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Abstract: Accurate urban PM2.5 forecasting serves a crucial function in air pollution warning and
human health monitoring. Recently, deep learning techniques have been widely employed for
urban PM2.5 forecasting. Unfortunately, two problems exist: (1) Most techniques are focused on
training and prediction on a central cloud. As the number of monitoring sites grows and the data
explodes, handling a large amount of data on the central cloud can cause tremendous computational
pressures and increase the risk of data leakages. (2) Existing methods lack an adaptive layer to capture
the varying impacts of different external factors (e.g., weather conditions, temperature, and wind
speed). In this paper, a federated deep learning network (FedDeep) is developed for edge-assisted
multi-urban PM2.5 forecasting. First, we assign each urban region to an edge cloud server (ECS).
An external spatio-temporal network (ESTNet) is then deployed on each ECS. Data from different
urban regions are uploaded to the corresponding ECS for training, which avoids processing all the
data on the central cloud and effectively alleviates computational pressure and data leakage issues.
Second, in ESTNet, we develop a gating fusion layer to adaptively fuse external factors to improve
prediction accuracy. Finally, we adopted PM2.5 data collected from air quality monitoring sites
in 13 prefecture-level cities, Jiangsu Province for validation. The experimental results proved that
FedDeep outperformed the advanced baselines in terms of prediction accuracy and model efficiency.

Keywords: federated learning; edge computing; deep learning; multi-urban PM2.5 forecasting

1. Introduction

After entering the 21st century, the issue of PM2.5 has become increasingly severe
and garnered significant attention [1]. Especially in urban regions, PM2.5 significantly
affects human health, economic development, and social progress [2]. The prediction of
PM2.5 concentrations can assist in better tackling urban air quality issues. Following the
production of accurate urban PM2.5 estimations, the relevant authorities can implement
more powerful strategies, such as regulating industrial production and issuing travel
warnings [3,4].

Currently, many urban PM2.5 forecasting methods are being developed, and some
of them, relying on deep learning technologies, can accomplish high-precision prediction.
Unfortunately, most researchers train their models on a central cloud [5,6]. For instance,
Du et al. [6] deployed a deep-learning-based method DAQFF on the central cloud for
air pollution prediction using two real-world datasets. Experimental results proved that
DAQFF achieved satisfactory prediction accuracy. As the number of monitoring sites
increases and the volume of collected data sharply rises, massive amounts of data and
computational tasks are uploaded to the server, which leads to two issues: (1) This can put
tremendous computational pressure on the central cloud, manifested by extended training
times and high GPU memory usage. Hence, it is difficult to achieve timely prediction.
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For instance, in some large-scale air pollution predictions, i.e., with a large number of
sensors, the central cloud typically takes approximately 30 min to complete an epoch of
training. (2) We store all data on this server, thus creating a greater security risk [7–9].
The main reason for this is that the central cloud typically consolidates a large volume of
data. In the event of a data leakage, this could lead to incalculable losses.

External factors, e.g., wind speed, temperature, precipitation, humidity, etc., have a
significant impact on changes in urban PM2.5. For instance, temperature influences the at-
mosphere and ventilation states. The deposition of particulate matter is affected by precipi-
tation and humidity. High wind speeds accelerate the diffusion of particulate matter [10–12].
However, the existing models neglect these external features or adopt equal weights for
various external features when integrating them into prediction approaches [13–16]. For in-
stance, Liu et al. [15] fused meteorological factors with air pollution data through direct
summation in air pollution prediction. As a result, these methods fail to adaptively capture
different impacts of diverse external features. It is challenging to develop an adaptive
mechanism to extract the different impacts originating from external factors. One main
reason exists: it is nontrivial to quantify the effects of external factors on urban PM2.5 and
assign weights when integrating them with forecasting approaches.

In summary, two urgent issues need solutions in urban PM2.5 forecasting: (1) Dealing
with massive amounts of data on a central cloud generates huge computational pressures
and security risks. (2) The different impacts caused by various external features on urban
PM2.5 cannot be adaptively extracted. To tackle these issues, we present a novel federated
deep learning network entitled FedDeep for multi-urban PM2.5 forecasting. FedDeep is
inspired by horizontal federated learning. In particular, we first deploy an edge computing
server (ECS) [17] separately in each urban region. The data collected by the sensors within
the urban region are sent to the corresponding ECS. Leveraging the ability of edge com-
puting and data caching, the computing pressure on the central cloud can be effectively
alleviated through deploying an ECS adjacent to the source of data generation. Meanwhile,
data leakage on the central cloud can be circumvented. Second, the external spatio-temporal
network (ESTNet) is stored in each ECS for training and uploading gradients to the ESTNet
that is deployed on the central cloud. For each ESTNet, we design a gating fusion layer to
fuse urban PM2.5 features and external factors according to the diverse effects of various
external factors. This is achieved by categorizing the external factors according to their
types, then using one-hot encoding and fully connected networks (FCs) to embed them
into the same space for fusion, and finally leveraging non-linear functions for weighted
integration with urban PM2.5 features. In this way, our designed model can discern varia-
tions in the impacts generated by different external factors, which is of great significance for
identifying mutations in urban PM2.5. The main contributions of this work are as follows:

• Since multiple urban monitoring sites produce massive amounts of PM2.5 data, high
computational pressure and data leakage levels occur when leveraging only a central
cloud for all data and computing task. In light of this, we present an edge-based
federated learning architecture. Specifically, we deploy a separate ECS in each urban
region. The data acquired by the sensors in each urban region are uploaded to
the corresponding ECS instead of the central cloud for training, which effectively
mitigates the computational pressures on the central cloud and prevents security risks.
Subsequently, the gradients trained on the ECS are uploaded to the central cloud
for parameter updates, and then the model deployed on the central cloud predicts
the PM2.5 in all urban regions, which creates a “distributed training, centralized
prediction” mode.

• We design a novel ESTNet model, in which a gating fusion layer is proposed to
adaptively fuse external factors and urban PM2.5 features based on the different
impacts of external features.

• The experimental results on 13 prefecture-level cities in Jiangsu Province confirmed
that FedDeep outperformed other state-of-the-art baselines. Specifically, FedDeep
achieved the highest accuracy in predicting PM2.5 for the subsequent 12 h. Mean-
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while, FedDeep had a short training time and low GPU usage, thus showing its high
efficiency.

The remainder of this paper is organized as follows: Section 3 introduces our stud-
ied region, the data used, and the architecture of our proposed model. The experiment
description and result analysis are given in Section 4. Finally, Section 5 concludes this work.

2. Related Work
2.1. Air Pollution Prediction

Currently, air pollution prediction methods can be generally classified into three cate-
gories: contained deterministic, statistical, and deep learning methods. Deterministic meth-
ods adopt mathematical expressions, meteorological theories, and the physical–chemical
reactions of air pollution to simulate the transformation and diffusion processes of pol-
lutants [18]. Common methods include the weather research and forecasting model [19].
However, deterministic methods need to utilize a lot of prior knowledge, which limits their
prediction performance. To address this limitation, statistical methods have been proposed,
which employ principles of statistics to discovery the relationships between external factors
(e.g., meteorological data) and air pollution. Statistical methods can be divided into two
categories: classical statistical methods and shallow machine learning methods. Specifically,
classical statistical methods include the historical average (HA) [20]. For instance, HA [20]
was developed to forecast air quality in Delhi. Unfortunately, these methods are based
on linear assumptions, which impacts their prediction precision in a nonlinear problem
like air pollution forecasting. In light of these factors, shallow machine learning methods
(e.g., support vector regression (SVR) [21]) were proposed. Nonetheless, these methods fail
to consider spatio-temporal correlations in air pollution data.

With the advent of deep learning technology [22], the potential of this technology for
extracting spatio-temporal features is gradually being explored. Many researchers have
adopted deep-learning-based methods for air pollution prediction [23–25]. For instance,
Sayeed et al. proposed a convolutional neural network and long short-term memory
(CNN-LSTM) [24] to predict ozone concentrations over 24 h. Specifically, a convolutional
neural network (CNN) was proposed to extract spatial dependencies. Long short-term
memory (LSTM) was used to capture temporal dependencies. A CNN can only model the
road network in a standard form, e.g., 2D-matrix. Despite the benefits of convolutional
operations in mining spatial dependencies between neighboring sites, there are some
crucial spatial dependencies, such as the relationships between distant sensors, that are
challenging to express in the standard form. In view of this, graph neural networks
(e.g., graph attention network (GAT)) have attracted a lot of attention because of their
ability to represent a sensor network using graph theory. This can completely preserve the
original spatial relationships in the sensor network. For example, Han et al. [25] leveraged
a graph attention network and long short-term memory (GAT-LSTM) to predict PM2.5
over 24 h in Beijing. In particular, spatial relationships between nodes in the graph were
extracted by GAT, which introduced a spatial attention inspired by the transformer [26]
model. LSTM was adopted to capture temporal dependencies. Although these models
achieve accurate predictions, they are trained and predicted on a central cloud. This can
put computational pressure on the server. Meanwhile, the security risk increases. Moreover,
these methods fail to fuse external factors in an effective manner.

2.2. Federated Learning

Federated learning (FL) [27] is a widely used collaborative learning architecture. FL
avoids uploading training data to the central cloud, allowing ECSs to locally train a shared
global model using their own data. It has been applied in various fields [28,29]. For instance,
Gholizadeh and Musilek [28] predicted individual and aggregate electrical loads based on
FL. In air pollution prediction, FL is feasible because multiple monitoring sensors enable
knowledge sharing, leading to improved prediction accuracy.
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3. Materials and Methods

In this section, we consider multi-urban PM2.5 forecasting based on FL [27]. A novel
algorithm entitled FedDeep was designed, which is shown in Figure 1. In the following,
we overview the process of multi-urban PM2.5 prediction with FedDeep.

ESTNet

Data storage

External Factor 

Transmission

.

 

Edge Cloud 

Server

Encryption/Decryption

.

monitoring sites

Meteorological 

monitoring sites

Central Cloud

Figure 1. The overview of FedDeep.

3.1. Overview

FedDeep is customized based on historical PM2.5 concentrations and external factors
(e.g., weather conditions, temperature, and wind speed). In particular, the data collected
by the air quality monitoring and meteorological sites are transmitted to the ECS through
wireless links.

A system schematic of FedDeep is shown in Figure 1. An ECS deployed in each
urban region is responsible for data processing and computing offloading. Each ECS offers
computing resources for ESTNets to be trained using PM2.5 and external factors from corre-
sponding urban regions. For instance, Figure 1 indicates that the entire Jiangsu Province can
be regarded as 13 urban regions; that is, divided according to the boundaries of prefecture-
level cities. Note that the study area and data in this section are consistent with that of the
subsequent experimental simulations. The ECSs are defined as S = (S1, S2, . . . , SM), where
M = 13 denotes the total number of ECSs. D = (D1, D2, . . . , DM) is assumed as the set
of local dataset. Di serves as the local dataset i originated from urban region i, which is
transmitted to the ith ECS. Let ESTNet = ( ESTNet 1, ESTNet 2, . . ., ESTNet M) represent
the set of local ESTNet. Specifically, the local ESTNeti is deployed on ECS i for training
using the local dataset Di, and then the trained gradients are uploaded to the central cloud
to update the parameters of the global ESTNet. In this manner, the computational pressure
of the central cloud can be decreased through deploying ESTNet in a distributed way. In
addition, the central cloud does not have to store all the data, which decreases the risk of
data leakage.

In summary, realization of multi-urban PM2.5 forecasting can be organized into four
steps: In the first step, a ECS receives PM2.5 and external factors collected by sensors
through wireless links. In the following step, the ECS processes these data for training
the local ESTNet. Prior to model training, the model parameters in the ECS need to be
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encrypted and shared with models in other ECSs. In view of this, an ECS is required to
encrypt these parameters before sending, and then the other ECSs need to decrypt them
after receiving. In the last step, ECSs train corresponding ESTNets through local datasets,
and then upload the trained gradient to the central cloud to update the parameters of the
global ESTNet.

3.2. Local Estnet

Whether in the central cloud or edge, we deploy an ESTNet with the same structure.
As shown in Figure 2, ESTNet consists of four components: input embedding layer, gating
fusion layer, spatio-temporal learning layer, and prediction layer. Specifically, ESTNet
was designed as a hierarchical architecture. In the following, we detail how the data
flows through each component from the the perspective of the local ESTNet deployed on
the ECS i.

External Factors

Urban . data

[: ]

[: ]

. . .

FCs

External factors embedding 
× ×

.   
× ×

1-
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×

. . .
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Figure 2. The architecture of the local ESTNet deployed on the ECS i. First, fully connected networks
(FCs) are adopted to transform urban PM2.5 and external factors into HX ∈ P × ni × dmodel and
HTE ∈ P × ni × dmodel , respectively. Then, the gating fusion layer is utilized to fuse these two
features, which is represented as H ∈ P × ni × dmodel . Here, the fused feature at timestep tj

is Htj ∈ ni × dmodel . Furthermore, a spatio-temporal learning layer is proposed to mine spatio-
temporal correlations and the output representations of timestep tj are HSTtj ∈ ni × dmodel . Finally,
we leverage the decoder of seq2seq joint FCs to produce the prediction sequences, where YtP+k ∈ ni × F
denotes the predicted value of ni sensors in the urban region i at the predicted timestep tP+k. In
addition, ⊙ is a dot product. σ and tan stand for the activation functions sigmoid and tanh.

(1) Input Embedding Layer: For the local dataset Di, considering the collaborative
training of urban PM2.5 and external factors, it is necessary to standardize the dimensions
of these two data types. Assuming historical P timesteps of urban PM2.5 observations
X = (Xt1 , Xt2 , . . . , XtP) ∈ RP×ni×F, we adopt two-layer FCs to convert X from F into dmodel
dimensions, which can be denoted as HX = (Ht1 , Ht2 , . . . , HtP) ∈ RP×ni×dmodel , where ni
represents the number of air quality monitoring sites in an urban region i.

External factors, e.g., meteorological conditions, have a significant impact on urban
PM2.5. There are discrepancies in the impact of different external factors [10–12]. In this
work, we chose weather conditions, temperature, and wind speed as external factors.
To highlight different degrees of impact, we classified weather conditions into five different
types: sunny, overcast, rainy, snowy, and hazy, and then employ one-hot encoding to
convert each type into a vector. According to experience, we categorized the temperature
into 10 levels, with a temperature difference of 5 ◦C for each level. Based on the official
classification, wind speed was projected into 13 levels. Temperature and wind speed
were normalized proportionally in the range [0, 1]. Finally, we concatenated all external
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factors of the same timestep into a one-dimensional tensor E ∈ RZ, where Z stands for
the dimension of the concatenated tensor. The external factors of the different sites and
timesteps were concatenated to obtain the external factor representations of urban region
i, which is formalized as TE ∈ RP×ni×Z. To facilitate follow-up processing, two-layer
FCs are utilized to transform the TE to dmodel-dimension, which can be represented as
HTE ∈ RP×ni×dmodel .

(2) Gating Fusion Layer: A common strategy, i.e., to extract the impact of external
factors on urban PM2.5, is to directly concatenate external factor data with urban PM2.5
data [30,31]. Unfortunately, it is unreasonable to view the effects of external factors through
concatenating with urban PM2.5 features with the same weight. In light of this, a novel
gating fusion layer was developed to adaptively integrate external factors with urban
PM2.5 features, depending on the significance of each part. The detailed architecture of the
gating fusion layer is presented in Figure 2.

With embeddings, urban PM2.5 features and external factors are denoted as
HX ∈ RP×ni×dmodel and HTE ∈ RP×ni×dmodel , respectively. For the purpose of generating
the weight z, we adopt a sigmoid function σ to process HX and HTE:

z = σ(HX · Wz
HX + HTE · Wz

HTE + bz), (1)

where Wz
HX ∈ Rdmodel ×dmodel , Wz

HTE ∈ Rdmodel ×dmodel , and bz stand for the trainable
parameters.

Furthermore, the fused representations H ∈ RP×ni×dmodel are acquired according to
the following equation:

H = (HX ⊙ (1 − z)) + (z ⊙ HTE), (2)

where ⊙ stands for the element-wise product.
(3) Spatio-Temporal Learning Layer: After receiving the fused representations, the spatio-

temporal learning layer is deployed to capture high-level features, which contains multi-
head self attention (MHSA) and LSTM. In particular, this layer is a pipeline structure.
MHSA is first adopted to mine spatial dependencies, and then temporal dependencies are
extracted through LSTM. A detailed description of MHSA and LSTM is given as follows:

MHSA: MHSA was first proposed by Vaswani et al. [26] for natural language process-
ing and now plays a vital role in spatio-temporal mining tasks. This is a technique that
dynamically adjusts the weights of input data, to concentrate on more important infor-
mation. In urban PM2.5 prediction, there are dynamic and complex spatial dependencies
among monitoring sites. As a result, a L−layer stacked MHSA is used to capture spatial
dependencies by dynamically allocating weights to various sites, as shown in Figure 3.
Specifically, in the urban region i, let H ∈ RP×ni×dmodel denote the input of L-layer MHSA.
In the lth layer, its input is the output of the l − 1th layer l−1HS ∈ RP×ni×dmodel , in which
the representation of site si at timestep tj is l−1hssi ,tj ∈ Rdmodel . For sensor si at timestep tj,
the attention coefficient αm

si ,sv at the single mth head is calculated as follows:

αm
si ,sv =

exp
(

ρm
si ,sv

)
∑ni

r exp
(

ρm
si ,sr

) , (3)

where ni stands for all sites in the urban region i. ρm
si ,sv represent the correlations among

site si and sv, and are acquired through performing the inner product of the key vector of si
and the query vector of sv:

ρm
si ,sv =

〈
f m
q

(
l−1hssi ,tj

)
, f m

k

(
l−1hssi ,tj

)〉
√

d
, (4)
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here, ⟨∗, ∗⟩ stands for the inner product. f m
q and f m

k are nonlinear transformations of the
query and key vector, which can be expressed generically as

f (x) = ReLU(Wx + b), (5)

in this setting, we denote the activation function as ReLU, and W and b are the learnable
weights and bias, respectively. After obtaining ρm

si ,sv , the dynamic spatial representations
output by the lth layer are formally given as

lhsm
si ,tj

=
ni

∑
r

αm
si ,sr f m

v

(
l−1hssr ,tj

)
, (6)

lhssi ,tj = BN
(
∥M

m=1
lhsm

si ,tj
Ws +

l−1hssi ,tj

)
, (7)

where f m
v is the formula (5) for obtaining the value vector in the mth head. || and BN

separately represent the concentration and batch normalization. M is the total number
of heads. Ws denotes the learnable weights. By iterative L−layer operations utilizing
Equations (3)–(7), the final output of spatial representations in the site si at timestep tj is
presented as Lhssi ,tj ∈ Rdmodel . We extend the above calculation to all ni sites at historical P
timesteps to acquire the spatial representations of the urban region i, L HS ∈ RP×ni×dmodel .

Figure 3. Multi-head self attention (MHSA) of the spatial dependencies among different sensors in
the urban region i.

LSTM: Since urban PM2.5 typically constitutes a time series, these data can be modeled
under consideration of the dynamic temporal dependencies among different timesteps.
In view of this, we employ long short-term memory (LSTM) to capture temporal depen-
dencies [32] behind MHSA. Figure 2 indicates the specific structure of the LSTM. The
LSTM is composed of multiple LSTM units, in which each unit has the same structure.
A unit corresponds to processing data at a timestep, and there are connections among units.
In detail, at the timestep tj, the LSTM unit contains one memory cell and three gates, e.g.,
a forget gate Ftj , input gate Itj , and output gate Otj . The contents of memory cell state Ctj

are controlled by Ftj and Itj . Otj can determine the amount of Ctj to be projected into the
current output HSTtj ∈ Rni×dmodel of the LSTM unit. The computation process of the LSTM
unit at timestep tj is as follows:

Ftj = σg

(
WF

L HStj + UF HSTtj−1 + bF

)
,

Itj = σg

(
WL

I HStj + UI HSTtj−1 + bI

)
,

Otj = σg

(
WO

L HStj + UOHSTtj−1 + bO

)
,

Ctj = Ftj ⊙ Ctj−1 + Itj ⊙ tanh
(

WC
L HStj + UC HSTtj−1 + bC

)
,

HSTtj = Otj ⊙ tanh
(

Ctj

)
,

(8)
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where WF, WI , WO, and WC denote weight matrices for the input of dynamic spatial
representations L HStj ∈ Rni×dmodel at timestep tj. UF, UI , UO, and UC represent the weight
matrices allocated to the state of the memory cell HSTtj−1 from the previous LSTM unit.
bF, bI , bO, and bC are bias vectors. To provide non-linearity, we leverage sigmoid functions
as σg. ⊙ is the element-wise product. Each LSTM unit outputs a feature matrix. Thus,
the spatio-temporal representations HST ∈ Rni×dmodel are acquired through summing them
together, which formalizes as

HST = HSTt1 + HSTt2 + · · ·+ HSTtP , (9)

(4) Prediction Layer After th spatio-temporal learning layer, the prediction layer is
utilized to generate output sequences. Specifically, in [33], a sequence-to-sequence (seq2seq)
architecture was developed. It was first applied to machine translation and later to the field
of air pollution prediction. Seq2seq consists of an encoder and a decoder. The encoder is
leveraged to encode the input sequence to a semantic vector, and then the decoder decodes
this vector to the target sequence. Each unit structure in the decoder remains consistent,
and the semantic vector serves as the input for each prediction timestep of the decoder.
Therefore, we utilize the decoder of Seq2seq to generate the prediction sequence, where
each unit employs an LSTM unit. Taking the future timestep tP+k as an example, the output
of the decoder at the tP+k timestep is given by

FtP+k = σg
(
W ′

F HST + U′
F HYtP+k−1 + b′F

)
,

ItP+k = σg
(
W ′

I HST + U′
I HYtP+k−1 + b′I

)
,

OtP+k = σg
(
W ′

O HST + U′
O HYtP+k−1 + b′O

)
,

CtP+k = FtP+k ⊙ CtP+k−1 + ItP+k ⊙ tanh
(
W ′

C HST + U′
C HYtP+k−1 + b′C

)
,

HYtP+k = OtP+k ⊙ tanh
(
CtP+k

)
,

(10)

where W ′
F, W ′

I , W ′
O, and W ′

C are weight matrices for the input of the spatio-temporal
representations HST. U′

F, U′
I , U′

O, and U′
C denote the weight matrices allocated to the state

of memory cell HYtP+k−1 from the previous LSTM unit. b′F, b′I , b′O, and b′C stand for bias.
Subsequently, FCs are utilized to transform HYtP+k ∈ Rni×dmodel into the desired output
YtP+k ∈ Rni×F. We implement the same operation on the decoder of all predicted timesteps
and gain all the predicted sequences Y ∈ RQ×ni×F.

Finally, the parameters of the local ESTNet deployed on ECS i are optimized through
a minimizing mean squared error (MSE) loss function, represented as

MSE =
∑ni

sn=1 ∑Q
tq=1

(
ysn ,tq − ŷsn ,tq

)2

ni × Q
+

λ

2
∥W∥2, (11)

here, ni is the total number of sites in the urban region i, and Q denotes the length of the
prediction sequence. The predicted and observed values at the timestep tq on the site sn are
ytq ,sn and ŷtq ,sn , respectively. λ represents the regularization. W is the trainable parameter.

3.3. Parameter Update for Global ESTNet

While training the local ESTNet, we also need to perform parameter updates for the
global ESTNet. Specifically, after each local ESTNet runs an epoch, its trained gradient is
uploaded to the global ESTNet for updating. When each local ESTNet has run all epochs,
the global ESTNet completes the gradient update. Then, the global ESTNet is used to
predict the PM2.5 of future Q timesteps in all urban regions.

4. Results and Discussion

In this section, we performed several experiments on datasets from 13 prefecture-level
cities of Jiangsu province to validate the predictive performance of our proposed model.
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4.1. Experimental Settings
4.1.1. Study Area and Data

We evaluated FedDeep on 13 prefecture-level cities in Jiangsu Province.
Jiangsu province, positioned on the Yangtze River in East China, is one of the most

developed regions in terms of economy. The province boasts a substantial population and
highly developed industry. It covers a region of about 107,200 square kilometers and is di-
vided into 13 prefecture-level cities. In 2019, the total population crossed 80.5 million [34,35].
In the past few years, the urban PM2.5 problem in Jiangsu Province has become very seri-
ous, attributed to rapid economic development. Thus, to assist government departments
in solving air pollution issues, we selected research regions in 13 prefecture-level cities of
Jiangsu province, containing Nanjing, Suzhou, Wuxi, Changzhou, Zhenjiang, Nantong,
Taizhou, Yangzhou, Yancheng, Huaian, Suqian, Xuzhou, and Lian yungang. A total of
133 air quality monitoring sites were referenced, of which the number of sites per urban
is depicted in Table 1. Each site composed an hourly averaged concentration of PM2.5,
ranging from 31 May 2018 to 31 December 2021. The external factors utilized in this paper
were derived from district-level meteorological sites. We first measured the distance among
PM2.5 monitoring sites and each meteorological station. Weather data from the nearest
meteorological station were then leveraged as external factors for the PM2.5 monitoring
site. The external factors of each site contained weather conditions, temperature, and wind
speed, for which the data collection period was aligned with PM2.5. In the global EST-
Net, we treated the 133 sites as predictive objectives. In each local ESTNet, the predictive
objective was the number of sites contained in the corresponding prefecture-level city.

Table 1. Detailed descriptions about the distribution of the air quality monitoring sites in 13 prefecture-
level urban regions, Jiangsu province, and the types of air pollution and external factors.

Urban Region The Number
of Sites

The Variables of
Air Pollution The Variables of External Factor

Nanjing 13

PM2.5
weather conditions, temperature,

and wind speed

Suzhou 24
Wuxi 16

Changzhou 13
Zhenjiang 8
Nantong 9
Taizhou 7

Yangzhou 6
Yancheng 7
Huaian 6
Suqian 5
Xuzhou 10

Lian yungang 9

4.1.2. Baselines

FedDeep for multi-urban PM2.5 forecasting was contrasted with other state-of-the-art
baselines, as follows:

• HA [20]: The average historical PM2.5 sequence was adopted to forecast future multi-
urban PM2.5 concentrations.

• SVR [21]: A support vector with RBF Kernel was designed for multi-step PM2.5
forecasting.

• LSTM [23]: This is a variant recurrent neural network (RNN) used to mine dynamic
temporal dependencies in PM2.5 data and produce predictive sequences.

• CNN-LSTM [24]: This model integrates CNN and LSTM to capture the spatio-
temporal correlations in PM2.5 data.
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• GAT-LSTM [25]: This model mines spatial dependencies from a non-Euclidean spatial
perspective and then applies LSTM to model temporal dependencies.

4.1.3. Metrics

We formulated five metrics to compare the performance of FedDeep and the baselines.
These can be divided into two categories: (1) mean absolute error (MAE), root mean squared
error (RMSE), and coefficient of determination (R2) were used to evaluate the prediction
accuracy. (2) We tested the model efficiency through the training time and GPU memory.
Details of the five metrics are described below:

(a) Mean absolute error (MAE):

MAE =
1

ni × Q

ni

∑
sn=1

Q

∑
tq=1

∣∣∣ysn ,tq − ŷsn ,tq

∣∣∣. (12)

(b) Root mean squared error (RMSE):

RMSE =

√√√√ 1
ni × Q

ni

∑
sn=1

Q

∑
tq=1

(
ysn ,tq − ŷsn ,tq

)2
. (13)

(c) Coefficient of determination (R2):

R2 = 1 −
∑ni

sn=1 ∑Q
tq=1

(
ysn ,tq − ŷsn ,tq

)2

∑ni
sn=1 ∑Q

tq=1

(
ysn ,tq − ȳ

)2 . (14)

where ȳ denotes the average of the observed values.
(d) Training time: Training time (TT) refers to the total time overhead throughout the

training process till the model implemented a satisfactory accuracy. We could measure the
efficiency of training using TT. For example, if prediction accuracies are at the same level,
the models with shorter training time are more efficient.

(e) GPU Memory: This was used as the spatial overhead of the model, denoted as
GPUM; that is, the consumption of GPU memory during training. For instance, a model
with smaller usage of GPU memory has fewer learnable parameters and only demands a
minimal amount of computational resources, which reflects a higher efficiency.

4.1.4. Parameter Settings

In this experiment, the implementation details of FedDeep were as shown in Table 2.
The values of P and Q were set to 12, i.e., the PM2.5 concentrations for the following 12 h
were predicted according to the PM2.5 concentrations and external factors for the previous
12 h. The pytorch library with 1 A100 and 13 Nvidia 3090 Ti GPU cards were applied in
the experiment. In particular, 1 A100 card was treated as the central cloud, and 13 ECSs
were simulated with 13 Nvidia 3090 Ti GPU cards. The size of the dataset in each ECS
was consistent with the number of sites in Table 1. Each dataset used in the corresponding
ECS was segmented into training, validation, and test sets based on the chronological
order, with a split ratio of 7:1:2. In addition, the Z-Score normalization method was utilized
as data normalization. For each local ESTNet deployed on the corresponding ECS, we
selected the stochastic gradient descent as an optimizer to minimize the loss function MSE
of 64 epochs. The batch size and learning rate were set to 32 and 0.0001. In addition,
there were several hyperparameters in each local ESTNet: the number of heads in MHSA
Nh, the dimensions of each head Nd, the MHSA layers LMHSA, the LSTM layers in the
spatio-temporal learning layer LLSTM(ST), and the LSTM layers in the decoder of seq2seq
LLSTM(dec). These hyperparameters were fine-tuned on the validation set and the best
prediction accuracy was observed with the following settings: Nh = 4, Nd = 8, LMHSA = 3,
LLSTM(ST) = 1, and LLSTM(dec) = 1. After receiving the optimal Nh and Nd, we could
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determine dmodel = 32. The parameter configuration of the global ESTNet was the same as
that of the local ESTNet.

Table 2. Implementation details of FedDeep.

Each local ESTNet

The number of heads in MHSA Nh = 4

The dimensions of each head Nd = 8

The MHSA layers LMHSA = 3

LSTM layers in the spatio-temporal learning layer LLSTM(ST) = 1
LSTM layers in the decoder of seq2seq LLSTM(dec) = 1

The Global ESTNet

The number of heads in MHSA Nh = 4

The dimensions of each head Nd = 8

The MHSA layers LMHSA = 3

LSTM layers in the spatio-temporal learning layer LLSTM(ST) = 1
LSTM layers in the decoder of seq2seq LLSTM(dec) = 1

dmodel 32

Historical timesteps P = 12

Prediction timesteps Q = 12

The Central Cloud 1 A100 card

ECS 13 Nvidia 3090 Ti GPU cards

Batchsize 32

Learning rate 0.0001

Epochs 64

Optimizer Stochastic Gradient Descent

4.2. Experimental Results
4.2.1. Performance Comparisons

We compared FedDeep with five state-of-the-art baselines, including HA [20], SVR [21],
LSTM [23], CNN-LSTM [24], and GAT-LSTM [25] for PM2.5 forecasting of the next 12 h for
the 133 sites distributed in the 13 prefecture-level cities of Jiangsu province. The comparison
results are displayed in Table 3. TT in this table stands for the total training time. GPUM
indicates the utilization of GPU memory during the training process. ‘-’ indicates that the
model does not adopt GPU for running. FedDeep (w/o) indicates that only one central
cloud was used to train and infer urban PM2.5.

Table 3. The performance comparison of the 12 h PM2.5 forecasting task at 133 air quality monitoring
sites of 13 prefecture-level cities in Jiangsu province.

Model MAE RMSE R2 TT GPUM

HA 23.19 36.57 0.869 24.87 min -
SVR 22.75 32.36 0.878 25.76 min -

LSTM 17.66 26.34 0.904 43.55 min 1.53 GB
CNN-LSTM 15.64 24.90 0.913 54.19 min 2.45 GB
GAT-LSTM 13.13 21.82 0.945 67.20 min 3.27 GB

FedDeep (w/o) 12.43 19.32 0.973 65.28 min 3.12 GB
FedDeep 12.38 19.19 0.972 28.32 min 0.87 GB
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(1) Prediction Accuracy Analysis. We measured the forecasting accuracy of the mod-
els with three evaluation metrics (e.g., MAE, RMSE, and R2), and found that FedDeep
outperformed the other baslines, thus demonstrating the effectiveness of our proposed
model. In detail, the non-deep learning models HA and SVR had the lowest prediction
accuracy. This was mainly because the simple structures of these models are unsuitable for
meeting the requirements of processing multi-site PM2.5 data from multiple urban regions.
Compared with HA and SVR, LSTM presented a higher prediction accuracy. Nonethe-
less, LSTM only attended to temporal dependencies in PM2.5, and its accuracy was lower
than the models that simultaneously captured spatio-temporal correlations (CNN-LSTM,
GAT-LSTM, and FedDeep). Among the three spatio-temporal networks, CNN-LSTM was
inferior to the others. One potential reason exists: the distributions of monitoring sites were
irregular and treated as a graph in each urban region. When CNN is adopted to capture
spatial dependencies, this requires converting the site data into a standard form, such as a
2D-matrix, which brings about a loss of crucial spatial information. In contrast, GAT-LSTM
and FedDeep directly processed the graph structure, thus preserving more spatial informa-
tion. Compared to GAT-LSTM, FedDeep provided a higher prediction accuracy. This result
demonstrates that our proposed model could effectively mine spatio-temporal correlations
in urban multi-site PM2.5 data by taking advantage of its sensible structural design.

(2) Model Efficiency Analysis. Relying on TT and GPUM, we observed that FedDeep
achieved an acceptable performance with respect to model efficiency. To improve prediction
accuracy of the model as much as possible, the baselines spent more time on training and
utilized more GPU memory in the multi-urban PM2.5 forecasting, especially for the deep
learning-based baselines. For instance, for total training time, the TT of FedDeep was
significantly shorter than LSTM, CNN-LSTM, and GAT-LSTM. This revealed that time
overheads can be reduced through a federated training approach. In addition, due to the
small-scale structural design, the GPU memory usage of FedDeep was less than the other
deep-learning-based baselines. This was due to the small size of the processed individual
urban regions on the ECSs, so FedDeep had a relatively low GPU memory overhead, even
with a large number of urban regions. Moreover, although FedDeep and FedDeep(w/o)
were comparable in their prediction accuracy, FedDeep’s training time and GPU memory
usage were significantly lower than FedDeep(w/o)’s. Thus, this proved the effectiveness of
our proposed model in terms of efficiency.

4.2.2. Case Study

We conducted a case study to intuitively visualize the fitting results of our proposed
model. We selected the Pukou site in Nanjing and Nanmen site in Suzhou, and plotted
the fitting results for 500 continuous hours utilizing SVR, GAT-LSTM, and FedDeep, as de-
picted in Figure 4. Some conclusions can be drawn: (1) SVR could only identify linear
dependencies, making it challenging to handle the complex non-linearities in PM2.5 data.
It led to the poorest fitting performance. (2) In contrast to SVR, GAT-LSTM could cap-
ture spatio-temporal correlations, enhancing its fitting capacity. Unfortunately, GAT-LSTM
failed to learn the abrupt change in PM2.5 at these two sites. (3) Compared with GAT-LSTM,
FedDeep accomplished the best fitting performance, whether in the abrupt change or the
smooth phase of the PM2.5 sequence. The main reason for this was that our proposed
method integrated external factors, assisting in learning the patterns in abrupt changes and
smooth phases in the PM2.5 sequence. This also reflects the fact that external factors are
one of the triggers that lead to mutations in an PM2.5 sequence.

4.2.3. Effect of Hyperparameters

The prediction results of FedDeep under different hyperparameter configurations for
the future 12 h forecasting on 133 sites are presented in Figure 5. When one hyperparameter
was revised, the other hyperparameters maintained their optimal settings (Nh = 4, Nd = 8,
LMHSA = 3, LLSTM(ST) = 1, and LLSTM(dec) = 1). From Figure 5a–c, we can observe that
when the model structure was more complex, it was more likely to underfit, while when
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the model was more simple, it was easier to overfit. Figure 5d,e exhibit stacking one layer
of LSTM in the spatio-temporal learning layer, and the decoder of seq2seq accomplished
the best accuracy. This was due to the fact that stacking too many LSTM layers causes
error accumulation.

Figure 4. PM2.5 Prediction results with the comparison models. (a) SVR for Pukou site of Nanjing city,
(b) SVR for Nanmen site of Suzhou city, (c) GAT-LSTM for Pukou site of Nanjing city, (d) GAT-LSTM
for Nanmen site of Suzhou city, (e) FedDeep for Pukou site of Nanjing city, and (f) FedDeep for
Nanmen site of Suzhou city.

Figure 5. Experimental results for different hyperparameter configurations. The vertical axis repre-
sents the values of MAE, RMSE, and R2.
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5. Conclusions

With the increase in the number of air quality monitoring sites and the explosion in the
volume of data, centralized training of urban PM2.5 prediction methods has led to several
issues, such as computational pressures and security risks. To tackle these challenges,
a FedDeep model was developed for multi-urban PM2.5 forecasting in this paper. FedDeep
uses a federated learning architecture. We first allocated an ECS corresponding to each
urban region. ESTNets were then deployed on each ECS and the central cloud. We uploaded
the data generated by each urban region to the corresponding ECS for training, instead of
the central cloud, and then uploaded the trained gradients to the central cloud for parameter
updating. Subsequently, all urban PM2.5 predictions were carried out through the ESTNet
on the central cloud, thus reaching a “distributed training, centralized prediction” mode.
In this way, the computational load on the central cloud was alleviated, and the risk level
of data leakage was reduced. Second, in ESTNet, a gated fusion layer was proposed to
allow the model to consider the various impacts produced by different external factors (e.g.,
weather conditions, temperature, and wind speed). Third, we conducted an experiment
on 13 prefecture-level cities in Jiangsu Province. The experimental results indicated that
our proposed model outperformed the other state-of-the-art baselines, in both prediction
accuracy and efficiency.

Author Contributions: The authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grant No. 62271190, and Research on Distribution Room Condition Sensing Early Warning and
Distribution Cable Operation and Inspection Smart Decision Making Technology No. 524609220092.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding authors.

Conflicts of Interest: Authors Yue Hu and Wangyong Guo were employed by the company NARI
Technology Co., Ltd., Author Meng Chen was employed by the company Shenzhen Urban Transport
Planning Center Co., Ltd. The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict
of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN-LSTM Convolutional Neural Network and Long Short-Term Memory
ECS Edge Computing Server
ESTNet External Spatio-Temporal Network
FedDeep Federated Deep Learning Network
GAT-LSTM Graph Attention Network and Long Short-Term Memory
GPUM GPU memory
HA Historical Average
MAE Mean Absolute Error
MHSA Multi-Head Self Attention
RMSE Root Mean Squared Error
R2 Coefficient of determination
SVR Support Vector Regression
TT Training Time



Appl. Sci. 2024, 14, 1979 15 of 16

References
1. Zhang, B.; Rong, Y.; Yong, R.; Qin, D.; Li, M.; Zou, G.; Pan, J. Deep learning for air pollutant concentration prediction: A review.

Atmos. Environ. 2022, 119347. [CrossRef]
2. Chen, Y.; Yu, T.; Yang, B.; Zhang, X.S.; Qu, K. Many-objective optimal power dispatch strategy incorporating temporal and spatial

distribution control of multiple air pollutants. IEEE Trans. Ind. Inform. 2019, 15, 5309–5319. [CrossRef]
3. Shaban, K.B.; Kadri, A.; Rezk, E. Urban air pollution monitoring system with forecasting models. IEEE Sens. J. 2016, 16, 2598–2606.

[CrossRef]
4. Wen, C.; Liu, S.; Yao, X.; Peng, L.; Li, X.; Hu, Y.; Chi, T. A novel spatiotemporal convolutional long short-term neural network for

air pollution prediction. Sci. Total Environ. 2019, 654, 1091–1099. [CrossRef]
5. Bekkar, A.; Hssina, B.; Douzi, S.; Douzi, K. Air-pollution prediction in smart city, deep learning approach. J. Big Data 2021, 8, 161.

[CrossRef] [PubMed]
6. Du, S.; Li, T.; Yang, Y.; Horng, S.J. Deep air quality forecasting using hybrid deep learning framework. IEEE Trans. Knowl. Data

Eng. 2019, 33, 2412–2424. [CrossRef]
7. Aono, Y.; Hayashi, T.; Wang, L.; Moriai, S. Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans.

Inf. Forensics Secur. 2017, 13, 1333–1345.
8. Puthal, D.; Sahoo, B.P.; Mishra, S.; Swain, S. Cloud computing features, issues, and challenges: A big picture. In Proceedings of

the 2015 International Conference on Computational Intelligence and Networks, Odisha, India, 12–13 January 2015; pp. 116–123.
9. Singh, A.; Chatterjee, K. Cloud security issues and challenges: A survey. J. Netw. Comput. Appl. 2017, 79, 88–115. [CrossRef]
10. Bai, Y.; Zeng, B.; Li, C.; Zhang, J. An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting.

Chemosphere 2019, 222, 286–294. [CrossRef]
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