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Abstract: Effective quality control is crucial in industrial manufacturing for influencing efficiency,
product dependability, and customer contentment. In the constantly changing landscape of industrial
production, conventional inspection methods may fall short, prompting the need for inventive
approaches to enhance precision and productivity. In this study, we investigate the application
of smart glasses for real-time quality inspection during assembly processes. Our key innovation
involves combining smart glasses’ video feed with a server-based image recognition system, utilizing
the advanced YOLOv8 model for accurate object detection. This integration seamlessly merges mixed
reality (MR) with cutting-edge computer vision algorithms, offering immediate visual feedback
and significantly enhancing defect detection in terms of both speed and accuracy. Carried out in a
controlled environment, our research provides a thorough evaluation of the system’s functionality and
identifies potential improvements. The findings highlight that MR significantly elevates the efficiency
and reliability of traditional inspection methods. The synergy of MR and computer vision opens
doors for future advancements in industrial quality control, paving the way for more streamlined
and dependable manufacturing ecosystems.
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1. Introduction

Quality control (QC) holds paramount importance in industrial manufacturing, serv-
ing as a linchpin for operational efficiency, product reliability, and overall customer satisfac-
tion [1–3]. The intricate nature of manufacturing processes involving diverse components
and the critical safety implications of the final product underscores the indispensable role
of QC within the industry. Swift and precise quality inspections not only have a profound
impact on an organization’s financial well-being but also have a significant influence on
the broader trajectory of the industry [4].

The belated discovery of defects, especially after the manufacturing process or product
release, exacts a heavy toll, encompassing substantial costs such as reworking, recalls, and
a detrimental impact on the manufacturer’s reputation. Thorough inspections meticulously
integrated across all production stages play a pivotal role in mitigating these costs, optimiz-
ing both productivity and profitability. Moreover, a robust quality control system functions
as a bulwark, instilling confidence in the brand and thereby enhancing sales and fortifying
competitiveness in the market [5,6].

Quality control acts as a safeguard against the late-stage identification of defects, safe-
guarding against financial losses and reputational damage. Its multifaceted benefits not only
ensure the reliability and safety of the end product but also contribute significantly to the or-
ganizational bottom line, shaping a positive trajectory for the entire manufacturing industry.
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As manufacturing environments evolve, traditional inspection methods face chal-
lenges in keeping pace with the increasing intricacies of modern products and efficiency
demands. Innovative approaches, such as integrating smart glasses and advanced image
recognition, become crucial for enhancing precision, speed, and the overall effectiveness
of quality control processes. This study delves into such advancements, exploring the
potential of mixed reality and cutting-edge computer vision algorithms to propel quality
control into a new era of efficiency and reliability.

Traditionally, manual inspection processes relying on human experience and judgment
have dominated industry practices [7,8]. However, the intricacy of modern products and
efficiency demands have stretched these traditional methods. Manual inspections are
time-consuming and error-prone and may struggle to detect subtle or complex defects,
leading to inconsistencies among inspectors [9–11].

In the pursuit of enhanced efficiency and precision, industries globally are turning
to technology. Mixed reality (MR), characterized by the augmentation of the real world
with digital information, emerges as a promising solution to QC challenges. MR facilitates
real-time interactive overlays of data in the user’s field of view, potentially revolutionizing
inspection processes [12].

The integration of MR into quality control processes offers several advantages. Firstly,
it boosts efficiency [13–16], allowing inspectors to swiftly identify and assess parts without
time-consuming manual checks against plans or specifications. Moreover, MR improves
accuracy [16] by leveraging sophisticated imaging and recognition technology to detect
defects missed by the human eye.

MR technology introduces the real-time tracking of inspection cycles and tasks, pro-
viding insights into manufacturing process efficiency [17,18]. This aids in identifying
bottlenecks and improving workflow designs, which are crucial in industries like automo-
tive manufacturing for understanding operational efficiency and productivity [16,19].

Despite these potential benefits, the integration of MR into industrial quality control
processes is in its early stages, raising questions about practical feasibility and effectiveness.
Motivated by the need for more efficient and reliable quality control methods and inspired
by MR’s potential to transform industrial inspections, this study explores how MR can be
effectively employed in the QC industry.

In the context of this project, assembly quality is the verification that components are
in their correct position. This context underlines the critical importance of assembly quality
to ensure seamless integration and functionality of a smart glasses-based quality control
system. The verification process involves meticulous checks carried out by the system to
confirm that each component is placed in the specified positions and meets the standards
defined in the project.

The primary objective is to develop an MR-based quality control system using smart
glasses integrated with a server-based image recognition system and assess its effectiveness
in a controlled environment. This study also aims to evaluate the system’s performance and
viability under real-world conditions, identifying problems and possibilities for improve-
ment and verifying the feasibility of implementing this MR system on a larger operational
scale in the manufacturing industry.

This exploration aims to provide a practical roadmap for adopting MR in industrial
quality control and contribute to the understanding and advancement of this technol-
ogy. The subsequent sections offer an overview of object detection, detail the proposed
methodology, present the pilot test results in a controlled environment, and conclude
by summarizing essential findings, and emphasizing the significance of the proposed
methodology for improving the quality control systems.

The remainder of this paper is organized as follows. The next section provides an
overview of object detection. Section 3 details the proposed methodology. Section 4 presents
the pilot test carried out in a controlled environment where the intention is to evaluate the
performance of the system, identify possible problems and evaluate its scalability.
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Section 5 concludes the paper by summarizing the essential findings and highlighting
the significance of the proposed methodology in improving quality control system.

2. Object Detection

Object detection plays a central and crucial role in the context of quality control processes
enhanced by mixed reality. It serves as the foundation for seamlessly integrating real-world
and digital environments, enabling meticulous quality assessment and assurance.

In the realm of mixed reality, which combines elements from both physical reality
and virtual environments, there is a need for a robust mechanism to identify, localize, and
analyze objects within this merged context. Object detection technologies, often powered
by advanced computer vision techniques, play a key role in precisely recognizing and
categorizing relevant items of interest.

The effectiveness of quality control processes relies heavily on the accurate and timely
identification of specific items, defects, or anomalies. Object detection, positioned at the
core of the framework, empowers the system to carry out these functions with precision.
Through the real-time detection of objects and the overlay of pertinent digital information,
such as annotations or diagnostic insights, the quality control process achieves a heightened
level of thoroughness and accuracy.

The evolution of object detection algorithms has progressed significantly over the
years, spurred by advancements in deep learning and the demand for more accurate and
efficient solutions. A pivotal distinction in this evolution is the categorization of algorithms
into two-stage and one-stage approaches [20,21].

2.1. Two-Stage Object Detection Algorithms

The advent of two-stage object detection algorithms marked a significant shift in
the field, bringing about transformative changes. This approach introduced a distinct
separation between region proposal and object classification stages, addressing computa-
tional inefficiencies prevalent in earlier methods [22]. The family of R-CNN (Region-Based
Convolutional Neural Network) algorithms, including R-CNN, Fast R-CNN, and Faster
R-CNN, played a pivotal role in establishing and refining this innovative approach.

R-CNN, presented by Girshick et al. in 2014 [23], introduced a novel strategy by
proposing regions of interest (ROIs) using a selective search and then classifying objects
within these regions through a convolutional neural network (CNN). While promising
in terms of accuracy, this method required faster processing speeds due to the sequential
nature of region proposal and classification. The subsequent refinement, Fast R-CNN,
addressed this challenge by merging the region proposal and feature extraction stages,
sharing computation across different regions, and enhancing efficiency [24].

The culmination of this two-stage approach occurred with the introduction of Faster
R-CNN by Ren et al. in 2015 [25]. This approach seamlessly integrated the region pro-
posal process into the network architecture using a Region Proposal Network (RPN),
enabling end-to-end training. Faster R-CNN not only achieved remarkable accuracy but
also significantly reduced the processing time, establishing itself as a cornerstone in object
detection [26,27].

2.2. One-Stage Object Detection Algorithms

While two-stage algorithms achieved impressive accuracy, the computational over-
head of region proposals limited their real-time practicality. In response to this challenge,
one-stage object detection algorithms emerged, aiming to perform object classification and
localization in a single pass.

This one-stage approach is exemplified by the YOLO (You Only Look Once) family
of algorithms and the SSD (Single Shot MultiBox Detector) algorithm. YOLO, introduced
by Redmon et al. in 2016 [28], divided the input image into a grid and directly pre-
dicted bounding boxes and class probabilities from grid cells. This design significantly
reduced the computation time, enabling real-time object detection [29,30]. Although YOLO
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demonstrated competitive accuracy, its weakness lay in accurately detecting small objects
due to the inherent nature of its grid-based architecture.

By contrast, SSD, introduced by Liu et al. in 2016 [31], employed a different strategy.
It utilized a set of predefined default bounding boxes with varying aspect ratios and
sizes, predicting object classes and offsets for these boxes. This approach allowed SSD
to effectively address the challenge of detecting objects at different scales, enhancing its
accuracy in small object detection. However, SSD still faces the task of matching the
accuracy of two-stage approaches for larger and more complex scenes.

The YOLO series, culminating in YOLOv8 in 2023, has shown significant improve-
ments in accuracy and speed, making it an increasingly competitive solution compared to
two-stage methods [32–34].

Figure 1 presents a concise timeline, highlighting the historical dates corresponding to
various versions of the YOLO algorithm from its inception to the latest version, YOLOv8.
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Figure 1. YOLO timeline.

Throughout the historical evolution of the YOLO algorithm, specific versions have
stood out, playing pivotal roles in shaping the landscape of object detection. YOLOv1
introduced the concept of one-stage object detection, revolutionizing the field by directly
predicting bounding boxes and class probabilities in a single pass. Despite its relative
simplicity, YOLOv1 showcased the potential of real-time object detection, setting the stage
for further advancements.

YOLOv3 marked a substantial leap in accuracy and versatility by introducing a fea-
ture pyramid network and multiple detection scales. This version improved detection
performance across various object sizes, solidifying YOLO’s reputation as a robust object
detection algorithm [35].

YOLOv4 represented a significant milestone by substantially improving both accuracy
and speed through optimized architecture and advanced techniques. Achieving state-of-
the-art performance, YOLOv4’s holistic approach to accuracy and speed propelled it to the
forefront of object detection algorithms [36,37].

While YOLOv8 may not be as widely recognized as its predecessors, it has gained
prominence due to reported advancements in its accuracy. Positioned as the latest effort
to refine the algorithm, YOLOv8 demonstrates a continued commitment to enhancing
object detection performance, particularly in scenarios involving small objects and com-
plex scenes [36].

The strategic selection of YOLOv8 for this study is supported by its robust performance
and specific advantages that align with the requirements of the proposed quality control
application, namely [38–42].

– Advancements in Accuracy:

YOLOv8 has demonstrated notable advancements in accuracy compared to its pre-
decessors. The algorithm has been refined to achieve higher precision in object detection.
This increased accuracy is particularly crucial in quality control applications, where the
identification of components and defects demands a high level of reliability.
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– Suitability for Near-Real-Time Processing:

YOLOv8 strikes a balance between accuracy and speed, making it suitable for near-
real-time processing. In industrial quality control scenarios, immediate feedback is essential
for timely corrective actions. YOLOv8’s efficiency ensures that the system can process
video streams swiftly, contributing to the overall speed and responsiveness of the quality
control process.

– Advanced Feature Extraction Capabilities:

YOLOv8 boasts advanced feature extraction capabilities, allowing it to discern intricate
details within images. This is particularly advantageous in quality control, where the iden-
tification of subtle defects or components with nuanced characteristics is paramount. The
algorithm’s ability to extract relevant features contributes to the system’s overall precision.

– Holistic View of Images:

YOLO’s architecture processes images as a whole, avoiding the need for a two-step
approach involving region proposals and subsequent classification. This holistic view
allows YOLOv8 to contextualize information about classes and their appearance, enhancing
its capability to precisely detect objects within the image. This is advantageous in scenarios
involving complex assembly processes.

– Generalization and Adaptability:

YOLOv8’s architecture and training processes enable effective generalization, meaning
it can perform well in various scenarios and environments. In the context of industrial qual-
ity control, where the system may encounter diverse manufacturing conditions, YOLOv8’s
adaptability enhances its overall performance.

– Proven Performance in Real-world Applications:

The choice of YOLOv8 is substantiated by its proven performance in real-world
applications. The algorithm has been successfully employed in diverse domains, including
industrial settings, showcasing its reliability and effectiveness. This track record supports
its suitability for the proposed quality control system.

The strategic selection of YOLOv8 for this study is grounded in its advancements in ac-
curacy, its suitability for near-real-time processing, advanced feature extraction capabilities,
holistic view of images, generalization, and proven performance in real-world applications.
These specific advantages make YOLOv8 well-suited for the intricacies of industrial quality
control, providing a robust foundation for a proposed mixed reality (MR)-based quality
control system.

2.3. Evolutionary Trends

The evolution of object detection algorithms has been a dynamic interplay between the
two-stage and one-stage approaches, each catering to specific requirements and challenges.
While two-stage algorithms excel in accuracy but often sacrifice speed, one-stage algorithms
offer real-time capabilities at the expense of accuracy, especially for small objects and
complex scenes [43,44].

Object detection, a fundamental task in computer vision, plays a crucial role in various
applications, including autonomous driving, video surveillance, and medical imaging.
Traditional object detectors, such as R-CNN, Faster R-CNN, and YOLO, have revolutionized
image understanding by enabling the accurate detection of objects with upright orientations.
However, these methods encounter significant challenges in handling objects with arbitrary
rotations, which are prevalent in real-world scenarios. To address this challenge, researchers
have delved into the domain of rotated object detection, exploring novel techniques to
effectively identify and localize rotated objects.

A significant step forward is the introduction of adaptive rotated convolution (ARC) [45].
ARC addresses the limitations of standard convolutions, which treat all input pixels equally,
regardless of their orientation. ARC kernels dynamically rotate to match the orientations of
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objects, enabling the network to extract more informative features. This adaptive rotation
mechanism significantly enhances the accuracy of rotated object detection, surpassing the
performance of traditional methods.

To handle the increased complexity of rotated objects efficiently, Yang et al. [46] pro-
posed an adaptive object detection system based on early-exit neural networks. This
system employs a multi-scale feature extraction backbone and early-exit branches to pro-
gressively refine object detection results. Early-exit branches discard redundant features,
reducing computational costs while maintaining detection accuracy. This adaptive architec-
ture demonstrates a remarkable performance when detecting rotated objects compared to
traditional single-scale detectors.

Zhuang et al. introduced Rank-DETR [47], a method that synergistically combines ob-
ject detection and instance segmentation techniques to achieve high-quality object detection
results. Rank-DETR utilizes a dual-stage architecture as follows: first, it identifies object
proposals and then refines their locations and identifies their boundaries. This iterative
refinement process ensures precise object localization and segmentation.

Additionally, Rank-DETR employs a novel ranking loss function that prioritizes accu-
rate object detection, further boosting performance.

These studies highlight the transformative impact of rotated object detection research.
ARC, the adaptive convolution operation, addresses the challenge of arbitrary object orien-
tations by dynamically rotating convolution kernels, leading to substantial improvements
in rotated object detection accuracy. The adaptive object detection system based on early-
exit neural networks demonstrates the efficient handling of rotated objects by refining
detections at multiple scales and reducing computational resources without compromising
accuracy. Rank-DETR, with its dual-stage architecture and ranking loss function, achieves
high-quality object detection by prioritizing precise localization and segmentation. These
advancements in rotated object detection open new avenues for the development of more
robust and versatile object detection systems that are capable of effectively handling real-
world scenarios with a wide range of object orientations.

Additional references [48] propose a novel feature extraction module incorporating
rotation information, improving feature representation, and enhancing rotated object
detection performance.

Reference [49] introduces a rotation-aware feature extraction mechanism that utilizes
attention modules to focus on salient features, leading to more accurate rotated object detec-
tion. In [50], a multi-stage approach that fuses features extracted from different orientations
and refines detections iteratively is presented, achieving improved performance for rotated
object detection.

Reference [51] explores the intricacies of visual inspection within assembly processes,
leveraging state-of-the-art techniques rooted in contrastive and transfer learning. The
authors address the challenges associated with inspecting small components, a critical
aspect of assembly quality control, and propose innovative approaches to enhance the
precision and efficiency of the inspection process. With a focus on leveraging advanced
visual methodologies, this paper is poised to enrich our understanding of contemporary
strategies in small component inspections.

Zhao et al. [52] introduced an innovative approach to online assembly inspection,
merging a lightweight hybrid neural network with precise positioning box matching
techniques. Navigating the complexities of real-time assembly assessments, the authors
delivered a comprehensive and integrated methodology promising to enhance the accuracy
and efficiency of product assembly inspections significantly.

These additional studies underscore the continuous progress in rotated object detection
research, with researchers continuously exploring innovative techniques to address the
challenges of detecting objects with arbitrary orientations in real-world environments. The
development of robust and versatile rotated object detection systems has the potential to
revolutionize various applications, including autonomous navigation, video surveillance,
and medical imaging analysis.
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3. Methodology

The proposed architecture for the server-side image recognition system operates in
the following two main stages: training the model and real-time processing. These stages
are crucial for the effective implementation of an MR-based quality control system.

3.1. Model Training

In the initial stage, as illustrated in Figure 2, we outline the proposed process for model
training.
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The process for training a custom image dataset comprises five main steps. Firstly,
data collection and preprocessing are essential. In the context of quality control in in-
dustrial manufacturing, especially in the automotive industry, a custom image dataset
is curated directly from real-world field environments. This industry’s intricate tasks
necessitate a dataset reflecting the complexity of actual operations. Utilizing images from
natural field settings ensures that the dataset becomes a potent tool for training models
to accurately detect defects, anomalies, and quality variations. This approach aligns with
the unique challenges of the automotive quality control sector, resulting in robust and
industry-relevant solutions.

Images should ideally encompass both faulty and non-faulty examples for each prod-
uct and component, collected under various lighting conditions and angles and featur-
ing different parts and defect types. Preprocessing involves resizing, normalizing, and
augmenting the data to enhance the model’s ability to generalize and perform well on
real-world data. Augmentation simulates different scenarios by applying transformations
like rotation, scaling, and cropping.

Next is the crucial step of image annotation, where each image is meticulously re-
viewed, and relevant objects are marked or labeled with details about the part and nature of
the defect. While manual and time-consuming, this annotation process is paramount for cre-
ating a reliable training dataset, providing the model with ground truth data points to learn.

With the dataset ready, the appropriate models are selected. A convolutional neural
network (CNN) is suitable for part identification due to its ability to learn the spatial hierar-
chies of image features. In the case of object detection, the framework leverages YOLOv8, a
state-of-the-art object detection model known for its accuracy and speed in detecting and
localizing multiple objects in a single pass, as indicated in the previous section.

The subsequent step involves model training as an iterative and multi-step process.
The dataset is split into training and validation sets, hyperparameters are fine-tuned,
and various optimization algorithms are tested. Post-training, models are evaluated on
a separate test set, refining them based on the results. Once trained, considered, and
refined, the models are deployed to the server, ready for the second stage, which is
real-time processing.

3.2. Real-Time Processing

The real-time processing stage of the MR-based quality control system involves cre-
ating an architectural design for analyzing and processing the video stream captured by
smart glasses. The architecture can be conceptually divided into two main segments: the
client-side MR system and the server-side image recognition system.

The client-side MR system utilizes a smart glasses device, which the quality inspector
interacts with. This MR headset captures the video stream of the real-world environment,
primarily components inspected for quality control, and streams it to the server. Equipped
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with depth sensors and multiple cameras, the device captures a rich, three-dimensional
view crucial for accurately overlaying augmented reality elements on the real-world scene.

On the server side, the system analyzes the incoming video stream, identifying objects
and detecting defects. The server runs a machine learning model and utilizes a framework
for real-time video processing and computer vision tasks. Combining an MR headset with
a powerful server-based image recognition system, this architecture enables a robust and
efficient MR-based quality control system that surpasses traditional manual inspection in
speed and accuracy. Figure 3 illustrates the proposed framework for real-time processing
and visualization within a smart glasses environment for quality inspection.
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The process begins with natural objects on the assembly line, serving as subjects for
quality inspection. The smart glasses act as intermediaries, capturing images from the
scene and live videos of the assembly process. They not only capture the feed but also
serve as the display for visual output, allowing the user to see results superimposed on the
real-world view.

In this methodology, OpenCV, an open-source computer vision library, assumes a
critical role as the initial gateway for processing the incoming video stream. Its multifaceted
capabilities are harnessed to undertake a range of image-processing tasks vital for the
preliminary assessment of the assembly process. As the continuous video stream is received,
OpenCV takes charge, parsing it into discrete frames and thereby laying the foundation for
meticulous frame-by-frame analysis.

Once the frames are extracted, OpenCV seamlessly integrates with the pre-trained part
identification model to conduct a granular examination of the individual components and
parts within each frame. The versatility of OpenCV shines in its ability to handle diverse
image processing operations, ensuring an accurate identification of components even in
complex visual scenarios. This preliminary analysis sets the stage for the subsequent phases
of the methodology.

Following OpenCV’s comprehensive pre-processing, the torch is passed to the YOLOv8
object detection system, which comes into play as the primary engine for identifying and
discerning between different components. YOLOv8, having been pre-trained on an ex-
tensive dataset specific to the assembly process under investigation, employs its neural
network architecture to execute rapid and precise object detection. Its proficiency lies in
distinguishing correct assemblies from incorrect ones with exceptional accuracy and speed,
which is a characteristic vital for real-time analysis.

OpenCV is chosen for its versatility, high-performance features, and robustness,
making it an ideal tool for analyzing the assembly process in this methodology. Its
comprehensive suite of image-processing functions facilitates the parsing of continuous
video streams into individual frames, allowing for diverse operations such as filtering,
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transformation, and enhancement. The capability for frame-by-frame analysis is particu-
larly valuable in scenarios requiring a detailed inspection, as commonly encountered in
assembly processes [53–55].

The interaction between OpenCV and YOLOv8 is synergistic. OpenCV’s role in fram-
ing, preprocessing, and initial part identification lays the groundwork for YOLOv8 to
execute its specialized task of high-precision object detection. OpenCV not only facilitates
the extraction of frames but also enhances the quality of input data for YOLOv8, optimiz-
ing the latter’s performance. Together, they form a robust pipeline wherein OpenCV’s
capabilities seamlessly complement the strengths of YOLOv8, collectively contributing to
the methodology’s efficacy in identifying parts, detecting defects, and providing real-time
feedback to inspectors.

In parallel, a secure HTTPS protocol establishes a connection to Firebase, which is
the backbone for real-time database management. It logs server actions, including video
processing results and relevant metadata, ensuring a persistent state of operation and
historical data tracking.

The Unity engine plays an essential role in the visualization of results. Unity sends
requests to Firebase to fetch the predictive classification results and generates a holographic
display based on this information. An ‘OK’ hologram is displayed to the operator if the
assembly is correct. Should there be any discrepancies, a ‘NOT OK’ hologram appears,
alerting the operator to the specific issue.

The selection of Unity [56–59] for visualization in the MR-based quality control system
is underpinned by its versatile capabilities, seamless integration, and ability to elevate the
overall user experience. As a robust cross-platform game engine, Unity accommodates the
dynamic integration of predictive classification results, enabling the generation of holographic
displays that signify the correctness or issues with assemblies. This adaptability ensures that
the system’s visualization component can effectively communicate real-time quality control
results to operators, contributing to a comprehensive and responsive user interface.

Unity’s ease of integration with Firebase is a pivotal factor, streamlining the process
of fetching predictive classification results. This efficient data flow enhances the system’s
ability to display timely and accurate holographic representations. This seamless inte-
gration facilitates a smooth communication flow between the analysis components of the
system and the visualization module, ensuring that operators receive instant feedback on
the quality of assemblies.

This entire cycle, from the capture of real objects to the visualization of the hologram,
is designed to operate in real-time, minimizing any delay that could impact the efficiency of
the assembly process. The integration of real-time streaming, advanced image processing,
secure data management, and an interactive holographic display exemplifies the conver-
gence of cutting-edge technologies to enhance the precision and reliability of manufacturing
quality control.

4. Results

This case study delves into the practical application of smart glasses for quality control
in pneumatic cylinder assembly. To assess its effectiveness in providing real-time feedback
on assembly quality, a prototype was developed in a controlled laboratory setting, and the
setup is illustrated in Figure 4.

The prototype setup focused on assembling a pneumatic cylinder within a laboratory
environment, employing the Microsoft HoloLens 2 smart glasses as the primary tool for the
mixed reality-based quality control system [60]. The selection of these glasses was based
on their advanced capabilities in capturing and overlaying mixed reality elements in a
real-world setting.

The pneumatic cylinder assembly process encompassed various components, such
as the cylinder barrel, end caps, piston, tie rods, and nuts. Participants were guided to
assemble the cylinder under different conditions, incorporating both correct and incorrect
assembly scenarios.
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The primary objective was to evaluate the prototype system’s effectiveness in accu-
rately assessing the quality of the assembly process and providing real-time feedback to
the assembler. Through analysis, the smart glasses displayed appropriate holographic
overlays, indicating whether the assembly was correct or not. The results of this case study
contribute valuable insights into the practical implementation of smart glasses for quality
control in pneumatic cylinder assembly.

4.1. Dataset

The initial phase of model training for the quality control system relies on gathering
images from the pneumatic cylinder prototype. The quality and diversity of this image
dataset form the bedrock of the system’s accuracy and robustness. The assembly and
disassembly of the pneumatic cylinder are captured under various scenarios, including
correct and incorrect assemblies, missing parts, and misaligned components. These images
showcase different assembly stages, individual components, partial assemblies, and fully
assembled cylinders. Figure 5 displays captured images showcasing the fully assembled
pneumatic cylinder under various lighting conditions and from different viewing angles.
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Figure 5. Captured images of the fully assembled pneumatic cylinder (complete).

This comprehensive image collection ensures that the dataset encompasses all potential
variations that might occur during pneumatic cylinder assembly. Once collected, the images
are categorized based on assembly stage, component type, and assembly correctness.
Proper categorization simplifies the annotation process as a crucial step in training the
machine learning model. The web-based platform Roboflow [61] was employed for dataset
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management and image annotation due to its streamlined interface, comprehensive toolset,
and efficient handling of large datasets.

The dataset comprises over 2290 annotated images, categorized into the following six
distinct classes: cylinder, end caps, piston, tie rods, nuts, and complete assemblies. The
pneumatic cylinder prototype dataset was carefully selected, covering various instances
essential for training a robust quality control system. It is structured to facilitate not only
the classification of various components but also the precise detection and location of these
elements in assembly scenarios.

Notably, these instances stand out for their balanced distribution across the defined
classes, ensuring that the training process is not biased towards any specific category.
Furthermore, their normalized sizes contribute to consistency and computational efficiency
during the learning phase.

Figure 6 illustrates the proof of correlation between different instances or features
within the dataset through the correlogram.
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A correlation analysis, represented in Figure 6, visually demonstrates the relationships
between different instances or features within the dataset. This correlogram serves as a
valuable tool for understanding possible redundancies or distinguishing features, guiding
subsequent stages of model development and refinement.

It is crucial to note that in the YOLO algorithm, the presence of correlated features
among the chosen elements, known as anchor boxes, can be advantageous. Anchor boxes
in YOLO play an essential role in detecting objects across different scales and aspect ratios.
These predefined bounding box shapes aid the algorithm during the object detection
process, contributing to the algorithm’s accuracy and effectiveness.

The dataset employed in this study is characterized by its extensive size, diverse
representation of assembly conditions, the inclusion of realistic environmental settings,
consideration of lighting conditions and viewing angles, and meticulous normalization.
These characteristics collectively contribute to a dataset that not only reflects the complexi-
ties of pneumatic cylinder assembly but also provides a solid and versatile foundation for
training a machine-learning model tailored to the challenges of industrial quality control.
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4.2. Experimentation and Results

The model training for the pneumatic cylinder prototype utilized the YOLOv8 object
detection architecture over 50 epochs, with a dataset partitioned into 70% for training,
20% for testing, and 10% for validation. Consistency was maintained by resizing all input
images to a resolution of 640 × 640 pixels, providing a standardized input format that
enhances training efficiency.

The metrics showcased in Figure 7 show the commendable performance of the trained
model when applied to the dataset.
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These metrics, serving as quantifiable evidence of the model’s capabilities, lend credi-
bility to the approach. These satisfactory outcomes validate the efforts in the design and
training processes and emphasize the model’s potential.

The performance of the proposed detector is quantified using the metrics recall,
mAP50, and mAP50-95. Specifically, mAP50-95 represents the mean average precision
(mAP) computed over an Intersection over Union (IoU) range from 0.5 to 0.95, offering a
holistic assessment of the detector’s accuracy across varied thresholds. The training results
for all classes based on the proposed method are shown in Table 1.

Table 1. Training results for all classes.

Class R mAP50 mAP50-95

All 0.917 0.916 0.777
End caps 0.953 0.919 0.82
Cylinder 0.865 0.921 0.82
Complete 0.875 0.921 0.854
Tie rods 0.879 0.821 0.701

Nuts 0.94 0.959 0.619
Piston 0.991 0.957 0.847

These results provide valuable insights into the performance of the object detector
in distinct classes and overall. For all combined classes, we observed that a recall of
0.917 indicates proficiency in identifying objects; since the value is greater than 90%, we
considered it a very good value to stop the training process. An mAP50 score of 0.916
further attests to the model’s precision and recall balance at an IoU threshold of 0.5. While
lower, the mAP50-95 score of 0.777 still signifies strong performance across varied IoU
thresholds, underscoring the model’s adaptability and effectiveness in different scenarios.

These findings collectively suggest that the proposed object detector exhibits substan-
tial efficacy in identifying and classifying objects of distinct classes with commendable
accuracy and consistency. The specific strengths and areas for improvement highlighted by
these metrics can inform focused refinements to enhance the model’s performance further.
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To address false positives, an analysis of the confusion matrix and precision/recall
curves in Figure 7a,b is crucial. These values suggest that while the model demonstrates
good performance overall, there is room for improvement.

In real-time processing, Microsoft HoloLens 2 smart glasses capture the video stream,
which is transmitted to the server for analysis by the trained YOLO model. Combined
with the YOLO model, OpenCV ensures that the system can swiftly and accurately identify
components and assess the assembly quality.

The analysis results are then sent back to the smart glasses, where the custom Unity
application processes the information and generates an MR overlay on the inspector’s view.

Figure 8 shows the information presented by the Hololens in the validation process of
the pneumatic cylinder’s assembly quality control.
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If the assembly is correct, a holographic indication of “OK” appears on the glasses. If
the assembly is found to be incorrect or incomplete, a holographic representation of “NOT
OK” appears. This real-time feedback mechanism allows the inspector to instantly identify
and correct any errors, enhancing the efficiency and accuracy of the assembly process.

The validation process focuses on the external result of the components’ assembly. The
system compares the observed assembly configuration with the expected configuration.
The assembly is considered successful if the observed configuration matches the expected
one. On the other hand, if there is any deviation between the observed and expected config-
urations, the assembly is classified as incorrect. The validation of operational functionality
and component assembly sequence will be analyzed in future work.

Several tests were carried out with similar results. The consistency and accuracy of
the server-based image recognition system were evident, contributing to high levels of
quality control.

The prototype confirmed the feasibility and potential benefits of the proposed quality
control methodology, highlighting the advantages of incorporating mixed reality and
computer vision technologies in the inspection process.

Three people assembled the pneumatic cylinder 4 h a day for 5 days to evaluate the
system’s performance, totaling 818 assemblies. The system detected 11 incorrect assemblies,
constituting 1.34% of the total pneumatic cylinder assemblies during the test period.

This result highlights the system’s effectiveness in identifying and rectifying errors
in the assembly process. The system’s ability to quickly identify errors substantially re-
duces defective products, promoting excellent product reliability and increasing customer
satisfaction. The real-time functionality of the system, seamlessly integrated into the as-
sembly process, enhances operational efficiency by promptly detecting errors and enabling
immediate corrective measures. This proactive approach curtails the propagation of faults
throughout the manufacturing line, establishing the system as a linchpin in pursuing
high-level quality control standards.
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The integration process was not without its challenges. Several notable obstacles were
encountered and addressed during the development and testing phases.

– Hardware Limitations:

The HoloLens 2, while a state-of-the-art device, poses challenges in terms of com-
putational power and memory constraints. Optimizing the object detection model and
implementing efficient data processing is crucial to ensure real-time performance
on the device.

– Network Latency:

Ensuring low-latency communication between the HoloLens and the server is crit-
ical for real-time feedback. It was necessary to implement robust protocols to handle
potential delays.

– User Interface Design:

Designing an intuitive and user-friendly interface for HoloLens requires careful consid-
eration. The placement and visualization of holographic overlays needed to be precise and
unobtrusive, enhancing the user experience without hindering the inspector’s workflow.

To overcome these challenges, a collaborative approach involving multidisciplinary
expertise was adopted. Hardware optimizations, network protocol refinements, and itera-
tive user interface testing were conducted. Continuous user feedback during simulated
scenarios allowed for rapid adjustments, ensuring that the final integrated system met user
expectations and performance standards.

Our study has made notable progress in demonstrating the feasibility and advantages
of integrating mixed reality (MR) technologies into industrial quality control. However, it
is imperative to recognize that specific challenges linked with introducing MR technologies
into industrial settings still need to be addressed. These challenges include potential user
distractions, security risks, eyestrain, and cybersickness. Previous authors [62,63] have
noted that using smart glasses may induce visual fatigue and cybersickness, manifesting as
symptoms like disorientation and dizziness.

In our specific study, visual fatigue and cybersickness were not thoroughly explored.
This limitation arises due to the short duration of each cylinder assembly, lasting less
than 5 min, and the reduced continuous assembly time in the laboratory environment.
Nevertheless, recognizing the significance of this aspect, we acknowledge that the potential
impact of smart glasses on visual comfort and overall well-being is an important considera-
tion. Consequently, investigating these potential challenges, including visual fatigue and
cybersickness, is an area to be analyzed in future work.

5. Conclusions

The primary goal of this study was to create a quality control system by integrating
smart glasses with a server-based image recognition system and assess its effectiveness
in a controlled environment. Additionally, this study aimed to evaluate the system’s
performance and feasibility for larger-scale implementation in the manufacturing industry,
providing insights to facilitate the adoption of smart glasses in industrial quality control.

In achieving these objectives, this study demonstrated notable success. The system
effectively improved the quality control process in controlled conditions, showcasing the
benefits of real-time feedback, reduced human error, and enhanced observation capabilities
facilitated by smart glasses.

The case study underscored the efficacy of combining YOLO and OpenCV for con-
structing robust real-time object detection systems. Such integrated systems have the
potential to automate tasks, enhance accuracy, and streamline operations, leading to signifi-
cant efficiency gains.

Through prototype testing in real-world conditions, this study identified potential
challenges and areas for improvement. This valuable insight is crucial for refining the mixed
reality (MR) system for broader operational scales, ensuring its robustness and reliability
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in the manufacturing industry. The successful prototype testing confirmed the theoretical
promise and practical applicability of implementing this MR system on a larger scale.

Furthermore, the study provides a practical roadmap for adopting smart glasses in
industrial quality control. The detailed analysis of the development, implementation,
and evaluation process serves as a valuable resource for organizations considering the
integration of MR technology into their quality control processes. As a result, this study
contributes to the advancement of MR technology and its applications in industrial settings.

The advantages presented by smart glasses in quality control, such as real-time feed-
back, increased accuracy, reduced human error, and improved overall efficiency, make the
development of an MR-based quality control system an attractive proposition for industries
seeking to innovate and optimize their production processes.

5.1. Comparison with Traditional Inspection Methods

The revolutionary MR-based quality control system, seamlessly incorporating smart
glasses and advanced image recognition, represents a paradigmatic shift from traditional
inspection methodologies. In this comparative analysis, we accentuate the advantages that
position the proposed system as a pivotal advancement in industrial quality control.

Regarding speed and efficiency, traditional manual inspections reliant on human
visual assessments are time-intensive and susceptible to inconsistencies. By contrast, the
proposed MR-based system, armed with real-time object detection, expedites inspections.
Digital overlays on smart glasses facilitate swift identification, eliminating the need for
laborious manual cross-referencing against plans or physical checklists.

Accuracy and consistency, paramount in quality control, are often compromised by
human error, fatigue, and subjectivity in traditional methods. Integrating cutting-edge
technologies, specifically YOLOv8 and OpenCV, ensures precise and consistent inspections.
Advanced computer vision algorithms detect defects with accuracy that surpass human
assessments, eliminating the variability associated with traditional approaches.

The early detection and prevention capabilities of the MR-based system further dis-
tinguish it from conventional methods. This system mitigates downstream complications
by proactively identifying and rectifying issues in the early stages of the manufacturing
process, minimizing the risk of rework, reducing recalls, and fortifying the brand’s image.
The user-friendly interface presented through smart glasses and the system’s adaptability
to varied manufacturing scenarios underscores its transformative impact on operational
efficiency. Real-time tracking and data logging provide actionable insights, allowing man-
agers to optimize workflows, identify bottlenecks, and enhance productivity. In summary,
the proposed MR-based quality control system transcends the limitations of traditional
methods, ushering in a new era of technology-driven, proactive quality control aligned
with the demands of modern industrial settings.

5.2. Future Work

In future work, it is imperative to address and overcome the challenges and limitations
identified in the proposed MR-based quality control framework. Real-world deployment
poses challenges such as varying lighting conditions, environmental noise, and hardware
compatibilities, demanding meticulous consideration for seamless integration into diverse
industrial settings. Research efforts should be directed toward devising solutions to these
challenges to enhance the system’s effectiveness in practical manufacturing facilities.

Moreover, the identification and validation of the assembly sequence of components
are important topics that need to be explored to enhance the quality of equipment assembly.

Another avenue for future research involves addressing integration challenges with
existing manufacturing systems. Strategies for seamless integration should be explored,
taking into account the diverse hardware and software configurations prevalent in indus-
trial setups. Collaborative efforts with industry partners can facilitate real-world testing
and validation, ensuring that the proposed MR-based quality control system aligns with
the practical needs of manufacturing environments.
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Additionally, future research endeavors can explore the potential of enhancing system
efficiency and usability through the analysis of NASA LTX data. By actively engaging
with these considerations, the proposed framework and methodology can be refined,
making substantial contributions to advancing MR-based quality control in the realm of
industrial manufacturing.

Recognizing the importance of user well-being and its potential impact on overall com-
fort, it is vital in future work to further analyze the effects of using smart glasses on visual
fatigue and cybersickness. This exploration aims to comprehensively understand the user
experience and address potential concerns associated with the prolonged use of MR devices
in industrial environments. Continuous refinement based on user feedback can optimize
the user experience, promoting increased comfort and widespread system adoption.
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