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Abstract: With the wide application of artificial intelligence represented by deep learning in natural
language-processing tasks, the automated scoring of translations has also advanced and improved.
This study aims to determine if the BERT-assist system can reliably assess translation quality and
identify high-quality translations for potential recognition. It takes the Han Suyin International
Translation Contest as a case study, which is a large-scale and influential translation contest in China,
with a history of over 30 years. The experimental results show that the BERT-assist system is a
reliable second rater for massive translations in terms of translation quality, as it can effectively sift
out high-quality translations with a reliability of r = 0.9 or higher. Thus, the automated translation
scoring system based on BERT can satisfactorily predict the ranking of translations according to
translation quality and sift out high-quality translations potentially shortlisted for prizes.

Keywords: large language model; BERT; automated scoring of translations; large-scale translation
contest

1. Introduction

In recent years, large language models, powered by advanced deep learning tech-
niques, have revolutionized the field of natural language processing (NLP) and found
extensive applications across various domains. These models, often pre-trained on massive
datasets, have demonstrated remarkable capabilities in a wide range of NLP tasks, and they
can be fine-tuned to improve performance on various downstream tasks, such as sentence
similarity [1–3], translation [4–6], text classification [7–10], question answering [11–13],
summarization [14–17], etc. Additionally, the emergence of Big Data provides opportuni-
ties to leverage large amounts of data for building high-quality models and improving the
performance of NLP systems.

This study explores the possibility of developing a system for the automated scoring
of translations for large-scale translation contests based on the large language model, the
Bidirectional Encoder Representations from Transformers (BERT). The scoring of transla-
tions in large-scale translation contests suffers from challenges related to the huge growth
in the number of participants. In the 31st Han Suyin International Translation Contest, the
total number of valid Chinese-to-English (C–E) and English-to-Chinese (E–C) translations
exceeded 10,000, including 3822 C–E submissions and 6825 E–C submissions. As the as-
sessment of translations is a time-consuming and labor-intensive process, it significantly
increases the costs in terms of time, manpower, and money, all of which greatly increase
the burden on the organizing committee.

The automated scoring of translations for the large-scale translation contest, Han
Suyin International Translation Contest, focuses on selecting high-quality translations for
awards, rather than assigning scores to translations like those assigned in an examination.
Therefore, a good approach is expected to satisfactorily predict the ranking of transla-
tions on an independent basis according to translation quality and sift out high-quality
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translations potentially shortlisted for prizes. The selective nature of translation contests
makes automated scoring possible. This paper explores the possibility of applying BERT
to the automated scoring of translations for the large-scale translation contest with a view
to addressing the problems mentioned above. Spearman’s rank correlation (r) between
the expected ranking (actual ranking) and the predicted ranking (automated assessment
conducted by the system), mean absolute error rate of ranking and maximum absolute
error rate of ranking were used for model evaluation. Accuracy, recall and F-measure were
used for the reliability analysis.

This paper has two main contributions. First, it contributes to the field by providing
empirical evidence of the viability of automated translation scoring systems based on
BERT models focusing specifically on the evaluation of translations in the context of a
well-established translation contest, thereby demonstrating real-world applicability and
relevance. Second, it establishes effective methods for processing lengthy texts to conform
with BERT’s 512-token input constraint.

The remainder of this article is organized as follows. Section 2 shows an overview
of previous research related to the topic. Section 3 provides a detailed exposition of the
research methodology applied in this study, encompassing the corpus, BERT models, and
research procedures. Sections 4 and 5 discuss the research findings in depth and engage in
subsequent discussions on BERT in the automated scoring of C–E and E–C translations.
The concluding remarks are summarized in Section 6.

2. Related Work

This section provides a comprehensive review of pertinent studies, focusing on a
key concept—semantic similarity, and exploring approaches based on similarity for the
assessment of translation.

2.1. A Key Concept: Semantic Similarity

Semantic similarity, as an important concept, is introduced in this study, as translation
is a kind of restricted writing that is expected to semantically express the same content with
the original text in a new language. Namely, if a translated text is semantically similar to
the original text, it can be seen as a good translation.

Semantic similarity is a method to compute the semantic distance between two con-
cepts according to a given ontology [18], and it relates to computing the similarity between
concepts that are not lexically similar [19]. It is based on the likeness of semantic meaning,
regardless of graphical and lexical similarity. It yields high values for pairs of words in a
semantic relation (synonyms, hyponyms, free associations, etc.) and low values for all other,
unrelated pairs [20]. For example, while the English words “CAR” and “AUTOMOBILE”,
look different in form, they have a quite high degree of semantic similarity because they
share common features at the semantic level. However, the words “LEAD” and “HEAD”
have a low degree of semantic similarity even though they look similar and share 75% of
the same letters in the same positions. It seems to be a good solution to the problem that
the reference translations provided by the experts cannot include all acceptable translations.
To be specific, if the reference translation provides “CAR”, and the word “AUTOMOBILE”
then appears in a translated text, this can be well identified as a kind of expression highly
similar to “CAR”. By introducing semantic similarity, the assessment of translation quality
can be transformed into a problem of how to calculate the degree of overall semantic
similarity between a participant’s translation and several expert translations. The higher
the value of semantic similarity, the higher the quality of the translation. Conversely, if the
value of semantic similarity is low, it indicates the lower quality of a translation.

2.2. Similarity-Based Approaches

Similarity-based approaches transform the task of assessment into similarity calcula-
tions. The assumption behind this method is prosed by Papineni et al. [21], “The closer a
machine translation is to a professional human translation, the better it is”. To be specific,
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for a machine translation, the degree of similarity between it and one or more reference
human translations determines its translation quality. There are a number of measures
to calculate the degree of similarity, all of which are expected to achieve the same goal,
which is to generate a numerical metric as the result. In terms of assessment measures,
there are three main measures: Levenshtein distance-based, n-gram co-occurrence-based,
and vector-based.

The proposal of distance measure approach is based on Levenshtein distance calcula-
tions [22], a string comparison metric that counts the number of edit operations (insertion,
deletion, replacement and swap) required to transform one string into another [23]. As a
sensitive measure with which distances between strings (in this case transcriptions of word
pronunciations) can be calculated [24], it is an efficient and reliable method for computing
string alignments [25]. The number of operations required is inversely proportional to
the quality of the translation. In 1992, Su et al. [26] firstly employed it to assess machine
translation quality with one reference human translation so that the assessment process
could be done quickly and automatically. Subsequently, Nießen et al. [27] and Akiba
et al. [28] tried to use multiple reference human translations in a dataset. Continuously
upgraded by introducing advanced models like bag-of-words [29], the accuracy of scoring
has been improved. Various measures for the automated assessment of machine translation
quality, such as WER [29], TER [30], CDer [31], etc., are based on Levenshtein distance.

The n-gram co-occurrence statistics method is an innovative assessment method
for machine translation. The assessment system, developed on the basis of n-grams co-
occurrence statistics, is still widely used in various assessment tasks in the field of NLP. The
core of this method is that “a good translation will have a distribution of n-grams similar to
other good translations” [32]. To be specific, the segments in the tested translation text are
compared with the corresponding aligned segments in the reference translation texts based
on the number of their n-grams. The number of all the compared segments finally enter the
final score calculation with various weights and factors. The main representative systems
are BLEU [21], NIST [33] and METEOR [34].

For the similarity-based approaches mentioned above, the assessment reliability
largely depends on the set of reference human translations. If the computer-generated
translation is similar to one or more reference translations, it will be considered a good
translation. While translations with a high degree of similarity are generally of high qual-
ity and have relatively reliable scoring accuracy, translations with low similarity are not
necessarily bad translations, as reference translations cannot encompass all acceptable
translations. This means that the matching rate of synonyms may be low. A limited number
of reference translations will likely reduce the reliability of the assessment. Moreover,
the process requires a significant amount of manual intervention, as invited experts must
contribute to building the set of reference human translations.

Semantic similarity between two long texts can also be achieved by vectorizing them
and then comparing the values of the two vectors generated by large language models. The
vectorization of words can technically be achieved by word embedding programs such
as Word2Vec [35,36]. The linguistic theoretical basis comes from Distributional Hypothe-
sis [37], that is, words that occur in the same contexts tend to have similar meanings. Based
on Word2Vec, Doc2Vec upgraded semantic similarity calculation to a document level [38].
BERT is designed to pre-train deep bidirectional representations from unlabeled text by
conditioning on both the left and right context in all layers [39]. This allows it to obtain
context-aware embeddings for words and documents as it captures intricate semantic
relationships and contextual information. A vector space model can be built and used to
calculate semantic similarity after a large amount of corpus training, which can accurately
identify the translations semantically similar to the expert translations and is not restricted
by the languages and genres of the texts. The overall semantic similarity between two
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texts can be derived by computing the cosine value between their document vectors. For
instance, the cosine value of text A and text B can be calculated by Equation (1):

Similarity(A, B) = cosθ =
A × B

∥A∥ × ∥B∥ (1)

where ∥A∥ and ∥B∥ are the Euclidean norms (or magnitudes) of the vectors A and B,
respectively.

This study endeavors to employ the vector-based approach utilizing the large language
models, the BERT series, for the automated evaluation of translations in a large-scale
translation contest. BERT models offer a unique combination of contextual understanding,
bidirectional encoding, and pre-training on large corpora, which collectively enhance the
accuracy and effectiveness of semantic similarity-based approaches for translation scoring.
This saves time, energy, knowledge, and resources that would otherwise be required to train
a language-processing model from scratch. It fills a gap in the field by demonstrating the
effectiveness of BERT models in automating the scoring process for large-scale translation
contests, which traditionally rely on manual assessment.

3. Materials and Methods

This section introduces some issues related to the methodology employed in this study,
including the corpus, BERT models, and research procedures.

3.1. The Corpus

The corpus used in this study consists of participant and expert translations from
the 31st Han Suyin International Translation Contest. The contest has a long history and
is considered the most prestigious translation contest in China. It has inspired many
young people to learn translation and has provided highly trained translators for various
industries and has contributed to the development of translation teaching in China.

The data used in this research consist of participant translations and expert translations
from the 31st Contest. As shown in Table 1, the sub-corpus used in this study consists of
two parts: C–E translations and E–C translations. The C–E set includes 3822 participant
translations and 4 expert translations, while the E–C set includes 6825 participant transla-
tions and 4 expert translations. The expert translations are provided by senior translation
experts with extensive experience in Chinese and English translation.

Table 1. The corpus.

Group Number of Expert Translations Number of Valid Translations

C–E Translations 4 3822
E–C Translations 4 6825

3.2. BERT Models

This paper employs different BERT models tailored to the system design within the
domain of English-to-Chinese and Chinese-to-English translation.

For C–E translations, BERT models were tested in several variations, including bert-
base-uncased, bert-large-uncased, bert-base-cased, and bert-large-cased, which were orig-
inally released for cased and uncased input text. The differences between these models
primarily lie in their size (number of parameters) and whether they are case-sensitive or
case-insensitive during tokenization.

For E–C translation, the bert-base-chinese model was used for E–C translations. The
model is pre-trained on a massive amount of Chinese text data, learning to predict masked
words within sentences and understand the relationships between words in context.

As the input length of BERT is limited to 512 tokens, it becomes a challenge to apply
it to long texts in this research, where the texts to be translated are significantly longer
than 512 tokens. Therefore, there is a need to preprocess the input text in a way that it can
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be truncated or split into smaller segments of 512 tokens or less, while still preserving its
semantic meaning.

There are two common pre-processing strategies that can be used to limit the input text
to 512 tokens. The first approach is text truncation, which involves cutting off the text after
the first 512 tokens and dropping the rest. However, this can result in the loss of valuable
information and the resulting vector may not fully represent the global information of the
entire text. The second strategy is to use summarization to condense the translated text into
a summary of no more than 512 tokens. This limits the length of the text to what BERT can
handle. The summary text captures the main information of the original text, and only the
information that is not critical to the text is lost. Therefore, the vector of the summary text
can generally be seen as representing the semantic content of the entire text. However, this
also fails to capture the global information of the entire text. Thus, we propose to apply the
method of segmentation in this study, which involves comparing the mean embeddings of
all the paragraphs in a text as a whole, where all the paragraphs are within 512 tokens. After
pre-processing, the BERT model, acting as a text encoder, outputs a vector that captures
semantic information from the input text.

3.3. Procedures

The NLP tool used in the study is Python. The process for the implementation of
this study involves four main steps, namely, synthetic data generation, model evaluation,
scoring, and reliability analysis.

3.3.1. Synthetic Data Generation

In the first place, we perform synthetic data generation. Due to insufficient number
of translations rated by experts, a “Text-to-Text” synthesis method was utilized to create
synthetic texts based on the four expert translations, in order to obtain a sufficient number
of translations with known expected ranking. This step was the data preparation for model
evaluation, and the texts generated were used for model evaluation to enable an efficient
and quick understanding of model quality.

As shown in Table 2, 100 synthetic texts could be generated for each expert translation.
The first synthetic text contained the first 1% of the expert translation, was assigned a
score of 1 and ranked 100th. The second synthetic text contained the first 2% of the
expert translation, which scored 2 and ranked 99th. This process was repeated, generating
four sets of synthetic texts with four known expected ranking lists based on the four
expert translations.

Table 2. Synthetic texts generated by an expert translation.

Synthetic Texts Score Rank

1% Expert translation text 1 100
2% Expert translation text 2 99
3% Expert translation text 3 98

· · · · · · · · ·
99% Expert translation text 99 2
100% Expert translation text 100 1

3.3.2. Model Evaluation

After generating enough translations with known expected rankings, a model eval-
uation is necessary to ensure that the ranks generated by the system are reliable. This
evaluation process includes analysis of the results of model evaluation indicators.

• Indicators for model evaluation

Given that the system built in this study is based on “picking out the good translations
and leaving the bad ones”, the following three indicators were used to evaluate the models:
(1) Spearman’s rank correlation between the expected ranking (actual ranking) and the
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predicted ranking (automated assessment done by the system); (2) mean absolute error rate
of ranking; and (3) maximum absolute error rate of ranking.

1. Spearman’s Rank Correlation Coefficient

According to Weigle [40], the correlation coefficient is a standard measure for inter-
rater reliability between Rater 1 and Rater 2, which can be computed using the popular
Equation (2):

r = 1 −
6∑ d2

i
n(n2 − 1)

(2)

where r represents Spearman’s rank correlation coefficient, di represents difference between
the two ranks of each observation, n represents number of observations.

In this study, the expected ranking is considered to have been done by Rater 1, while
the predicted ranking was considered to have been done by Rater 2. As ranking is the
focus, Spearman’s rank correlation was used for the analysis since it effectively tests the
association between two ranked variables. The Spearman’s rank correlation coefficient, r,
ranges from −1 to +1. A r of +1 indicates a perfect association of ranks, a r of zero indicates
no association between ranks, and a r of −1 indicates a perfect negative association of ranks.
The closer r is to zero, the weaker the association between the ranked variables. Thus, if r is
close to +1, it indicates a strong positive correlation between the expected ranking and the
predicted ranking, implying that the system is a highly reliable rater. Conversely, if r is low,
the system is deemed to be of low reliability.

Then, the four sets of synthetic texts are assessed by the designed system, and four
predicted ranking lists can be obtained. The overall reliability of the system is shown in
Equation (3):

r f inal =
4

∑
i=1

ri (3)

where r f inal is the average of the four Spearman’s rank correlation coefficients (r) of the four
predicted ranking lists generated by the designed system compared with their expected
ranking lists.

2. Absolute error rate of ranking

The mean absolute error rate of ranking and the maximum absolute error rate of
ranking are also included in the reliability analysis as they can reflect the prediction error
rate of the automated assessment system in two dimensions. Let D1,j denotes the synthetic
text generated with the first j% of “Expert Translation 1”. The absolute ranking error,
denoted by |E1,j|, is defined as the absolute value of the difference between the expected
ranking and the predicted ranking of D1,j. The absolute ranking error rate, denoted by P1,j,

is calculated as
E1,j
100 . For example, suppose D1,1 is expected to rank 100th, but is ranked 98th

by the automated assessment system. Then |E1,1| is equal to |100 − 98| = 2, and P1,1 is
equal to |2|

|100| = 0.02. The mean absolute error rate of ranking can be expressed as follows in
Equation (4):

Mean(P) =
100

∑
j=1

4

∑
i=1

Pi,j/4 × 100 (4)

where Pi,j represents the absolute ranking error rate of synthetic text j generated on the
basis of Expert Translation i. Mean (P) represents the average absolute ranking error rate of
all synthetic texts generated in this study.

The mean absolute error rate of ranking is used in this study instead of the mean error
rate of ranking. This is because the mean error rate can have both positive and negative
error rate values, which may sometimes cancel each other out when performing algebraic
summation. Consequently, the mean error rate may not provide an accurate indication of
the final error rate. The mean absolute error rate, on the other hand, accurately reflects the
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magnitude of the prediction error rate and overcomes the shortcomings of the mean error
rate to a certain extent.

The maximum absolute ranking error rate can be calculated using the following
Equation (5):

Max(P) = Max


P1,1, P1,2, . . . , P1,j, . . . , P1,99, P1,100
P2,1, P2,2, . . . , P2,j, . . . , P2,99, P2,100
P3,1, P3,2, . . . , P3,j, . . . , P3,99, P3,100
P4,1, P4,2, . . . , P4,j, . . . , P4,99, P4,100

(5)

where P1,j, P2,j, P3,j and P4,j are the absolute ranking error rates of the synthetic texts with
the first j% of Expert Translation 1, Expert Translation 2, Expert Translation 3, and Expert
Translation 4, respectively.

3.3.3. Scoring

After the model evaluation, the translation scoring was processed, which involved the
use of the designed automated scoring systems to score the participant translations and
rank them according to their semantic similarity compared with the expert translations.
Each system achieved this by comparing each participant translation to all the expert
translations and generating a translation quality ranking list. During this process, words,
phrases, and sentences with the same or different expressions but that were semantically
similar to any of the expert translations were effectively identified. In this study, all the
expert translations were considered to have full marks, and any participant translation
that was very similar to any of them was considered to be a good translation. The two sets
of translations used in this study were the translations provided by the experts and the
translations submitted by the participants, as shown below:

(1) expert translations = [expert1, expert2, expert3, expert4]
(2) participant translations = [participant1, participant2, . . ., participantn].

First, a text-cleaning process was carried out using Python programming language
with a custom-written code.

Next, the segmentation method was used to obtain the mean embeddings of all the
paragraphs in a text as a whole. The final representation of the participant translations
and expert translations can be obtained by calculating the mean embeddings of all its
paragraphs, as shown in Equation (6):

etext =

N
∑

i=1
ei

N
(6)

where etext refers to the mean embeddings of a translated text with N paragraphs.
For each participant translation, the system compares it with each expert translation

and selects the maximum cosine similarity measure out of the four comparisons as the
final similarity score. This approach allows for a more comprehensive assessment of the
participant translations, taking into account potential variations in the expert translations,
as shown in Equation (7):

sim1 = max


cos_sim(eparticipant1 , eexpert1)
cos_sim(eparticipant1 , eexpert2)
cos_sim(eparticipant1 , eexpert3)
cos_sim(eparticipant1 , eexpert4)

, . . . , simn = max


cos_sim(eparticipantn , eexpert1)
cos_sim(eparticipantn , eexpert2)
cos_sim(eparticipantn , eexpert3)
cos_sim(eparticipantn , eexpert4)

(7)
where cos_sim refers to the calculation of the cosine of the participant translation and the
expert translation using Equation (1).
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After obtaining the final similarity measures, a ranking list was generated based on
these similarity measures as shown in Equation (8):

rank (sim1, sim2, . . . , simn) (8)

Finally, the top translations proceeded to the human raters.
Drawing from the BERT system’s output, human raters can proceed with a second-

round assessment of translations identified by the system as of relatively high quality.
Human raters can provide additional context or insights that may not be captured by
automated analysis alone, leading to more comprehensive and reliable evaluations for
the final rewards. The integration of machine and manual scoring not only decreases
evaluation time significantly but also conserves resources.

3.3.4. Measures of Reliability

The final step is the reliability analysis. Reliability entails a comprehensive comparison
between scores assigned by the automated scoring systems and human raters based on
accuracy, recall, and F0.5-Score. Given that automated scoring systems are designed to
emulate human scoring, it is systematically evaluated against human scoring metrics. This
evaluation serves as a benchmark for assessing the alignment and effectiveness of system
scoring in replicating human scoring. A set of randomly selected translations, including
138 C–E participant translations and 262 E–C participant translations, which have been
manually assessed, was used for the reliability analysis.

• Accuracy

Accuracy is a metric used to measure how well a model performs across all categories.
It is calculated by dividing the number of correct predictions by the total number of
predictions. Mathematically, it can be expressed as shown in Equation (9):

Accuracy =
Truepositive + Truenegative

Truepositive + Truenegative + Falsepositive + Falsenegative
(9)

where Truepositive are the number of positive samples correctly identified by the system,
Truenegative are the number of negative samples correctly rejected by the system, Falsepositive
are the number of negative samples incorrectly identified by the system, and Falsenegative
are the number of positive samples that incorrectly rejected by the system.

• Recall

Recall is a metric used to measure the ability of a system to correctly identify all
positive samples. It is calculated as the ratio of the number of true positives to the sum of
true positives and false negatives, as shown in Equation (10):

Recall =
Truepositive

Truepositive + Falsenegative
(10)

where Truepositive are the number of positive samples correctly identified by the system,
and Falsenegative are the number of positive samples that incorrectly rejected by the system.

• F-measure

F-measure is a metric that combines both precision and recall into a single measure. It
is often used to assess the overall performance of a classification system. The F0.5-Score is
a variant of the F-measure that places more emphasis on precision than recall, as shown in
Equation (11):

F0.5 = (1 + 0.52)
Precision × Recall

(0.52 × Precision) + Recall
(11)

Precision is calculated as the ratio of the number of positive samples correctly classi-
fied to the total number of samples classified as positive (correct or incorrect). Precision
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measures the accuracy of the system in classifying samples as positive. The higher the
value of precision, the fewer false positives are predicted. It can be calculated as shown in
Equation (12):

Precision =
Truepositive

Truepositive+Falsepositive (12)

where Precision and Recall are as defined previously, the F0.5-Score ranges between 0 and
1, with higher values indicating better performance. A score of 1 indicates perfect precision
and recall, while a score of 0 indicates no correct predictions.

4. Results

In this section, the evaluation results of the automated scoring systems for C–E trans-
lations based on four English BERT models: bert-base-uncased, bert-base-cased, bert-large-
uncased, and bert-large-cased, and the automated scoring systems for E–C translations
based on the Chinese BERT model: bert-base-chinese, are reported.

4.1. C–E Translations
4.1.1. Results of Model Selection Indicators

Table 3 demonstrates the overall results of model selection indicators for the BERT-
based system (C–E). In Table 3, the values of r are all greater than 0.99, with a corresponding
p < 2.2 × 10−16, indicating a strong correlation between the expected ranking and the
predicted ranking. For all the BERT models, the mean absolute error rates of ranking are
all below 0.0229, and the maximum absolute error rates of ranking do not exceed 0.1400.
These results suggest that the average and maximum fluctuations are under 2.29% and
14%, respectively, indicating that high-quality translations are not being filtered out.

Table 3. Results of model selection indicators for BERT-based systems (C–E).

Measures Spearman’s Rank Correlation
Coefficient (r) Significance (p) Mean Absolute Error

Rate of Ranking
Maximum Absolute

Error Rate of Ranking

bert-base-uncased 0.996504650 < 2.2 × 10−16 0.0137 0.1100
bert-base-cased 0.998805875 < 2.2 × 10−16 0.0077 0.0700

bert-large-uncased 0.991977225 < 2.2 × 10−16 0.0229 0.1400
bert-large-cased 0.999039925 < 2.2 × 10−16 0.0066 0.0600

To be specific, there are four English BERT models: base and large variations, for
both cased and uncased input text. The BERT (large cased)-based system outperforms
the other models, with a correlation coefficient (r) of 0.999039925 and a corresponding
p < 2.2 × 10−16. The mean absolute error rate of ranking is 0.0066, and the maximum
absolute error rate of ranking is 0.0600. The BERT (large uncased)-based system performs
relatively poorly in comparison to the other three systems, but still exhibits a correlation
coefficient of over 0.99 with a corresponding p < 2.2 × 10−16. The mean absolute error
rate of ranking is 0.0229, and the maximum absolute error rate of ranking is 0.1400. These
results suggest that the BERT-based system is reliable enough to predict the ranking of
C–E translations.

Additionally, the absolute error rate curves in Figures 1–4 reveal that the error rates
are remarkably low.

Figure 1 illustrates the absolute error rate of ranking of synthetic texts generated based
on the four expert translations in the BERT-based system (C–E, bert-base-uncased), with
four sets of curves in (a–d). Overall, the figure shows a low absolute error rate, with a
mean absolute error rate of ranking of 0.0137. Specifically, among the 400 synthetic texts,
49.5% of them have predicted rankings that match their expected rankings, resulting in an
absolute error rate of 0. For 46% of the texts, the absolute error rates fall in the range of 0.01
to 0.05. Only 4.5% of the texts have absolute error rates of more than 0.05, with a maximum
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of 0.11. These results indicate that the errors of the BERT (base uncased)-based system do
not significantly impact the selection of the top-ranked C–E translations.
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Figure 2 depicts the absolute error rate of ranking of synthetic texts generated based
on the four expert translations in the BERT-based system (C–E, bert-base-cased), with
four sets of curves in (a–d). Overall, the figure indicates a low absolute error rate, with a
mean absolute error rate of ranking of 0.0077. Specifically, among the 400 synthetic texts,
59.25% of them have predicted rankings that match their expected rankings, resulting in an
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absolute error rate of 0. For 40.25% of the texts, the absolute error rates fall in the range
of 0.01 to 0.05. Only 0.5% of the texts have absolute error rates of more than 0.05, with a
maximum of 0.07. These results suggest that the errors of the BERT (base cased)-based
system do not have a significant impact on the selection of the top-ranked C–E translations.

Figure 3 illustrates the absolute error rate of ranking of synthetic texts generated using
the BERT-based system (C–E, bert-large-uncased), with four sets of curves in (a–d). The
results show a low absolute error rate, with a mean absolute error rate of ranking of 0.0229.
Specifically, among the 400 synthetic texts, 28.25% of them had predicted rankings that
matched their expected rankings with an absolute error rate of 0. For 60.75% of the texts,
the absolute error rates were in the range of 0.01 to 0.05. Only 11% of the texts had absolute
error rates greater than 0.05, with a maximum of 0.14, which does not seem to have a
significant impact on the selection of the top-ranked C–E translations.

Figure 4 shows the absolute error rate of ranking of synthetic texts generated based on
the four expert translations in the BERT-based system (C–E, bert-large-cased), with four
sets of curves in (a–d). Overall, it presents a low absolute error rate, with the mean absolute
error rate of ranking of 0.0066. More specifically, among the 400 synthetic texts, 60.25% of
the predicted rankings are the same as their expected rankings, while 38.75% have absolute
error rates in the range of 0.01 to 0.05. Only 1% of the texts have absolute error rates of
more than 0.05, with a maximum of 0.06, which does not seem to have a significant impact
on the selection of the top-ranked C–E translations.

4.1.2. Reliability Report

The results shown in Table 4 indicate that the BERT-based systems (C–E) appear to
have a high degree of agreement with human raters. Specifically, the accuracy ranges from
0.56 to 0.66, the recall ranges from 0.63 to 0.72, and F0.5-Score ranges from 0.63 to 0.72, which
are all encouraging. Interestingly, the accuracy, recall, and F0.5-Score of the four kinds of
models do not vary greatly from each other. The BERT (base uncased)-based system and
BERT (large cased)-based system both have a relatively better agreement with human raters
in comparison with BERT (base cased)-based system and BERT (large uncased)-based, with
an accuracy of 0.6522, and a recall and F0.5-Score of 0.7108.

Table 4. Consistency between BERT-based system and human raters (C–E).

Model Accuracy Recall F0.5-Score

bert-base-uncased 0.6522 0.7108 0.7108
bert-base-cased 0.5652 0.6385 0.6385

bert-large-uncased 0.6377 0.6887 0.6887
bert-large-cased 0.6522 0.7108 0.7108

After conducting the reliability analysis, it can be concluded that the BERT-based
systems (C–E) all have high reliability, in which the BERT-based system (C–E, bert-base-
uncased) and BERT-based system (C–E, bert-large-cased) perform the best.

4.2. E–C Translations
4.2.1. Results of Model Selection Indicators

Table 5 shows the overall indicator results of model selection for BERT-based system
(E–C) is good. In Table 5, the value of r is 0.999157000 with a corresponding p < 2.2× 10−16,
which indicates a strong correlation between the expected ranking and the predicted
ranking. The value of the mean absolute error rate of ranking is 0.0051, and the value of
the maximum absolute error rate of ranking is 0.0700, which indicates that the average
fluctuation is under 0.51%, and that the maximum fluctuation is no more than 7%; therefore,
it can be considered that the high-quality translations are not filtered out.
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Table 5. Results of model selection indicators for BERT-based system (E–C).

Measures Spearman’s Rank
Correlation Coefficient (r)

Significance
(p)

Mean Absolute Error
Rate of Ranking

Maximum Absolute
Error Rate of Ranking

bert-base-chinese 0.999156900 < 2.2 × 10−16 0.0051 0.0700

Figure 5 illustrates the absolute error rate of ranking of synthetic texts generated based
on the four expert translations in the BERT-based system (E–C, bert-base-chinese), with
four sets of curves in (a–d). Overall, the figure shows a low absolute error rate, with a mean
absolute error rate of ranking of 0.0051. Specifically, out of the 400 synthetic texts, 73.75%
of them have predicted rankings that match their expected rankings, with an absolute error
rate of 0. For 25.50% of the texts, the absolute error rates range from 0.01 to 0.05, while
only 0.75% of the texts have absolute error rates higher than 0.05, with a maximum of
0.07. These error rates seem unlikely to significantly impact the selection of the top-ranked
E–C translations.
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4.2.2. Reliability Report

The BERT-based system (E–C) exhibits a high degree of consistency with human raters.
Table 6 presents the system’s results, which demonstrate good accuracy at nearly 0.75, with
recall and F0.5-scores of nearly 0.85.

Table 6. Consistency between BERT-based systems (E–C) and human raters.

Text Pre-Processing Accuracy Recall F0.5-Score

bert-base-chinese 0.7480 0.8421 0.8421
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After conducting the reliability analysis, it can be concluded that the BERT-based
system (E–C, bert-base-chinese) has high reliability and can be put into operation.

5. Machine Translation Detection

With the development of NLP, there is concern as to whether machine translations will
be submitted directly to the contest and whether the system will regard such translations
as high-quality translations. Thus, a test was conducted to see if the machine-translated
texts could be recognized as good translations by the system. Four widely used machine
translation services, Baidu translation (fanyi.baidu.com, accessed on 18 November 2022),
DeepL translation (deepl.com, accessed on 18 November 2022), Google translation (trans-
late.google.com, accessed on 18 November 2022), and Sogou translation (fanyi.sogou.com.
accessed on 18 November 2022), were selected for this test.

For C–E systems, a total of 142 translations, including the four machine translations,
were entered into the BERT-based systems for scoring, and the average score was 83.09,
79.15, 78.96, and 78.97, with a maximum score of 100 and a minimum score of 0. The
scores for the machine translations are shown in Tables 7–10. Although all the machine
translations receive a certain number of points, indicating that they are acceptable, none of
them receive a very high score, indicating that there is still a gap between the quality of the
machine translations and the quality of the human translations.

Table 7. Machine translations scored by BERT-based system (C–E, bert-base-uncased).

Machine Translation Score

Baidu translation 80.25
DeepL translation 83.28
Google translation 81.52
Sogou translation 82.91

Table 8. Machine translations scored by BERT-based system (C–E, bert-base-cased).

Machine Translation Score

Baidu translation 53.02
DeepL translation 67.53
Google translation 59.33
Sogou translation 56.13

Table 9. Machine translations scored by BERT-based system (C–E, bert-large-uncased).

Machine Translation Score

Baidu translation 80.50
DeepL translation 84.34
Google translation 74.82
Sogou translation 77.71

Table 10. Machine translations scored by BERT-based system (C–E, bert-large-cased).

Machine Translation Score

Baidu translation 49.15
DeepL translation 61.66
Google translation 53.86
Sogou translation 49.34

For the E–C system, a total of 266 translations, including the four machine translations,
were entered into the system for scoring, and the average score was 86.13, with a maximum
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score of 100 and a minimum score of 0. The scores for the machine translations are shown
in Table 11. It can be seen that, although all the machine translations receive a certain
number of points, indicating that they are acceptable, none of them receive a very high
score, indicating that there is still a gap between the quality of the machine translations
and the quality of the human translations.

Table 11. Machine translations scored by BERT-based system (E–C, bert-base-chinese).

Machine Translation Score

Baidu translation 77.64
DeepL translation 72.29
Google translation 61.90
Sogou translation 47.63

6. Conclusions

The experimental results show that the BERT-assist system serves as a reliable and
efficient second-rater for the large-scale translation contest in terms of translation qual-
ity, as it can effectively sift out high-quality translations with a reliability of r = 0.9 or
higher. Moreover, it demonstrates the capability to assess 10,000 translations within a mere
3 h timeframe.

The consistency between the system-generated scores and the human-assigned scores
is satisfactory, with a maximum accuracy 0.65+ (C–E) and 0.74+ (E–C); a maximum recall
of 0.71+ (C–E) and 0.84+ (E–C); and a maximum F0.5-Score of 0.71+ (C–E) and 0.84+ (E–C).
The use of segmentation provides possibilities to handle the BERT input constraint.

While this preliminary case study demonstrates the effectiveness of a BERT-based
system in predicting translation rankings based on translation quality with a high degree
of confidence and sifting out high-quality translations that can potentially be awarded,
further validation is necessary to ensure its generalizability. Additional studies, including
evaluations in diverse, large-scale translation contests, are essential. Furthermore, con-
sidering the potential variations in translation requirements across different genres, such
as expository, descriptive, and narrative genres, it may be prudent to develop different
systems tailored to each genre, with each utilizing specific, large language models.
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