presented in the table are based on dust-laden image
data, serving as a representative example to illustrate the changes in evaluation metrics.

5.1. Effectiveness of FSGS-ViT

To validate the effectiveness of several key designs in FSGS-ViT, we conducted a
series of ablation experiments to explore the impact of different designs on performance.
Specifically, we performed the following ablation experiments: (1) ablating the entire FSGS-
ViT and using the traditional ViT structure as a replacement; (2) ablating the lower branch
GSB in the FSGS-ViT structure; (3) removing the Conv block design within GSB.

In Figure 7, we present the results without using FSGS-ViT. It is evident that the image
evaluation metrics are lower without the use of FSGS-ViT. Additionally, the results of the
ablation experiments for GSB and its Conv block are shown in Table 4, illustrating varying
degrees of degradation in evaluation metrics. This robustly demonstrates the effectiveness
of these key designs.
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Table 4. In regard to the ablation experiments for the FSGS-ViT.

Datasets (2)
e-Score/r-Score

(3)
e-Score/r-Score

FSGS-ViT
e-Score/r-Score

D-Sand 1.1329/2.0283 1.1938/2.2039 1.2308/2.2216

5.2. Effectiveness of MDFN

To validate the effectiveness of the proposed MDFN method, we compared it with
three other feedforward neural networks: (1) Traditional Feedforward Network (FN) [59],
(2) Gated Deep Feedforward Network (GDFN) [60], and (3) Multi-Scale Feedforward
Network (MSFN) [42]. We conducted quantitative analysis on the dataset, and the results
are presented in Table 5. GDFN introduces a gating mechanism to achieve performance
advantages, but it still does not fully consider the learning of multi-scale knowledge. MSFN
improves image restoration performance by integrating and fusing local features from
different scales, but the impact of irrelevant information is not fully addressed.

Table 5. In regard to the ablation experiments for the MDFN.

Datasets (FN 1)
e-Score/r-Score

(GDFN 2)
e-Score/r-Score

(MSFN 3)
e-Score/r-Score

Mdfn Our
e-Score/r-Score

D-Sand 1.1993/2.2029 1.2241/2.2173 1.2284/2.2203 1.2308/2.2216

Our proposed MDFN, by incorporating parameter matrices and a frequency–domain
combination on top of multi-scale features, achieves a superior gating-like information
selection mechanism. As seen in Table 5, MDFN achieves the best performance in evaluation
metrics, achieving significant numerical gains compared to MSFN.

5.3. Effectiveness of MKSM

In the design process of MKSM, we made several critical design decisions. We con-
ducted crucial investigations through ablation experiments on the following two aspects:
(1) Ablating MKSM and the knowledge allocation method, using the traditional Multi-Task
Learning (MTL) mechanism, and (2) removing the multi-scale structure design from MKSM.
The results of these ablation experiments are presented in Table 6 on the dataset.

We observed that the network’s performance declined to varying degrees after ab-
lating the mentioned structures individually. Particularly, after ablating MKSM and the
knowledge allocation method, the network’s performance notably decreased, underscoring
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the efficacy of our analysis of inter-class relationships and uniqueness. Our design yields
the current optimal enhancement results.

Table 6. In regard to the ablation experiments for the MKSM.

Datasets (MTL 1)
e-Score/r-Score

(2)
e-Score/r-Score

MKSM Our
e-Score/r-Score

D-Sand 1.1204/2.0741 1.2205/2.1843 1.2308/2.2216

5.4. Effectiveness of AGMM

To validate the effectiveness of the proposed AGMM method, we conducted further
ablation experiments comparing the AGMM module with other methods, including: (1) Tra-
ditional Hybrid Residual Connection (HRC), and (2) Adaptive Mixing Module (AMM) [51].
The experimental results are presented in Table 7.

Table 7. In regard to the ablation experiments for the AGMM.

Datasets (HRC 1)
e-Score/r-Score

(AMM 2)
e-Score/r-Score

AGMM Our
e-Score/r-Score

D-Sand 1.1946/2.1388 1.2241/2.1774 1.2308/2.2216

HRC achieved certain results by enhancing the neural network’s utilization of shallow
and deep information, but it did not consider the exclusion of redundant information. AMM
better utilized shallow information by adaptively fusing information from downsampling
and upsampling layers, but it uniformly adapted the fusion of all information without
prior information selection.

In contrast, our AGMM method efficiently uses shallow information through two
steps: information selection and adaptive fusion. In the experiments, compared to AMM,
our method achieved a performance gain.

6. Conclusions

In this paper, we propose a multi-task learning strategy for three types of environ-
mentally biased color images. Within this context, we introduce several innovative key
designs, primarily focused on information selection and the exploration of interconnec-
tions and distinct characteristics between different tasks. We integrate multi-task learning
and knowledge allocation strategies into the network model, harnessing the relationships
between these three image categories and their respective attributes. This complementary
approach enhances the overall model performance and individual task enhancement effects.
By doing so, we avoid performance degradation caused by mutual interference among
different tasks, allowing private and shared information to synergistically boost network
performance. Furthermore, to further enhance performance through information filtering,
we introduce multiple innovative network structures, including the Frequency Domain
Similarity-Gated Selection Vision Transformer and the Mixed-Scale Frequency Domain
Feedforward Network. These structures leverage gating operations, parameter matrices,
and frequency domain fusion methods to effectively integrate shallow and deep infor-
mation, thereby enhancing the network’s modeling capabilities for both remote and local
patterns. Extensive experiments are conducted on benchmark datasets for the three image
categories. The results demonstrate the significant efficacy of our proposed model and
methods in tasks such as dust removal, haze removal, and underwater image enhancement.

Limitations. While our proposed method outperforms the compared methods in terms
of performance, there are still some unresolved issues in terms of image enhancement effects.
Our model has limitations in terms of image color restoration. In a significant number of
experiments, we observed that the color of some images did not fully recover to the same
level as the real images. We speculate that this could be related to the unsupervised training
process we adopted, and the lack of supervised data also limits our ability to address this
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issue. Nonetheless, due to the flexibility of unsupervised learning, these shortcomings
are acceptable in cases where paired datasets are incomplete, and overall data volume
is limited. In the future, we will focus on this issue and attempt to introduce effective
methods to address it. We plan to explore new training strategies, data augmentation
techniques, or the incorporation of richer supervised information to further improve our
model’s performance in image color restoration. This will help our method exhibit even
better performance in a broader range of application scenarios.
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Abbreviations

Abbreviation Full Form
MTL multi-task learning
FSGS-ViT Frequency Domain Similarity-Gated Selection Vision Transformer
MDFN Mixed-Scale Frequency Domain Feedforward Network
DCT Discrete Cosine Transform
MKSM Hybrid-Scale Knowledge Selection Module
AGMM Adaptive Gate Mixed Module
SOTA state-of-the-art
CNNs Convolutional Neural Networks
ASM Atmospheric Scattering Model
UDCP underwater dark channel prior
FAB Frequency-domain Adaptive Attention Block
GSB Gate Selection Block
DW Depthwise Separable
FNNs Feedforward Neural Networks
MKSM Mixed-Scale Knowledge Selection Modules
EB Enhancement Modules
GEGLU Gated Exponential Linear Units
FN Traditional Feedforward Network
GDFN Gated Deep Feedforward Network
MSFN Multi-Scale Feedforward Network
HRC Traditional Hybrid Residual Connection
AMM Adaptive Mixing Module
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