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Abstract: This study addresses the challenges in the non-destructive detection of diseased apples,
specifically the high complexity and poor real-time performance of the classification model for de-
tecting diseased fruits in apple grading. Research is conducted on a lightweight model for apple
defect recognition, and an improved VEW-YOLOv8n method is proposed. The backbone network
incorporates a lightweight, re-parameterization VanillaC2f module, reducing both complexity and
the number of parameters, and it employs an extended activation function to enhance the model’s
nonlinear expression capability. In the neck network, an Efficient-Neck lightweight structure, devel-
oped using the lightweight modules and augmented with a channel shuffling strategy, decreases
the computational load while ensuring comprehensive feature information fusion. The model’s
robustness and generalization ability are further enhanced by employing the WIoU bounding box
loss function, evaluating the quality of anchor frames using outlier metrics, and incorporating a
dynamically updated gradient gain assignment strategy. Experimental results indicate that the
improved model surpasses the YOLOv8n model, achieving a 2.7% increase in average accuracy, a
24.3% reduction in parameters, a 28.0% decrease in computational volume, and an 8.5% improvement
in inference speed. This technology offers a novel, effective method for the non-destructive detection
of diseased fruits in apple grading working procedures.

Keywords: artificial intelligence; non-destructive detection; diseased apples; lightweight; YOLOv8

1. Introduction

The apple, a vital element of China’s fruit industry, offers a broad planting area and
high total output [1]. Significant progress in automatic apple grading technology offers
advantages in speed, efficiency, and human error reduction over traditional manual grading.
Developing high-efficiency and stable automatic apple grading equipment necessitates
high-performance, lightweight grading models, fostering the application of computer
vision in apple grading [2]. This paper concentrates on recognizing and screening diseased
apples to replicate manual grading scenarios, excluding substandard fruits, curtailing
grading losses, and initiating lightweight recognition model research for diseased apples.

Traditional target detection methods, such as sliding windows and manual feature
extraction, are exemplified by techniques like Haar [3], HOG [4], Hu moment [5], SIFT [6],
SURF [7], and DPM [8]. The evolution of computer vision and deep learning has ushered
target detection into agricultural production prominence, with algorithms bifurcated into
single-stage (e.g., YOLO series [9–11], SSD series [12–14], RetinaNet series [15,16]) and
two-stage detection algorithms (e.g., RCNN series [17], FasterRCNN series [18]). Apple
target detection, melding computer vision and agriculture, automates apple identification
and localization in images. Fan et al. [19] refined the YOLOv4 detection algorithm for
apple defect identification, employing channel and layer pruning strategies and an L1-
paradigm non-extreme value suppression method to prune redundant detection frames,
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achieving a 93.9% average detection accuracy. Sun et al. [20] integrated the Res2Net
module into the RetinaNet algorithm, coupling a weighted bi-directional feature pyramid
network with a focus-based loss and efficient intersection and concatenation ratio in the
joint loss function for apple target detection. Zhang et al. [21] implemented GhostNet in
the improved YOLOv4 apple target detection task, reconstructing the feature extraction
network with a depth-separable convolutional lightweight necking network and detection
head, integrating coordinate attention into the feature pyramid, and reconfiguring the
feature extraction network. While enhancing model detection accuracy, such advancements
often escalate model complexity. Some lightweight apple target detection models depend
on depth-separable methods, which, although reducing weight, forfeit global channel
information, leading to a concomitant problem of accuracy loss [22]. At present, in most of
the apple target detection tasks, the main research is on the detection of apple fruit, for the
apple grading system in the fruit disease identification research is relatively small. At the
same time, most of the detection tasks focus on improving the detection accuracy of the
model, resulting in the complexity of the model becoming high. Some of the lightweight
apple target detection models mainly use the depth of separation of lightweight method,
and the depth of separation of convolution cuts off the cross-channel communication
between the information. Due to the loss of global channel information, the backbone of the
network extraction of the features of the information is not adequate. For the model to be
lightweight, at the same time it faces the loss of accuracy. If the model is to be lightweight
at the same time, the loss of precision is a problem.

Aiming at the identified challenges, the authors of this paper, using the YOLOv8n algo-
rithm, the structural re-parameterization technique, and efficient neck structure, designed
a lightweight non-destructive detection of diseased fruits in apple grading, simulated
the initial apple screening scenario of manual grading, and propose a lightweight, high-
performance diseased apple recognition model. This model focuses on the recognition and
screening of four apple appearance features: healthy, speckled, rotted, and scabbed. The
model’s improvements include several aspects:

(1) To reduce the number and complexity of parameters in the backbone network and
facilitate deployment in Apple’s hierarchical pipeline devices, a structure re-parameterization
of the VanillaC2f module structure is proposed. Utilizing the lightweight VanillaBlock
module to construct the C2f module, and forming the lightweight Vanilla-Backbone, this
approach decreases the number of parameters and complexity of the backbone network,
achieving its lightweighting. The integration of a deep training strategy with an extended
activation function ensures both the model’s detection accuracy and its capability for
real-time detection.

(2) To thoroughly integrate the feature map information extracted by the backbone
network, enabling the model to fully learn the differences in features of various apple
defects, and to enhance the detection accuracy for the apple grading pipeline task without
increasing the model size, an Efficient-Neck lightweight neck network is introduced. This
network employs Ghost Shaded Convolution of Blending and Shadows (GSConv) and
a one-time aggregation of the cross-graded part of the network module (VoVGSCSP) to
construct the Efficient-Neck structure. This setup realizes the neck network’s lightweight-
ing while combining it with a channel blending strategy to further enhance the model’s
detection accuracy.

(3) To augment the robustness and generalization capability of the apple grading
pipeline model, the Wise-IoU (Bounding Box Regression Loss with Dynamic Focusing
Mechanism) [23] bounding box loss function, featuring an “outlier” quality assessment
index and a dynamically updated gradient gain allocation strategy, is incorporated.

Based on the above improvement methods, an enhanced YOLOv8n model is proposed.
This improved model reduces the number of parameters by 24.3% and the computational
volume by 28.0% compared to the original YOLOv8n, while ensuring an increase in accu-
racy, making it suitable for deployment in devices for online apple grading. The body of the
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article includes four main parts: materials and methods, results and analysis, discussion,
and conclusion.

2. Materials and Methods
2.1. Construction and Enhancement of Datasets

Apple grading is mainly performed in an indoor environment, and the initial screening
task of defective apples may be accomplished in the orchard picking base. For the task of
screening defective apples in the assembly line, while the dataset of healthy fruits is ample,
that of diseased fruits is deficient. Given the challenge of constructing a diverse dataset of
diseased apples through field shooting, to improve the robustness and generalization of the
model, this paper collates apple datasets of varying scales, backgrounds, and brightnesses
through manual autonomous shooting and internet collection. The dataset from manual
field shooting is sourced from the picturesque Diyarzhimu orchard and town of Yiganqi in
Aksu, China, using a Smartphone (iPhone 14 Pro). The shooting environment is shown in
Figure 1.
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Figure 1. Apples from different orchards in the same region. (a) the town of Yiganqi, (b) the
picturesque Diyarzhimu orchard.

Manual collection is based on a relatively simple environmental context. It was carried
out in different lighting conditions (low and strong light) and from various shooting angles;
this occurred between 10:00 and 16:00. Internet collection involved crawling public images
and downloading public datasets, followed by manual screening to retain clear, high-quality
images and remove any images with low resolution or overly complex backgrounds. The
constructed dataset, divided in an 8:1:1 ratio for the training set, test set, and validation
set, underwent data enhancement processing. Image enhancement techniques, such as
rotation by angle and the addition of random noise, were applied to the dataset images.
The final dataset comprised 2000 images, manually labeled in VOC format with XML files,
which were then converted to the TXT format of YOLO using custom code. The dataset
included four classes: (1) HEALTHY, (2) BLOTCH, (3) ROT, (4) SCAB. The original dataset,
categories, and an example plot of the enhanced data are illustrated in Figure 2.
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Figure 2. Apple Dataset. The dataset included (a) HEALTHY apples, (b) SCAB-affected apples,
(c) ROT-affected apples, (d) BLOTCH-affected apples, (e) original images, (f) images rotated 90 de-
grees with added noise, and (g) images rotated 180 degrees with added noise.
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2.2. YOLOv8n Target Detection Algorithm

YOLOv8n [24], a lightweight variant of YOLOv8, features fewer parameters and
reduced computational demands. Its network structure, depicted in Figure 3, comprises
three main components: the backbone network (Backbone), the neck network (Neck), and
the prediction head (Head). The backbone network primarily extracts feature information,
incorporating the C2f module, which merges the C3 module of YOLOv5 and the ELAN
of YOLOv7 [25] for enriched gradient flow information. The neck network, responsible
for feature information fusion, utilizes a multi-scale feature fusion structure (FPN-APN).
The prediction head adopts the decoupled-head (Decoupled-Head) from YOLOX [26],
comprising a classification head and a regression head. The regression head’s loss function
includes CioU and Distribution Focal Loss (DFL), while the classification head uses the
biclassification cross-entropy loss function (BCE) [27]. Sample matching employs the
TaskAlignedAssigner [28] for positive and negative sample allocation and the Anchor-
Free [29] strategy.
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2.3. Lightweight Backbone Network

The efficacy of apple grading tasks hinges on the efficiency and stability of edge
control devices. Utilizing embedded devices in the apple grading pipeline, the research
and deployment of the primary apple screening model aim for high performance and
lightweight design. However, for detecting and identifying diseased apple fruit, the
YOLOv8n’s backbone network faces challenges due to its large number of parameters
and complexity, complicating deployment in cost-effective apple grading pipelines. A
lightweight VanillaC2f module was proposed, which reduces both complexity and the
number of parameters in the backbone network. Additionally, an extended activation
function was employed to enhance the model’s nonlinear expression capability.

2.3.1. VanillaNet Neural Network

VanillaNet [30] is an efficient, lightweight neural network employing a deep training
strategy and an extended activation function to enhance model inference speed while
maintaining performance:

(1) The deep training strategy involves initially training two convolutional layers with
one activation function. As training iterations increase, the convolution operation simplifies
into a constant mapping. Ultimately, at the inference phase’s end, the two convolutions
merge into a single convolution, reducing inference time and enabling reparametriza-
tion structure.

(2) The extended activation function uses parallelized stacked activation functions
to replace successive stacked functions, avoiding latency issues in excess computational
scenarios. This function modifies neighboring inputs on the feature map, learning global
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information. The expression of the scalability activation function for an input size of is
Input ∈ RC×H×W shown in Equation (1):

As(inputh,w,c) = ∑
i,j∈{−n,n}

ai,j,cA(inputi+h,j+w,c + bc) (1)

where n represents number of stacked activation functions, a, b represents the scale and bias
of each activation function, h ∈ {1, 2, 3, . . . , H}, w ∈ {1, 2, 3, . . . , W}, c ∈ {1, 2, 3, . . . , C}
represents the width, height and the number of channels of the input feature map.

2.3.2. VanillaBlock

The VanillaBlock comprises standard convolution (Conv), batch normalization (BN),
LeakReLU activation function, and extended activation function (ImActivation). It uses
a 1 × 1 convolution kernel, preserving feature map information while minimizing com-
putational costs. The activation functions, with applied post-standard convolution and
combined with a BN layer, streamline the network training process. In the inference phase,
the Conv and BN layers in the Conv_BN module merge first, followed by merging the
weights of the two Convs and trimming the LeakyReLU layer. Lastly, the Gconv and
BN layers in the extended activation function merge. The VanillaBlock module’s design
follows a deep training strategy, with its structure differing in training and inference phases.
During the training phase, a BN layer is included to simplify network training, and in
the inference phase, the BN layer merges with the convolutional layer, reducing model
complexity. The structure of the VanillaBlock module in the training and inference phases
is illustrated in Figure 4.
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The extended activation function (ImActivation) in VanillaBlock is realized through the
combination of the ReLU activation function and grouped convolution (Gconv), facilitating
parallelized stacked activation functions. Grouped convolution not only reduces the
parameter count but also achieves sparse convolution operations, providing a degree of
regularization. The structure of ImActivation is detailed in Figure 5.
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2.3.3. VanillaC2f

The C2f structure in the YOLOv8n model offers rich gradient flow, yet its Bottleneck in
the inference stage contains numerous standard volumes and residual modules, leading to
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high parameter counts and computational complexity. This paper introduces the efficient
VanillaC2f module, based on the C2f module’s internal structure design and integrating
VanillaBlock. During inference, the VanillaC2f module reparametrizes by merging all BN
layers in VanillaBlock, removing the LeakReLU layer and consolidating the two Convs into
one. This reparameterization achieves a lightweight C2f module with reduced parameters
and complexity compared to YOLOv8n’s C2f module, as illustrated in Figure 6.
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2.3.4. Vanilla-Backbone

The improved Vanilla-Backbone network comprises VanillaC2f, CBS, and SPPF mod-
ules. The CBS module, adopting two-dimensional standard convolution (BatchNorm2D)
and SiLU activation, focuses on feature extraction. The SPPF module follows YOLOv8n’s
backbone network structure. The design of Vanilla-Backbone, depicted in Figure 7, priori-
tizes efficient feature extraction while maintaining a lightweight architecture.
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2.4. Lightweight Neck Network
2.4.1. GSConv Module

Addressing the limitations of depth-separable convolution 1 × 1, which neglects
channel information leading to reduced accuracy, the GSConv module merges standard
convolution (Conv), depth-separable convolution (DWConv), and shuffle operations. This
combination achieves module lightweighting while fully extracting and fusing feature
information, thus, enhancing model accuracy. The GSConv module structure is shown in
Figure 8.
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2.4.2. VoVGSCSP Module

Incorporating the GSBottleneck from the ghost blending module, the neck network’s
VoVGSCSP module fuses features effectively through a one-time aggregated cross-stage
localized network (Figure 8). It utilizes dual branches for feature extraction, aggregates the
feature maps, and applies convolution to the multi-channel aggregated maps for richer
information. Additionally, it integrates residue-like cross-stage operations to enhance the
neck network’s nonlinear expression ability. The VoVGSCSP module structure is depicted
in Figure 9.
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2.4.3. Efficient-Neck

The YOLOv8n’s neck network, comprising CBS, Upsample, and C2f modules, faced
challenges due to a high parameter count from numerous standard convolutions. The
improved Efficient-Neck network utilizes a lightweight ghost shuffling module to replace
the CBS module and the VoVGSCSP module to substitute the C2f module. This approach
fully integrates feature map information from the backbone network, effectively extracting
features of different diseased apple types, and improving model detection accuracy. The pre-
improvement and post-improvement neck network structures are presented in Figure 10.
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2.5. Improved YOLOv8n Model (VEW-YOLOv8n)

Building on the YOLOv8n model, this study introduces the VEW-YOLOv8n, a lightweight
apple target detection method. The improved model structure, shown in Figure 11, surpasses
YOLOv8n in accuracy while adhering to lightweight design principles of low parameter count
and minimal computational demand.
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2.6. WioU Bounding Box Loss Function

During the manual labeling process of the Apple dataset, human factors may introduce
low-quality anchor frames, potentially impacting the IoU loss function’s efficacy during
model training. The IoU loss function measures the similarity between predicted and
actual bounding boxes by calculating the ratio of their intersection area to the area of their
combined region, as depicted in Figure 12.
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The GioU [31] loss function extends the IoU by including the minimum external
rectangle, including both the predicted and actual boxes. It accounts for overlapping and
non-overlapping regions, effectively addressing gradient disappearance issues when boxes
do not intersect. The GioU loss function reverts to the IoU loss function when the real and
predicted boxes overlap or contain each other within the same dimension. The DioU [32]
loss function further expands on GioU by considering the Euclidean distance between
centroids of the predicted and real boxes, as well as the diagonal distance of their minimum
external rectangle. However, it does not account for aspect ratio relationships. The CioU
loss function, used in YOLOv8n’s bounding box loss function, builds upon DioU by adding
aspect ratio consistency between the predicted and real boxes, including an aspect ratio
penalty term. Although CioU addresses several shortcomings, it does not provide uniform
gradient signs for anchor box widths and heights and involves a complex computational
process that increases computational volume and training time. The SioU [33] loss function
combines angle, distance, and shape costs but does not consider dynamic gradient updating.
The WioU loss function addresses these issues by weighting the IoU based on the predicted
and real frame region, introducing a dynamic non-monotonic focusing mechanism. It uses
“outlier” as a new quality assessment criterion for anchor frames and dynamically updates
the gradient gain allocation strategy.

2.6.1. WioUv1

WioUv1, a bounding box loss function with an attentional mechanism, is formulated
in Equations (2)–(4).

LIoU = 1 − IoU = 1 − Wi Hi
wh + wgthgt − Wi Hi

IoU (2)

RWIoU = exp

(
(x − xgt)

2 + (y − ygt)
2

(W2
g + H2

g)
∗

)
(3)

LWIoUv1 = RWIoULIoU (4)

where Wg and Hg are the width and height of the smallest outer rectangle and are also
stripped from the computational map to prevent RWIoU from having an effect on the
convergence speed, RWIoU ∈ [1, e], which can significantly amplify the ordinary quality
anchor frames LIoU , LIoU ∈ [0, 1] will significantly reduce the RWIoU for high quality anchor
frames, and will pay more attention to the distance between the centroids of the two frames
when there is a high degree of overlap between the predicted and real frames.

2.6.2. WioUv2

WioUv2, incorporating the concept of focus loss, effectively reduces the contribution
of simpler instances to the loss value. A monotonic focusing coefficient (L∗ IoU)γ is added
to WioUv1. Since the focusing coefficient decreases as LIoU decreases, which results in
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the late convergence becoming slow, a normalization factor of LIoU is introduced. The
final focusing coefficient can be expressed as r1 = ( L∗ IoU

LIoU
)

γ ∈ [0, 1], and the WioUv2 loss
function is computed as shown in Equation (5):

LWIoUv2 = r1LWIoUv1 (5)

Dynamically updating the normalization factor keeps the value of the focusing coeffi-
cient r1 at a high level, effectively solving the problem of slow convergence at the late stage
of training.

2.6.3. WioUv3

WioUv3 operates based on the outlier degree of anchor frames. The outlier degree
coefficient β is shown in Equation (6):

β =
L∗ IoU
LIoU

∈ [0,+∞) (6)

The smaller the outlier degree, this coefficient β ensures that anchor frames of lower
quality exert less influence. In WioUv3, a nonmonotonic focusing coefficient is added to
WioUv1. This addition assigns smaller gradient gains to normal quality anchor frames
and larger gradients are assigned smaller gradient gains. The use of the outlier degree
coefficient β prevents the effects of low quality frames.

WioUv3 incorporates a nonmonotonic focusing coefficient r2 into WioUv1, as delin-
eated in Equations (7) and (8).

r2 =
β

δαβ−δ
(7)

LWIoUv3 = r2LWIoUv1 (8)

where the anchor frame will receive the maximum gradient gain when β = C. The
normalization factor LIoU in WioUv3 undergoes dynamic transformation and updates, thus,
allowing the quality evaluation metrics of the anchor frame to be dynamic. Consequently,
WioUv3 can select the most suitable gradient gain allocation strategy for the current sample
at varying times.

This study employs the WioUv3 bounding box loss function to supplant the original
CioU bounding box loss function. The WioU loss function mitigates the competitive
influence of high-quality anchor frames and curbs the adverse impact of low-quality anchor
frames. Combined with the dynamic gradient gain allocation strategy, this approach
improves network robustness and augments the model’s detection capability.

3. Results and Analysis
3.1. Experimental Environment and Parameter Settings

The experiment was conducted on a system with CentOS 7.9.2009, utilizing a 12 vCPU
Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50 GHz and an NVIDIA GeForce RTX 3090
graphics card. Anaconda served as the Integrated Development Environment (IDE), the
Python version is 3.8.10, the YOLO series of target detection models were constructed and
trained using version 1.11.0 of the PyTorch deep learning framework. The single-stage
SSD target detection model and the FasterCNN two-stage target detection model were
constructed and trained using version 2.25.3 of the mmdetection deep learning framework,
with CUDA version 11.3 facilitating the acceleration of the training process. Parameters
included an image resolution of 640 × 640, the Adam optimizer, an initial learning rate of
1 × 10−3, the momentum value of 0.937 and weight decay coefficient of 5 × 10−4, which
were incorporated along with a batch size of 64 for network training and 200 training
rounds for both the baseline and improved models based on these settings. Mosaic data
augmentation was used in the YOLO target detection algorithms.
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3.2. Model Performance Evaluation Metrics

For assessing the enhanced model, six prevalent performance evaluation indices
were adopted, namely mean average precision (mAP), average precision, Recall, Precision,
GFLOPS, and parametric quantities of the model. The evaluation process is described in
Equation (9):

mAP =
1
n∑n

i=0 APi (9)

where n represents the number of categories, APi is the area included by the PR (precision-
recall) curve for a category, and the formula for AP is shown in (10).

AP =
∫ 1

0
PRdr (10)

The mAP in this experiment reflects the average across four categories: healthy,
spotted, decayed, and crusted.

The accuracy rate, defined as the proportion of boxes accurately predicted by the
model, measures model misdetection and is computed as per Equation (11).

Precision =
TP

TP + FP
× 100% (11)

Recall, the ratio of correctly predicted frames to labeled frames by the model, measures
model omission and is calculated according to Equation (12).

Recall =
TP

TP + FN
× 100% (12)

where TP denotes the count of correct prediction results, FP represents incorrect prediction
results, and FN refers to the unlabeled boxes that were not predicted.

3.3. Experiments Comparing the Improved Model with the Baseline Model

Under identical experimental conditions, the mAP and loss values of the improved
YOLOv8n model (VEW-YOLOv8n) were compared with those of the original YOLOv8n
model during training. Curve comparison graphs for mAP and loss values are depicted in
Figure 13, with (a) illustrating the mAP@0.5 value, (b) showing the mAP@0.5:0.95 value,
and (c) presenting the loss values. Figure 13 elucidates that both the mAP@0.5mAP@0.5
and mAP@0.5:0.95 values of VEW-YOLOv8n surpassed those of the original YOLOv8n,
while the loss value was lower. The paper demonstrates that the proposed VEW-YOLO8n
has superior convergence and detection accuracy in detecting apple diseases. Furthermore,
the performance of VEW-YOLOv8n and YOLOv8n on the test set was verified, and the
Precision-Recall curves (P-R curves) are delineated in Figure 14, which shows that the VEW-
YOLOv8n model achieved a map value of 95.6%, while the YOLOv8n model achieved a map
value of 92.9%. The improved model demonstrated an average accuracy improvement of
2.7% compared to the YOLOv8n model. This comparison indicates that the VEW YOLOv8n
model also outperformed the YOLOv8n model on the test set, substantiating the superiority
of the improved VEW-YOLOv8n over YOLOv8n.
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3.4. Ablation Experiments for Improved Processes

To ascertain the efficacy of the improvement methods, ablation experiments were
conducted. These experiments assessed the contributions of three distinct improvement
strategies and their combinations to model performance enhancement. The results are
presented in Table 1. Experiment (1) evaluated the original YOLOv8n model. In Experi-
ment (2), VanillaC2f was utilized to streamline YOLOv8n’s backbone network, forming the
Vanilla-Backbone lightweight network. This, along with deep training and an extended
activation function, resulted in a 15% reduction in model size, a 14.6% decrease in parame-
ters, and a 17.1% reduction in GFLOPS, while maintaining mAP values comparable to the
baseline YOLOv8n model. Experiment (3) involved the use of a one-time aggregated cross-
stage localized network module (VoVGSCSP) and the ghost shuffling module (GSConv) to
optimize the neck network, creating the Efficient-Neck lightweight Neck network. This
led to a 13.3% reduction in both model size and parameters, and, coupled with channel
blending, slightly enhanced mAP compared to YOLOv8n. Experiment (4) improved model
detection accuracy by substituting the original CIoU bounding-box loss function with
the WIoU bounding-box loss function, resulting in mAP@0.5 values consistent with the
baseline model and a slightly higher mAP@0.5:0.95. Experiment (5) combined the strategies
from Experiments (2) and (3), integrating the Vanilla-Backbone and Efficient-Neck net-
works. This approach reduced the model size by 23.3%, parameters by 24.3%, and GFLOPS
by 28.1%, while increasing the mAP@0.5 value by 1.3% compared to the baseline model.
Experiment (6) combined the improvements of Experiments (3) and (4), combining the
Vanilla-Backbone and Efficient-Neck networks with the WIoU bounding box loss function.
This yielded a 2.7% increase in mAP@0.5 and a 1.2% increase in mAP@0.5:0.95 compared to
the baseline model, without additional increases in parameters, model size, or GFLOPS.
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Table 1. Ablation experiments for improved processes.

Algorithm Precision/% Recall/% mAP@0.5/% mAP@0.5:0.95/% GFLOPS Params/106 Size/MB

YOLOv8n (1) 86.7 83.2 92.9 75.0 8.2 3.01 6.0
YOLOv8n + Vanilla-Backbone

(2) 87.5 86.3 93.1 74.9 6.8 2.57 5.1

YOLOv8n + Efficient-Neck (3) 84.0 90.7 93.7 73.9 6.6 2.61 5.2
YOLOv8n + Vanilla-Backbone

+ WIoU (4) 90.6 86.5 93.9 75.8 6.7 2.57 5.1

YOLOv8n + Vanilla-Backbone
+Efficient-Neck (5) 88.7 88.4 94.2 75.2 5.9 2.28 4.6

YOLOv8n + Vanilla-Backbone
+ EfficientNeck + WIoU (6) 89.0 89.5 95.6 76.2 5.9 2.28 4.6

3.5. Bounding Box Loss Function Side-by-Side Comparison Experiment

The effectiveness of the WIoU loss function for enhancing the bounding box loss
function was evaluated through a cross-sectional comparison experiment. This experiment
compared the performance of five bounding box loss functions—DIoU, SIoU, GIoU, CIoU,
and WIoU—using the Vanilla-Backbone lightweight network, as delineated in Experiment
(2) in Table 2. Results are presented in Table 2. The CIoU loss function served as the baseline
for this comparison. It was observed that the model’s average accuracy decreased when
the GIoU loss function was employed, suggesting that the prediction box and the actual
box either shared an inclusion relationship or had overlapping dimensions, which were
not suitable for the dataset in this study. The average accuracies of DIoU and SIoU were
comparable to that of CIoU, nearly maintaining the same level. However, DIoU did not
account for the aspect ratio of the bounding box, and SIoU lacked a strategy for gradient
dynamic updating. While the GFLOPS slightly increased, the computational volume
was larger. WIoU demonstrated the highest average accuracy, with mAP@0.5 reaching
93.9% and mAP@0.5:0.95 at 75.8%, surpassing the other bounding box loss functions in
the experiment.

Table 2. Comparison of different bounding box loss functions.

Bounding Box
Loss Functions mAP@0.5/% mAP@0.5:0.95/% GFLOPS Params/106 Size/MB

+DIoU 93.0 74.6 6.7 2.57 5.1
+SIoU 93.4 75.2 6.8 2.57 5.1
+GIoU 91.4 73.8 6.7 2.57 5.1
+CIoU 93.1 74.9 6.8 2.57 5.1
+WIoU 93.9 75.8 6.7 2.57 5.1

Figure 15 illustrates the training process performance comparison for the five bounding
box loss functions, indicating WIoU’s superior results.
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4. Discussion

To ascertain the superior efficiency of the enhanced VEW-YOLOv8n algorithm, de-
rived from YOLOv8n, it was compared with prevailing two-stage and single-stage target
detection algorithms. The two-stage category included FasterRCNN, while the single-
stage category included lightweight algorithms like YOLOv3-tiny [34], YOLOv5n [35],
YOLOv6n [36], and YOLOv8n, along with high-precision, medium-large algorithms such
as YOLOv8 m [37], and YOLOv3. Algorithms with larger convolutional kernels, namely
YOLOv8n-InceptionNext and SSD target detection algorithms, were also compared. The
YOLO-series algorithms used in these comparisons, similar to VEW-YOLOv8n, employed
the same training strategy, incorporating methods like DFL, Anchor Free, Decoupled-Head,
CIoU, and TaskAlignedAssigner. The comparative performance evaluation results of VEW-
YOLOv8n with mainstream and improved algorithms are displayed in Table 3 (two-stage
target detection algorithm) and Table 4 (single-stage target detection algorithm). In Table 3,
the two-stage models, based on migration learning and using pre-trained weights, recorded
lower AP values compared to VEW-YOLOv8n, with a larger number of parameters and
slower inference speeds. Table 4 shows the comparison among single-stage target detection
algorithms. VEW-YOLOv8n stood out with the smallest model size (4.6 MB), least number
of parameters (2.28 × 106), lowest GFLOPS (5.9), while achieving the highest average accu-
racy (mAP@0.5 at 93.9%, mAP@0.5:0.95 at 75.8%). Compared to high-precision, medium-
large target detection algorithms, VEW-YOLOv8n attained similar average accuracy but
with far fewer parameters, lower GFLOPS, and smaller model size. Against algorithms
with large convolutional kernels, VEW-YOLOv8n surpassed YOLOv8n-InceptionNext in
all aspects.

Table 3. Comparison of VEW-YOLOv8n with two-stage target detection algorithms.

Algorithm mAP@0.5/% mAP@0.5:0.95/% GFLOPS Size/MB Speed/ms

SSD (Pretrained) 92.4 70.9 344.4 184.3 8.9
FasterRCNN
(Pretrained) 91.5 70.5 206.68 315.1 25.8

VEW-YOLOv8n 95.6 76.2 5.9 4.6 7.5

The performance comparison of various YOLO family algorithms, including YOLOv3-
tiny, YOLOv3-tiny, YOLOv5n, YOLOv6n, YOLOv8n, YOLOv8n, YOLOv8n, and YOLOv8n-
InceptionNext, with VEW-YOLOv8n on two evaluation metrics, GFLOPS and mAP@0.5, is
illustrated in Figure 16, highlighting VEW-YOLOv8n’s minimal computational intensity
and maximal average accuracy.
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Table 4. Comparison of VEW-YOLOv8n with single-stage target detection algorithms.

Algorithm mAP@0.5/% mAP@0.5:0.95/% GFLOPS Params/106 Size/MB Speed/ms

YOLOv3 95.4 75.8 282.2 103.67 198.1 18.2
YOLOv3-tiny 91.1 68.9 19.1 12.1 23.2 5.1

YOLOv5n 92.1 74.1 7.2 2.51 5.3 7.3
YOLOv6n 91.9 73.5 11.8 4.23 8.7 6.3
YOLOv8n 92.9 75.0 8.2 3.01 6.0 8.2

YOLOv8n-InceptionNext 90.4 70.2 12.5 4.80 9.4 8.0
YOLOv8m 95.4 75.5 78.7 25.84 52.0 8.8

VEW-YOLOv8n 95.6 76.2 5.9 2.28 4.6 7.5
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The effectiveness of VEW-YOLOv8n for the initial screening of bad apple fruits was
further validated by comparing its performance with mainstream two-stage and single-
stage target detection algorithms using the mAP@0.5:0.95 metric. VEW-YOLOv8n exhibited
the highest values and efficacy, as demonstrated in Figure 17.
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From three performance indicators—the number of parameters (params), compu-
tational volume (GFLOPS), and model size—the apple appearance grading detection
algorithm (VEW-YOLOv8n) proposed in this study is confirmed as a low-complexity,
lightweight target detection algorithm. Figure 18 shows VEW-YOLOv8n’s superiority
with the smallest number of params, least computational volume, and smallest model
size, rendering it suitable for edge-end deployment in initial screening and categorization
of apples.
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In order to have a more intuitive feeling of the detection performance of the VEW-
YOLOv8n algorithm, standard test images of four apple types (HEALTHY, BLOTCH,
ROT, and SCAB) were used. The detection effect of VEW-YOLOv8n was compared with
YOLOv3-tiny, YOLOv5n, YOLOv6n, and YOLOv8n, and as depicted in Figure 19, the
results indicate that VEW-YOLOv8n excels in detecting all four apple types. Specifically,
in single-target detection, VEW-YOLOv8n demonstrates higher confidence than the other
models. In multi-target detection, VEW-YOLOv8n outperforms the alternatives, with
YOLOv5n, YOLOv6n, and YOLOv3-tiny exhibiting varying levels of detection omission.
Analyzing Table 3, Figures 18 and 19 reveal that the VEW-YOLOv8n method offers low
parameter count, minimal computational demand, high detection accuracy, and speed,
meeting the real-time requirements of apple grading tasks.

The overall work is shown in Figure 20.
In the context of apple grading, the diseased fruits of the apple recognition process

during primary screening utilizes images of multiple rolling apples, indicating a need
for enhanced real-time recognition capabilities. Apples deemed healthy in the primary
screening phase are directly channeled into the apple grading assembly line, conforming to
the GBT10651–2008 [38] Fresh Apple standard, to ascertain their grade. Conversely, apples
exhibiting defects such as rot, spots, and deformities, often resulting from diseases and
pests, are promptly excluded from the grading process. Further research is planned to
refine the apple grading task in subsequent stages. This research will be implemented and
applied within the apple grading assembly line. Such advancements aim to automate and
optimize the efficiency of the apple grading process, thereby reducing the time and cost
associated with manual grading. This enhancement is anticipated to improve production
efficiency, decrease production costs, and fulfill the demands of large-scale production
and supply.
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5. Conclusions

Considering the stability, real-time, and high-efficiency requirements of apple grading,
the non-destructive detection of diseased fruits of apple adopts a lightweight detection
approach to prevent grading loss. Consequently, this paper introduces the VEW-YOLOv8n
apple grading detection algorithm. This algorithm involves a structural reparameterization
of the VanillaC2f module, which lightens the backbone network and integrates an extended
activation function to enhance the model’s nonlinear expression capability. Additionally,
the paper describes the development of an Efficient-Neck thin-neck structure, incorporat-
ing the lightweight GSConv module and VoVGSCSP module. This structure lightens the
neck network, reduces the parameter count, and applies a channel mixing and washing
strategy to efficiently extract feature information while elevating model detection accuracy.
Furthermore, the implementation of the WIoU bounding-box loss function, combined with
a strategy that diminishes the quality assessment index of outlier degree by using the com-
petitiveness of high-quality frames, suppresses the adverse effects of low-quality frames.
This approach effectively addresses the deviation issue of traditional IoU anchor frames
and dynamically updates the gradient gain allocation strategy; thus, enhancing the model’s
robustness and generalization capability. The paper substantiates the efficacy of these algo-
rithmic enhancements through ablation experiments and comparative experiments with
prevalent target detection algorithms. The results demonstrate that the VEW-YOLOv8n
model, compared to the YOLOv8n model, increases the average accuracy by 2.7%, reduces
parameter count by 24.3%, decreases computation volume by 28.0%, shrinks model size by
23.3%, and boosts inference speed by 8.5%. Under the premise of maintaining accuracy,
the VEW-YOLOv8n model achieves reductions in parameters and computation volume to
various extents, markedly enhancing the model’s lightweight effect, and more time can be
set aside for the grading process. This offers a more advantageous identification method
for the detection of diseased apples in apple grading. Further research will be carried out
on the apple grading task and deployed and applied in the apple grading assembly line at
a later stage.
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