
Citation: Arellano-Uson, J.; Magaña,

E.; Morato, D.; Izal, M. Survey on

Quality of Experience Evaluation for

Cloud-Based Interactive Applications.

Appl. Sci. 2024, 14, 1987. https://

doi.org/10.3390/app14051987

Academic Editor: Giacomo Fiumara

Received: 11 January 2024

Revised: 9 February 2024

Accepted: 26 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Review

Survey on Quality of Experience Evaluation for Cloud-Based
Interactive Applications
Jesus Arellano-Uson 1,* , Eduardo Magaña 1,2 , Daniel Morato 1,2 and Mikel Izal 1,2

1 Department of Electrical, Electronic and Communications Engineering, Public University of Navarre,
31006 Pamplona, Spain; eduardo.magana@unavarra.es (E.M.); daniel.morato@unavarra.es (D.M.);
mikel.izal@unavarra.es (M.I.)

2 Institute of Smart Cities, Calle Tajonar 22, 31006 Pamplona, Spain
* Correspondence: jesus.arellano@unavarra.es

Abstract: A cloud-based interactive application (CIA) is an application running in the cloud with
stringent interactivity requirements, such as remote desktop and cloud gaming. These services have
experienced a surge in usage, primarily due to the adoption of new remote work practices during the
pandemic and the emergence of entertainment schemes similar to cloud gaming platforms. Evaluating
the quality of experience (QoE) in these applications requires specific metrics, including interactivity
time, responsiveness, and the assessment of video- and audio-quality degradation. Despite existing
studies that evaluate QoE and compare features of general cloud applications, systematic research
into QoE for CIAs is lacking. Previous surveys often narrow their focus, overlooking a comprehensive
assessment. They touch on QoE in broader contexts but fall short in detailed metric analysis. Some
emphasise areas like mobile cloud computing, omitting CIA-specific nuances. This paper offers a
comprehensive survey of QoE measurement techniques in CIAs, providing a taxonomy of input
metrics, strategies, and evaluation architectures. State-of-the-art proposals are assessed, enabling a
comparative analysis of their strengths and weaknesses and identifying future research directions.

Keywords: cloud-based interactive application; remote desktop; cloud gaming; QoE; interactivity
time

1. Introduction

Cloud computing is a growing computing paradigm [1] that promises on-demand
computing resources. It is possible to differentiate between three types of cloud deploy-
ments: public clouds, private clouds, and hybrid clouds. In the public cloud, an off-site
third-party provider offers computing resources and management. These resources are
accessed through the Internet. In this paradigm, there are new billing schemes whereby
customers pay for the use of the infrastructure. Users can access high-power computational
resources from client machines, with the only requirement being a connection to the Inter-
net. Thus, individuals and companies can reduce the cost of deploying and maintaining
their computing infrastructures by delegating system maintenance to the cloud service
provider, which offers infrastructures with high bandwidth and low latency [2].

In contrast, the private cloud refers to computing resources within a private network.
Private clouds are for the exclusive use of a single customer, and the customer’s service
administrators manage computational resources. On the other hand, hybrid cloud com-
puting offers an infrastructure in which public and private clouds communicate with each
other, sharing data and applications between them. Although the use of private clouds has
been widespread within the industry, the migration from private clouds to hybrid or public
clouds is booming. In particular, the costs associated with the public cloud and the data
protection policies of each country make the hybrid cloud option attractive [3].

In this article, we focus on cloud-based interactive applications(CIAs) [4], also known
as cloud-based distributed interactive applications (CDIAs) [5] or real-time interactive
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applications (RIAs) [6]. CIAs are applications running in the cloud with strict interactivity
requirements. Users expect a near real-time response to their actions, which occur through
keystrokes or mouse clicks. The response leads to a screen update so fast that the user
cannot perceive that the application is not running locally. CIAs can be deployed on any
type of cloud. The existing literature identifies three types of CIAs: remote desktop services,
cloud gaming services, and interactive web applications [5]. Services such as video on
demand or voice over IP are not considered CIAs because they do not involve interactions
as defined above. They use streams of audio/video data with temporal requirements but
without requirements about how the user interacts with the service.

The International Telecommunication Union (ITU-T) defines quality of experience
(QoE) as “the overall acceptability of an application or service, as perceived subjectively
by the end-user” [7]. Laghari et al. defined QoE as “a blueprint of all human subjective
and objective quality needs and experiences arising from the interaction of a person with
technology and with business entities in a particular context” [8]. One of the main network
metrics related to the QoE in CIAs is the time elapsed from when the user interacts with
the application until receiving a graphical response. This metric is called the interactivity
time [9] or responsiveness [10]. Increased interactivity time can reduce the usability of a CIA.
In traditional desktop applications or local services not deployed in the cloud, interactivity
time is important. However, in the case of CIAs, servers can be located further away
from the user, thus increasing interactivity time, at least on a scale directly proportional
to the round-trip time (RTT). In addition, the sharing of remote servers can lead to slow
applications. These services can be considered elastic because the perception of interactivity
time is gradual and influenced by network and service conditions [11]. Other metrics that
influence the QoE are the quality of the video image and, to a lesser extent, audio quality.

Ensuring quality of experience (QoE) in interactive services is of great interest to
service providers. For example, an increase of 500 ms in interactivity time for interactive
web services can result in significant costs and reduced user activity [12]. The growing
deployment of cloud services, especially those with interactivity requirements, highlights
the need to quantify and monitor the QoE.

The COVID-19 pandemic has enforced measures in favour of public health, requiring
the facilitation of remote work for a significant portion of the workforce. Many employ-
ers and employees, who had not previously participated in remote work arrangements,
have transitioned to this new model. Studies in the literature [13] have suggested that
approximately 40% of large and small companies expect that 40% or more of their work-
ers who switched to remote work would continue to do so even after the health crisis.
These estimates indicate that at least 16% of workers will perform their jobs from home
at least two days a week as a result of the COVID-19 pandemic. A significant number
of services enabling remote work fall within the domain of CIAs [14–16]. Ranging from
office automation to remote desktops, these services are increasingly prevalent and require
the development of precise ad hoc monitoring to ensure the necessary QoE [17]. Remote
employees relying on services like remote desktops benefit from a seamless experience and
good interactivity, resulting in fewer complaints for the support centre and allowing end
users to concentrate on their tasks. Companies are actively working to guarantee a high
QoE for these services, ultimately ensuring the productivity and satisfaction of their remote
employees [18,19].

Given this scenario, it is essential to measure the QoE of CIA users in deployments that
are increasingly complex. In this work, we conduct an evaluation of existing state-of-the-art
proposals for assessing QoE in CIAs. We describe the analytical tools and identify three
stages common to most proposals in the state of the art: input, processing, and output.
We also compile the metrics used by the tools and describe how they are transformed
throughout these three stages.

Our study makes a significant contribution by focusing on strategies for monitoring
QoE in CIAs and proposing improvements. To the best of our knowledge, there are no
surveys on QoE in CIAs, although related survey papers are presented in the relevant
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sections. After identifying the challenge of ensuring productivity in CIAs in the post-
COVID-19 context, it becomes evident that studying existing proposals for QoE assessment
is crucial. We analyse over 28 proposals, identifying key aspects of human perception.
Additionally, we explore the architecture and operation of CIAs, distinguishing them from
other applications in the non-interactive cloud. We classify the proposals into five main
categories based on their strategies and group metrics. Finally, we dedicate a specific
section to open issues, where we discuss possible avenues for improving QoE measurement
in CIAs.

The remainder of this paper is structured as shown in Figure 1. Section 2 reviews
related works and addresses human perceptions of users and their influence on the CIA’s
QoE. Section 3 presents the categories of CIAs and how the state-of-the-art proposals focus
on each of them. Section 4 details the characteristics of the CIA’s infrastructure and the
different location possibilities for QoE monitoring tools. Section 5 groups the literature
proposals into the main strategies used to measure QoE in CIAs. In this section, we detail
how each proposal derives its measure of QoE. Section 6 outlines the three stages these
strategies must go through for QoE assessment. Finally, Section 7 explores open issues, and
Section 8 concludes this paper.

Figure 1. Structure of this survey.

2. Related Works

In this survey, we focus on identifying the strategies that can be used to achieve ade-
quate QoE monitoring in CIAs and explore new possibilities to improve current proposals.
To the best of our knowledge, no previous surveys about QoE in CIAs exist because of
the relative novelty of this type of deployment and the rapidly changing landscape of
cloud technologies. There are only surveys with limited scopes related to QoS in cloud
computing, interactive applications, general QoE, or QoE for specific services.

Some studies in the literature analysed aspects of cloud computing, such as pricing,
scalability, and architecture. Among the surveys that addressed generic QoE, some were
barely descriptive and focused mainly on aspects such as architecture and provisioning [20]
but they were not specific to CIAs. Barakabitze et al. [20] attempted to provide a tutorial
and survey of QoE management solutions in general multimedia services. However, the
paper skipped over QoE quantification. It did not consider the particularities of a CIA and
only devoted two paragraphs to QoE measurement. Furthermore, the authors only listed
two QoE quantification proposals focused on obtaining QoS-specific network parameters,
without explaining the procedures the proposals follow.

Other proposals addressed the evaluation of QoE quantification methodologies but
with a strong focus on a particular service. Within this group, some surveys focused on
a specific field, such as mobile cloud computing [21,22] or multimedia services [23,24].
Shakarami et al. [21] reviewed the mechanisms of offloading computation in mobile cloud
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computing environments. However, they only dedicated one paragraph to the idea that
service administrators should monitor its QoE. They provided a list of works dedicated
to assessing QoE in mobile cloud computing. However, the authors did not describe
these proposals, nor did they mention what metrics they provided or used, or to what
type of services they applied. Skorin-kapov et al. [23] discussed concepts related to QoE
management of networked multimedia services and addressed the implications of the
emergence of new services. The authors outlined some proposals for QoE modelling.
However, the scope of the paper was very broad and encompassed proposals for any type
of multimedia service, regardless of whether the services analysed were CIAs or not, thus
ignoring their particularities. Laghari et al. [22] provided a recent review of quality of
experience (QoE) in the broader domain of cloud computing. The study compiled recent
articles from the past few years but did not focus specifically on interactive applications
deployed in the cloud. It did not address the specificities of these services, as it evaluated
only a few proposals related to cloud gaming. The authors did not delve into a detailed
analysis of the evaluated proposals, such as the input metrics required for processing.
However, they emphasised the QoE metrics provided in the literature.

Min et al. [24] provided an extensive review of contemporary signal-based audio
and video perceptual quality assessment methods. The authors conducted experiments
utilising subjective quality scores to analyse and compare the efficacy of these methods.
While the metrics they investigated hold promise for evaluating two crucial dimensions of
QoE in CIAs—visual and audio quality—they notably omitted state-of-the-art proposals
tailored specifically to CIAs. Instead, their focus remained exclusively on visual and audio
aspects applicable to any service, irrespective of its interactivity or deployment in the cloud.
Additionally, for the majority of the metrics assessed, the direct relationship with QoE was
not delineated, with the analysis predominantly confined to QoS considerations.

Other surveys focused exclusively on remote processing or cloud gaming [25–29]. Cai
et al. [25] analysed the latest research on cloud gaming from different aspects, covering
cloud gaming platforms, optimisation techniques, and commercial cloud gaming services.
Within the paper, they devoted a subsection to analysing proposals for evaluating QoE
in cloud gaming but overlooked other types of CIAs. However, the authors provided an
enumeration of the content of the works without addressing the metrics or processing
details. The authors did not provide a taxonomy of the proposals or a comparison between
their advantages and disadvantages. Laghari et al. [26] analysed the cloud gaming environ-
ment and looked at future development issues that could help provide QoS in line with
service-level agreements and increase the satisfaction level of cloud gaming users, thus
improving QoE. In their work, they only dedicated a subsection to exposing methods for
QoE quantification in cloud gaming, ignoring other types of CIAs. They grouped together
proposals that evaluated video streaming, proposals that evaluated network aspects, and
proposals based on their qualitative comparison of characteristics and performance. How-
ever, the number of proposals analysed was small, and the authors did not emphasise the
difference between QoS and QoE metrics. Shi et al. [27] reviewed interactive remote ren-
dering systems proposed in the literature. They provided a tutorial on how these systems
work (architecture, rendering, examples, and challenges). In addition to not taking into
account other types of CIAs, the authors only dedicated a small subsection to explaining
the importance of evaluating QoE. However, it was a summary of proposals; they did not
describe each work, the metrics, or the processing used. Moreover, they did not provide
a taxonomy or compare the advantages of each of the proposals. None of these papers
covered the three main categories of CIAs: remote desktop, cloud gaming, and interactive
web applications.

Other works focused on a specific CIA of recent interest, such as cloud gaming. This
is the case with Metzger et al. [28] and Abdallah et al. [29]. In these works, the exclusive
focus on cloud gaming prevented the leveraging of strategies employed by other authors
in other CIAs for QoE quantification. In the case of Metzger et al. [28], they conducted
a survey outlining the architectural peculiarities and user requirements of these types of
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services. However, the processing of some proposals was not detailed, making it difficult to
understand the derivation of QoE metrics. Abdallah et al. [29] concentrated on examining
QoE provisioning concerning delay-sensitive video computing requirements, encompass-
ing various facets such as service ubiquity, device diversity, network heterogeneity, and
operational variability. The paper delved into the challenges associated with QoS provi-
sioning within converged networks and explored their ramifications for QoE provisioning,
with a particular emphasis on the realm of cloud gaming. Despite extensively reviewing
and analysing relevant literature, the paper fell short of presenting a taxonomy elucidating
the parameters, processing methodologies, or output metrics employed.

The closest studies to our work are those carried out by Wei Tang et al. [30] and
Casas et al. [31]. In their survey, Tang et al. [30] studied proposals for QoE evaluation of
mobile cloud computing. However, they focused exclusively on evaluating services that
can be accessed from a mobile device and overlooked any other types of CIAs. They only
addressed the quantification of responsiveness and visual content quality. The number of
proposals was small, and there was no comparison between them. They did not clarify
the difference between the proposals and their advantages and drawbacks. The survey
by Casas et al. [31] mainly consisted of a proposal for quantifying QoE in cloud services.
However, the authors carried out a prior analysis of the state of the art to describe other
proposals. The survey focused on general cloud services and not CIAs, so most of the
proposals ignored their particularities. Although the authors attempted to describe the
proposals, they did not describe the metrics or processing used, nor did they provide a
comparative taxonomy of the proposals.

Table 1 outlines the contributions and shortcomings we have identified in previous
surveys and our proposal. The table highlights whether the surveys take into account the
relevance of QoE in particular CIAs (remote desktop, cloud gaming, or interactive web
applications) or, conversely, if they focus on general cloud services. It further classifies the
surveys based on the context they provide for understanding the QoE domain of CIAs. The
table also identifies which surveys provide information on architectures and user percep-
tions relevant for QoE evaluation, as well as those that differentiate between QoS and QoE
measures. We identify the surveys that clearly address the quantification of QoE. Table 1
also identifies the surveys that offer an analytical taxonomy of the proposals, highlighting
the details the taxonomy takes into account to be able to replicate its implementation (input,
processing, and output metrics). Finally, the table shows the number of papers cited by
each survey focusing on QoE monitoring and measurement.

QoE and Human Perceptions Related to CIAs

The stimuli perceived by the user influence the quality of experience provided by a
CIA. In this section, we discuss the human perceptions considered crucial in the state of the
art for quantifying QoE in CIAs. In the literature, these human perceptions, also referred
to as physiological aspects, play a significant role in shaping the user experience [28].
Three primary human perceptions have been identified: visual quality, audio quality,
and interactivity or responsiveness. In most digital systems, audio and video signals are
fundamental components [24]. Subjective evaluations of audiovisual quality are widely
regarded as the most accurate method to reflect human perception [32]. However, given
the idiosyncrasies of the applications under review in this study (interactive applications),
the tools and methodologies for QoE quantification also require metrics that evaluate the
strict temporal requirements between user interactions and system responses.

Visual quality encompasses the aspects of an image perceived by the human percep-
tual system, significantly influencing the end-user experience. Content may experience
degradation, such as a decrease in the quality of textures in a video game, pixelation of
the remote desktop screen, or missing video frames, compared to the original or expected
content. This degradation can impact visual quality. Researchers have proposed various
metrics to quantify these degradation artefacts.
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Table 1. Asummary of related surveys and systematic discussion.

Target Scope Taxonomic Analysis
No. of QoE

Papers ReviewedRemote
Desktop

Cloud
Gaming

Interactive
Web

Applications
Architecture Human

Perceptions QoE Input Metrics Processing Output Metrics

Tang et al. (2014) [30] × × × × × ✓ × × × 7

Casas et al. (2014) [31] ✓ × × × × ✓ × × × 16

Shi et al. (2015) [27] ✓ ✓ × ✓ × × × × × 9

Cai et al. (2016) [25] × ✓ × ✓ × ✓ × × × 12

skorin-kapov et al. (2018) [23] × × × × ✓ ✓ × ✓ × 28

Abdallah et al. (2018) [29] ✓ ✓ × ✓ × ✓ × × ✓ 21

Laghari et al. (2019) [26] × ✓ × × × × × ✓ × 6

Barakabitze et al. (2020) [20] × × × ✓ × × × × × 2

Shakarami et al. (2020) [21] × × × ✓ × ✓ × × × 15

Min et al. (2020) [24] × × × × ✓ × ✓ ✓ ✓ 12

Metzger et al. (2022) [28] × ✓ × ✓ ✓ ✓ ✓ × ✓ 9

Laghari et al. (2023) [22] × ✓ × × × ✓ × ✓ ✓ 5

Our survey ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 28

A second human perception that the tools evaluate is the audio quality of the services.
Equivalent to video quality, audio quality is understood as the aspects of the audio signal
perceived by the human auditory system, which impact the final user experience. Similar
to visual quality, audio quality can be impaired by the degradation of the sonorous content
compared to the expected or original content (e.g., clarity of the sounds of a video game
hosted in the cloud). In this area, we present the efforts made to obtain metrics that quantify
the quality or degradation of the audio.

Audio and visual quality have varying degrees of relevance depending on the service
being consumed [24]. This is why the research works studied in this article may emphasise
varying degrees of emphasis on the quantification of each perception, depending on the
scope of their target services.

Finally, given that the present taxonomy is aimed at CIAs, the third human perception
evaluated by the tools and methodologies is the responsiveness or interactivity of the
services. The QoE perceived by users is influenced by the time it takes to perceive a
response to interactions with the service. This responsiveness can be translated in many
ways. There are several temporal references that can influence it, depending on the service
or application consumed (e.g., opening time of a window in a remote desktop, deployment
time of a field in an online form, agile movement of a player in a cloud gaming service).
Again, researchers have made efforts to quantify this interactivity in different applications
and services, and we explore them throughout this paper.

The efforts of academia and industry seek to quantify one or more of these human
perceptions with particular output metrics depending on the type of CIA.

3. Categories of CIAs

We group the proposals about QoE in CIAs into three main categories. This literature
review has revealed that all proposals fall into one or more of these three categories. In
this section, we explore these categories and the importance of human perceptions in
each of them. Table 2 shows the three categories and the proposals in the state of the
art that focus on each (or some) of them. Each of the three categories has different QoE
requirements depending on the service consumed by the user. Cloud gaming typically has
higher QoE requirements compared to remote desktops, and remote desktops have higher
QoE requirements compared to interactive web applications.
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Table 2. Papers on the evaluation of QoE in the three types of CIAs.

Remote Desktops Cloud Gaming
Services

Interactive Web
Applications

Alali et al. [33], Kumar et al. [34], Liu et al. [35], Jahromi et al. [36],
Dong et al. in [37], Song et al. [38], Hsu et al. [39], Saverimoutou et al. [40],

Li et al. [41], Magaña et al. [42], Shushi [43], Hossfeld et al. [44],
Exoprise [45], Wang et al. [46], Wehner et al. [47],

Casas et al [31], Graff et al. [48] Casas et al. [31]
Nieh et al. [49] Penaherrera-pulla et al. [50]

Nguyen et al. [51]

Varghese et al. [52],
Laghari et al. [53],

Mahmud et al. [54],
Arellano-Usón et al. [9],

Leo Bodnar Electronics [55],
Leo Bodnar Electronics [56],

Johnsen [57],
NVIDIA [58]

3.1. Remote Desktops

A remote desktop is a CIA that allows users to connect from a local computer to a
remote one as if they were sitting in front of the remote computer. The local computer may
have low computing resources, and it is called a thin client. The remote computer is usually
a virtual machine running on a shared server, although it can also be a dedicated computer.
In this CIA, the thin client captures the mouse movements, clicks, and keystrokes to be sent
to the remote computer where the application is running. These interactions can prompt
screen updates that are then sent back from the remote computer to the thin client. The
thin client is only a kind of forwarder of user actions. Remote desktops allow mobility
for users (the remote computer can be accessed from any device and at any place) and
reduce management and maintenance costs. Some remote desktop applications specialise
in performing remote assistance functions, such as TeamViewer [59] and Google Remote
Desktop [60]. Other solutions are designed for continuous use, such as Windows Remote
Desktop [61], VMware View [62], and Citrix [63]. Remote desktop solutions based on the
deployment of remote computers on virtual machines are referred to as virtual desktop
infrastructure (VDI) solutions. Amazon Inc. provides this type of infrastructure through
a public cloud with the Amazon Workspaces service [64]. The use of remote desktops
increased drastically due to the pandemic situation in 2020–2021. For example, in the
information technology sector, the increase in remote desktop deployments was 258% in
2022, with more than three-quarters of employees using remote desktops [65,66]. The
percentage of companies offering remote work, and therefore, remote desktop solutions,
increased from 51% at the start of 2023 to 62% in 2024 [67,68].

In this type of CIA, the user wants to control a remote computer as if it were a local
computer, without any noticeable delay or loss in image quality. For example, by clicking
to close a window, the user expects the window to close immediately. Two main human
perceptions can influence the final QoE. The first is interactivity or responsiveness. The
lag between user interactions (keyboard or mouse) and the screen updating as a result
of these interactions can affect user experience. For example, clicking a window and
moving it around the desktop. The user is accustomed to a local environment. The shared
virtualisation server and access network in remote desktops can increase the response
time to user actions, with a serious impact on QoE. In most remote desktop services, the
server sends the screen updates as it generates them. For example, Sun Ray [69] and Lap
Link [70] prepare and send screen updates using this method. In other cases, such as Citrix
or Windows Remote Desktop, the server bundles multiple intermediate screen updates to
send only a single relevant screen. The client may also send a display update request to the
server instead of waiting for a triggered update. The VNC protocol [71] specifies that the
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server does not send updates until it receives a request for the latest version of the display.
Some remote desktop services, such as Lap Link, Windows Remote Desktop, and Citrix,
cache part of the screen state locally. Local caches allow for incremental screen updates,
taking advantage of regions of the previous screen that could have been moved to other
coordinates without receiving an unchanged portion of the screen.

The second human perception that influences QoE in remote desktops is the video
quality perceived by the user. Some remote desktop communication solutions, such as
VNC and Sun Ray, send the screen corresponding to the user’s desktop as a video stream
or as a sequence of individual video frames. The video stream is compressed with losses,
compromising the perceived visual quality and influencing the final QoE. Other solutions,
such as LapLink, Citrix, and Windows Remote Desktop, send graphical screen primitives,
such as “plot a window of this size in that position of the screen”, to the thin client. The
client receives primitives that indicate which regions of the screen must be modified and
which content must be represented. The thin client reproduces screen content without
any video quality degradation caused by video compression artefacts. However, video
quality can be degraded in both alternatives by network packet losses. In addition, the
transmission may freeze due to communication problems. This causes stuttering and affects
the video quality of the remote desktop. Audio quality is generally less important in remote
desktop services, but when needed, the service has to consider the effect of the compression
codec, the network packet losses, and synchronisation with the video stream.

3.2. Cloud Gaming

Cloud gaming services are also a category of CIAs. In cloud gaming, users access a
remote video game as if it were local. Similar to remote desktops, processing and rendering
take place on the remote server, and the user device collects user interactions with the
controller, sends them to the server, and displays the resulting screen updates. Using these
services, players do not require expensive video consoles with large computational re-
sources. The user device can be a smartphone, tablet, PC, laptop, or even a traditional video
console. This flexibility allows the user to play in the cloud from anywhere and resume
their games from other devices. In cloud gaming CIAs, there may be increased sensitivity
to delay for some types of games. CIAs allow video game developers and publishers to use
the cloud resources of cloud gaming platforms. This simplifies their deployment, mainte-
nance, and costs. Additionally, game developers can develop games for a single platform
instead of multiple platforms. There are commercial cloud gaming deployments such as
Nvidia GeForce NOW [72], Amazon Luna Cloud Gaming [73], PlayStation Now [74], and
Xbox Cloud Gaming [75]. The cloud gaming industry is expected to reach a value of USD
3856 million by 2025, which represents an increase of 54.1% from 2019 [76].

The three human perceptions described in Section 2 influence the final QoE perceived
by the user of a cloud-based game. The player wants to play a video game as if it were
running on their game console and not a remote server. There are two main components
of a cloud gaming platform: (1) the game logic, responsible for transforming user inputs
into actions, and (2) the scene renderer, responsible for generating the screen updates in
real time. A scene in a video game is composed of all the elements present at a specific
time and in a specific position. On the client’s computer, the command interpreter captures
the user interactions that are then sent to the server. The video capturer must capture the
scenes of the video game rendered on the server and make a video stream that is later
compressed to save bandwidth. Compression influences human perceptions when it is
lossy. In multiplayer sessions, each player’s game scenes can be used together to perform
compression, taking advantage of the redundant information and compressing multiple
users’ streams together [25]. Additionally, cloud gaming platforms can detect the regions
of the game scene of interest to use compression with more bits and, therefore, higher
quality [77,78]. Other compression strategies use information from the rendering of video
games to estimate movements and save compression time [29]. Graphics compression
strategies generate a 3D coordinate space with information on the points of the objects
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that make up the scene and the 2D texts that cover them [79]. The server compresses
this scene and sends it to the client, who must render that information. This strategy is
more demanding for the client since it has to perform rendering in the case of the server
compressing the video. Lossy compression influences the visual quality perceived by the
player and adds a delay to communication.

In gaming, the user expects the service to respond graphically as quickly as possible
with good interactivity. The game should quickly execute actions, such as rotating a
geometric figure or moving a player, so that the user does not perceive the involvement of
a remote cloud platform. The codec directly influences the time spent on compression and,
therefore, the perceived interactivity. The cloud server sends an audio stream alongside
the video stream. Human perception of audio quality is more important in cloud gaming
services than in remote desktop CIAs. Compression, network packet losses, and network
packet delays affect audio quality. Furthermore, sound stimuli produced in response to
player actions must be presented in a synchronised way.

3.3. Interactive Web Applications

Interactive web applications are also a category of CIAs. They differ from typical
web browsing, where each click on a link requires a new webpage download. Instead,
interactive web applications refer to single-page web applications that have functionality
similar to that of a desktop software application. Users utilise a browser to interact with
these applications, relying on JavaScript on the browser side for a substantial portion of
the functionality. Communication with the cloud is performed using asynchronous AJAX
requests. The server that receives the JavaScript requests must calculate and send the
associated response in near real time. Interactive web applications simplify the deployment
of applications. The developer does not need to create an application for every operating
system, and the user does not have to install different applications on their device. Examples
of interactive web applications include Google Docs [80], Office 365 [81], and mapping
services like Google Maps.

In this type of CIA, users want to use an application through the browser as if it
were a traditional program installed on a desktop computer, without noticeable additional
latency. For example, web-based mapping services such as Google Maps or Bing Maps
allow users to interactively navigate a map service through a web interface. It is essential
that when the user wants to move the map or zoom in on a specific region, the time elapsed
between their keyboard or mouse actions and the associated graphical response is as short
as possible. Developers of interactive web applications divide the application logic between
the client and the server. Interactive web pages consist of four main components: the user
interface, client logic, communication, and server logic. The user interface is made up of
HTML elements, structured by CSS. The client uses JavaScript to develop part of the CIA’s
processing logic and capture keyboard or mouse interactions, modifying the structure of
the HTML DOM on the fly. Unlike traditional web pages, in these CIAs, screen updates
are not generated by a click on a link that opens another static HTML or by periodic
JavaScript or CSS updates. Instead, updates are interactively triggered by user interactions.
Two main strategies for rendering graphic elements and updating them on the fly are
used: modifying the structure of the HTML DOM and interactively drawing on an HTML
element called a canvas. The strategy of using the canvas element for graphical rendering is
becoming increasingly important for performance reasons. In the canvas element, different
graphical elements can be drawn and modified in real time without propagating changes
in the structure of the HTML document that can compromise the appearance of the CIA.
For example, Google Maps has used the canvas for a long time, and other services, such
as Google Docs and Google Sheets, have recently adopted this strategy to improve user
interactivity. The client must communicate with the server that executes a significant part of
the logic of these CIAs. Web interactive applications normally use AJAX for communication
with the server. Some services, such as Google Docs, can generate local graphical updates
and wait for the server to confirm them later. However, this is not possible for all types of
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CIAs since the service may need active communication with the server side (e.g., Google
Maps, where the satellite images are sent by the server).

4. Architecture of CIAs

Researchers and industry are continuously exploring different strategies to quantify
QoE in CIAs. Studies obtain different metrics from the infrastructure and evaluate their
relevance and the relationship between them. First, we offer a general view of how CIAs
work and what differences exist compared to other services and applications. Second,
we explore the components of the architecture to understand which ones the researchers
focus on.

Unlike local computing systems, the experience perceived by users of cloud services
is influenced by the fact that the server executing the applications is not physically located
in their vicinity. This requires the dissection of the infrastructure into the components that
influence the final service (Figure 2): client, network, and cloud server.

Figure 2. The three components of the architecture of a CIA’s services provision.

The client is the first component, and it is the display device with which the user inter-
acts. The client can be a thin client, desktop computer, laptop, game console, smartphone,
or tablet. The client has to perform less computational work compared to that carried out
by the infrastructure in the cloud since its main purpose is to capture the interactions of the
users via the peripherals (keyboard, mouse, gamepad, etc.).

The client sends the interactions to the cloud server through the network (the second
component), as shown in Figure 2. The client and the cloud implement a request-response
scheme that generates the network traffic to be carried by the network. Some CIAs require
high-speed and low-latency networks in addition to the best possible availability.

The last component is the cloud server. The cloud server is in charge of processing
client requests and sending the answers back through the network. The responses could be
screen updates according to a player’s movement in cloud gaming or window movement
in remote desktop CIAs. Additionally, they could be the result of a database query or data
processed in the cloud server in an interactive web application, prompting a screen update
for the client. In CIAs, users interact expecting near-real-time responses. Hence, the server
updates the graphical representation on the client so fast that the user does not notice that
the application is not running locally.

Figure 2 depicts the common operation of the three types of CIAs. However, the three
types of CIAs present differences at a logical level. The common aspect that encompasses
remote desktop and cloud gaming CIAs is the fact that the user interface logic is shared
between the cloud server and the client’s device. The application processing logic, however,
is exclusively located on the cloud server, and the client becomes a device oriented to
graphical representation and network communication (see Figure 3). In an interactive
web application, the client can perform part of the application processing logic without
interacting with the cloud server. The bulk of the application logic continues to run on
the cloud server. However, the client’s browser JavaScript can execute small parts of the
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service, such as graphical animations of a photographic carousel or simple mathematical
operations in a spreadsheet (see Figure 3).

Figure 4 depicts in detail the components involved in CIAs: the client, network, and
cloud server. Throughout this survey, we explore the metrics researchers use related to
these components, how they use these metrics, and why they chose them.

Figure 3. Logical division of CIA’s components: (a) remote desktops and cloud gaming, (b) interactive
web applications [82].

On the client side, device usability, usage context, and user expectations and person-
alities determine the final QoE [30]. The research and tools we analyse seek to identify
user insights when using CIAs. However, as direct user opinion is not always available,
some measurement strategies obtain performance metrics from the components, evaluating
the relationship between these metrics and the QoE. Figure 4 illustrates the three basic
subcomponents common to computers, laptops, smartphones, tablets, and video consoles:
hardware, operating system (OS), and application. Some QoS evaluation designs obtain
measurements directly from the hardware, such as CPU or RAM usage. The OS manages
hardware resources and provides services to the applications running on the device. Several
research articles, such as Mahmud et al. (2019) [54], Laghari et al. (2018) [53], and Liu et al.
(2020) [35], support the idea that the information obtained from the operating system is
correlated with user experience. Metrics such as the number of applications or processes
running, the number of queued hardware requests, or the screen refresh rate are obtained
from the OS. Finally, the application the user is accessing on the client computer (the remote
desktop client, cloud gaming client, or web browser) is another component measured using
Application Performance Monitoring (APM).

The second component is the communication network. Tools can monitor the net-
work traffic from either the client or the server, offering a network view from one of the
communication endpoints. A different strategy is to use a network traffic probe placed in
the network path between the client and the cloud server to capture the traffic. The tools
process the captured traffic to obtain different metrics: RTT, packet timestamp, data rate, or
IP address. Some metrics may require different traffic analysis techniques depending on
where the tools capture the traffic.
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Figure 4. Details of each component of the CIA’s architecture.

The third and last component is the cloud server. In [83], the server is divided into
four subcomponents: hardware, infrastructure, platform, and application. The hardware
layer of the cloud server is similar to the hardware layer of the client, and therefore, the
metrics are similar. One of the features that the cloud offers is the flexible use of hardware
resources. Cloud server providers select different strategies to take advantage of physical
computing resources. They may virtualise the hardware using a hypervisor, running differ-
ent operating system instances on the same computer at the same time. Service providers
may adapt the number of virtualised instances depending on demand. The hypervisor is a
component of the architecture that researchers utilise to obtain measurements related to its
performance, such as the use of computational resources or the number of virtualised OSs.

The applications run on top of an operating system. Three main subcomponents
comprise the applications: software, storage, and framework. The software is the code
of the application itself, which is studied using APM techniques. The storage allows the
application data to be persistently hosted and queried if necessary. Finally, the framework
is an already developed software code that provides structure and functionalities for the
development of user-written code. Frameworks are very common in software development
and allow standardising their development, reuse, and deployment.

Similar to what happens with an OS, developers virtualise and scale out applica-
tions through OS-level virtualisation. In OS-level virtualisation, the kernel allows for
the existence of multiple isolated user-space instances or containers. Containers allow
application developers to scale out applications in case of high user demand and deploy
a new application in seconds, simplifying the deployment process. Similar to the other
subcomponents, the containers can be used to obtain QoE metrics such as the number of
processes, performance, or the number of applications running.

5. Strategies for QoE Measurement in CIAs

Analysing the proposals in the state of the art, this survey identifies five main strate-
gies for measuring QoE in CIAs: based on screen updates, slow-motion benchmarking,
audiovisual degradation measures, the instrumentation of the programming code, and
indirect measures. In the following subsections, we explain what each of the five identified
strategies consists of, and we explain the particularities of the works in the literature that
use them. Table 3 summarises the revised proposals and strategies. Some works combine
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several strategies in their proposals, but the one considered the main one is identified. For
each strategy, we highlight the fundamental procedure and what measures it contributes as
a representative metric of QoE.

For the mapping of metrics in a QoE indicator, the literature traditionally opts for
the absolute category rating (ACR) [84]. The ACR scale includes scores of “bad”, “poor”,
“fair”, “good” and “excellent”, applicable to the quality of products or services of any
kind. However, there is diversity among the different opinions provided by users [85],
which makes it difficult to construct this scale. Each individual who consumes a service
or application has different expectations because users are used to a specific environment
and may be more or less used to the service depending on previous hours of use. This
fact causes researchers to opt for solutions that provide more reliable values than those
provided by the ACR scale. To do this, the researchers use averaging techniques to eliminate
the noise from influential factors in each user’s perception [86]. Averaging user feedback
allows us to extract the influential aspects from the set of opinions. The tools use numerical
scales to transform qualitative opinions into quantitative ones.

Table 3. QoE quantification proposals grouped by strategy.
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Nieh et al. (2003) [49] Yes Yes
Shushi et al. (2011) [43] Yes Yes
Casas et al. (2014) [31] Yes Yes

Nguyen et al. (2015) [51] Yes
Wang et al. (2017) [46] Yes

Varghese et al. (2018) [52] Yes
Song et al. (2018) [38] Yes

Hossfeld et al. (2018) [44] Yes
Laghari et al. (2018) [53] Yes
Magaña et al. (2019) [42] Yes

Saverimoutou et al. (2019) [40] Yes
Johnsen (2019) [57] Yes

Alali et al. (2019) [33] Yes Yes
Mahmud et al. (2019) [54] Yes

Li et al. (2019) [41]
Jahromi et al. (2020) [36] Yes

Nvidia (2020) [58] Yes
Liu et al. (2020) [35] Yes Yes

Wehner et al. (2020) [47] Yes
Leo Bodnar Electronics (2021) [55] Yes
Leo Bodnar Electronics (2021) [56] Yes

Hsu et al. (2021) [39] Yes Yes
Penaherrera-pulla et al. (2021) [50] Yes

Graff et al. (2021) [48] Yes
Kumar et al. (2021) [34] Yes

Arellano-Uson et al. (2021) [9] Yes
Dong et al. in [37] Yes

Exoprise (2024) [45] Yes

Another classic way of measuring QoE within the realm of information and communi-
cation technologies is the mean opinion score (MOS) [87], standardised by the ITU. The
MOS consists of averaging the subjective evaluations of the users under study under the
same service conditions. Currently, the MOS is the standard QoE evaluation measure [88].
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5.1. Strategies Based on Screen Updates

Proposals based on the use of screen updates for the quantification of QoE in CIAs
seek to evaluate the screen state of the client or server at a given time. They correlate the
result of a user’s actions with the corresponding result on the screen. For example, if the
user clicks on a corner of a window to maximise it using a mouse, the proposal’s aim is
to measure the time elapsed between the user’s click and the screen update reflecting the
window being maximised.

Some authors tried to evaluate the time needed to complete a task or a set of tasks.
Thus, the authors assume that the less time a user needs to complete these tasks, the better
the QoE because the infrastructure provides better interactivity. However, in general, what
these proposals have in common is that they do not provide an order of magnitude for
the obtained metric to satisfy the user’s QoE. In [52], Varghese et al. developed tools to
evaluate these elapsed times. To do this, the authors recorded the tasks they wished to
study in a database. Each task was characterised by the pattern of keyboard and mouse
actions that triggered its execution. In addition, they used the client’s screen state to detect
any visual elements of interest that should be present at the start and end of the tasks. Thus,
they detected the start of a task from the initial patterns of the keyboard, mouse, and screen
state (e.g., detecting the icon of a closed folder). Once the authors detected the start of a
task, they periodically looked for graphical elements on the screen that indicated its end
(e.g., detecting the icon of an open folder) and calculated the elapsed time. To detect that
the visual elements of the database were present on the client’s screen, in [52], the authors
compared pixels one by one, considering only those bitmaps where at least a difference of
35 pixels was present.

In [34], Kumar et al. employed the same strategy of calculating the time it takes a
user to complete a set of tasks. To do so, the authors employed the Deskbench tool for
quantifying QoE on remote desktops. The difference from the previous work [52] was
that the strategy developed by Kumar et al. was not a real-time tool for real users. This
tool allows for the emulation and measurement of the time spent performing previously
recorded keyboard and mouse actions. During the recording phase, in addition to storing
keyboard/mouse information and the corresponding time references in the database,
synchronisation points are stored. When the tool replays the recorded actions, the response
on the screen can have a significant temporal variability. If the tool attempts to click on
an item that the screen has not yet represented, the playback will fail. For this reason,
the tool uses the synchronisation points. During the recording phase, the tool obtains
synchronisation points every 250 ms, and with them, it stores an MD5 hash containing the
areas of interest on the user’s screen. During the playback phase of the tasks, every 250 ms,
the tool checks the MD5 hash of the user’s current screen to ensure that it matches the hash
in the database. If it does not match, the tool checks periodically until it finds the expected
screen state, and playback can continue. Upon completion of the playback of prerecorded
actions, the tool obtains the time needed. In addition, the tool allows for the addition of
fuzzy synchronisation points to the database to increase its robustness and not block the
playback of tasks due to accidental small differences on the screen.

In terms of commercial solutions, Exoprise’s CloudReady tool [45] also opts to record
and replay a sequence of actions in remote desktop environments to obtain the time spent
on them and thus evaluate interactivity. Unlike the strategy employed by Kumar et al.
in [34], CloudReady does not use an MD5 hash to determine that a sequence of tasks
is finished but rather uses optical character recognition (OCR) techniques. CloudReady
allows the user to specify a text string that the tool locates in a program of the user’s choice
after opening. The common procedure of OCR systems is to binarize, segment, improve
visual quality, and compare with known character patterns. However, as it is a commercial
tool, there is not enough information regarding the exact procedure it uses.

Another group of authors has tried to evaluate the elapsed time between when a user
interacts with a CIA and the moment they perceive a response to their interactions (this
metric is called the interactivity time [9] or responsiveness [10]). In [9], Arellano-Uson et al.
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proposed the thin client latency analysis (TeCLA) methodology. The aim of TeCLA is to
quantify QoE on remote desktops, independent of the protocol used. The authors measured
the interactivity time. To do this, TeCLA periodically (as fast as possible) performs a
checksum of the user’s screen. When TeCLA detects a keyboard or mouse interaction, it
stores the most recent checksum, and it computes the client’s screen checksum constantly
until it is different from the stored one. At that point, TeCLA interprets that the screen has
changed and regards that change as a response to the client’s interaction. Then, it calculates
the interactivity time as the elapsed time. A change in the screen may not be the actual
response to a user’s interaction and may generate shorter interactivity times compared to
the actual ones. For example, there may be autonomous changes to desktop elements (a
clock flashing every second), the current window (a banner containing an animation), or
a different window (a video playing on the desktop). The authors call these phenomena
instabilities. TeCLA identifies instabilities on the screen when a user is not performing
any action. If no instabilities occur for a sufficiently long period, the statistical model of
TeCLA interprets the subsequent samples of interactivity as reliable. TeCLA allows for the
determination of the minimum interval between the detection of instabilities to reduce the
probability of measurement error below a user-specified threshold based on studies with
real users.

Instead of obtaining bitmaps from the user’s screen, other proposals opted to use
external devices. These devices relate variations in light intensity in a particular area of
the monitor to the user’s keyboard or mouse interactions. When the tool detects a user
interaction, it waits to detect a slight variation on the monitor. The tools interpret the
variation as the representation of the response to the CIA user’s request. These external
devices have a photodetector to measure variations in light intensity. These proposals place
the photodetector on the user’s monitor to make the measurements. Leo Bodnar Electronics
offers devices that allow one to obtain interactivity time through emulated interactions,
which are used by researchers to evaluate the QoE in cloud gaming. The device in [55]
supports video signals up to full-HD quality, whereas the model in [56] allows for signal
measurements at 4K resolution.

Johnsen [57] (UXMeter) and the NVIDIA Latency Display Analysis Tool (LDAT) [58]
offer similar external devices based on light-intensity variations. They allow for the detec-
tion of user–mouse interactions. Their external devices connect to the user’s PC via USB
and receive the user’s interactions by directly connecting the mouse to them via a USB
port. The NVIDIA solution not only detects the interactivity of the display device but also
provides a mini-jack audio input to evaluate the audio delay.

Ideally, in remote desktop or cloud gaming CIAs, the user’s screen should be identical
at the same instant of time as that of the cloud server. However, in practice, this is
impossible due to the delay introduced by the network. Some authors evaluated the time
difference between the screen representations of the cloud server and the client device.
These QoE quantification proposals base their approaches on the fact that the shorter the
time difference, the better the user experience. The cloud server of a remote desktop or
cloud game sends screen updates to the client as fast as possible. The server must adjust
its screen refresh rate based on the available resources (e.g., network bandwidth or CPU
usage of the computers involved). To avoid overloading clients, some solutions only send
screen updates once the client confirms receipt of the previous update. During this time
gap, the screen of the cloud server may have changed. Instead of sending individual screen
updates for each change, the cloud server unifies all changes into a single screen update. In
this way, the CIA merges multiple screen changes occurring at the same pixel location into
its most recent pixel value.

To quantify this phenomenon, there are three alternatives in the literature. In [39], Hsu
et al. proposed a method for evaluating cloud gaming. In their study, the authors used
external cameras pointed at two monitors: one connected to the thin client and the other
to the cloud server. To correctly identify on-screen updates, the proposed methodology
inserts a colour bar at the top of the screen that unambiguously encodes each frame. During
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post-processing of the videos, the authors extracted the time difference between instances
when the screens represented the same update. In this case, the authors did not provide an
order of magnitude of the time difference that would allow the user to be satisfied with the
CIA, and they required the client and the cloud server to be close to each other during the
test. Finally, Shu Shi et al. [43] proposed their distortion-over-latency (DOL) metric, seeking
to combine interactivity time and rendering quality in cloud gaming CIAs. To obtain the
DOL, the authors calculated the distortion between the screen update rendered by the thin
client and the ideal screen update before being sent by the cloud server. The DOL is the
product of the MSE of these two screen updates and the time elapsed until the thin client
receives the distorted frame (synthetic interactivity time). Tools can easily calculate the
DOL offline by saving all the screen updates from the client and the cloud server. However,
performing this calculation in real time is complicated because the thin client does not
have the original screen update to calculate the distortion. Shu Shi et al. proposed utilising
a thin client and a cloud server to perform online calculations. The thin client sends the
distorted screen update and the synthetic interactivity time to the server along with the
original screen update to calculate the DOL. The authors did not provide a relationship
between the DOL and QoE values but stated that they needed more subjective testing to
better understand this relationship.

There are, therefore, some common weaknesses in the proposals based on screen
updates. In general, they do not provide an order of magnitude for the obtained metrics to
ensure user satisfaction with QoE. Some of the proposals do not allow real-time operation,
and others do not take into account possible measurement errors or obstacles in the method-
ology used. However, this cannot be known in all the proposals we analysed because some
do not provide sufficient technical details to replicate their operations. Additionally, some
proposals are dependent on a specific system, application, or environment, as they rely on
utilising equipment, applications, or drivers.

5.2. Strategies Based on the Use of Slow-Motion Benchmarking

Among the strategies available in the literature, one stands out: slow-motion bench-
marking from Nieh et al. [49]. Slow-motion benchmarking is a methodology for obtaining
interactivity time for remote desktop CIAs from network traffic. Slow-motion benchmark-
ing estimates interactivity time from patterns of network packets exchanged by both ends.
When a user interacts with an application via a desktop, the thin client sends a request
to the cloud server. This request generates an increase in network traffic. When the ap-
plication located on the cloud server produces a response, it sends it to the thin client,
again generating a spike in network traffic. Slow-motion benchmarking monitors this
network traffic to obtain the elapsed time between the two traffic surges. If slow-motion
benchmarking captures the traffic near the thin client, that elapsed time approximates the
time between when a user interacts via a keyboard or mouse with the thin client and when
they perceive a response on the screen. However, to avoid problems in detecting increased
network traffic, slow-motion benchmarking requires a single ongoing request to the cloud
server. This methodology requires instrumenting the thin client to refrain from initiating
a new user interaction until it receives a response to the previous request. Therefore, it is
not suitable for measuring the QoE of a user in real time but only serves to characterise the
scenario under controlled conditions.

The authors suggested two safeguards for implementing the methodology. The use of a
remote desktop protocol generates approximately constant traffic due to the communication
between the thin client and the cloud server. An increase in this traffic may confuse the base
traffic of the protocol used with the traffic generated by user integration. An implementation
of the methodology must take this fact into account and establish a threshold above
which it considers the detection of an interaction. Furthermore, the authors stated that
the interactivity time obtained by slow-motion benchmarking is an approximation. The
methodology does not consider the time that the thin client employs to detect the user
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interaction or to prepare and send the interaction over the network, nor does it consider the
time that the client needs to reflect the detected update in the network traffic on the screen.

Several proposals used slow-motion benchmarking as the core of their research.
Among them is the work carried out by Nguyen et al. [51]. The authors proposed a
tool (VDBench) to evaluate and compare different remote desktop solutions. VDBench
is based on slow-motion benchmarking and offers the interactivity time obtained from
synthetic user interactions (as it does not come from real-time users). In addition, it offers
test automation to evaluate the scalability of virtual machines on the cloud server. VDBench
collects metrics on bandwidth usage, network loss, CPU, and RAM.

Other authors chose to use slow-motion benchmarking to quantify the performance
of different remote desktop solutions in their studies. Alali et al. [33] referred to VD-DUT
as the synthetic interactivity time obtained by slow-motion benchmarking. They also
supplemented it with other metrics to assess the visual and sound quality experienced
by users. In their study, 115 participants used four applications (image viewing, Skype,
3D image viewing, and video playback) via Windows RDP. In their study, they modified
network conditions to generate packet losses while users interacted following the principles
set by slow-motion benchmarking for a single network interaction. They simultaneously
correlated objective measurements of visual quality, sound quality, and VD-DUT with
opinion values by questioning the users under various boundary conditions defined by the
authors. The work of Alali et al. [33] used the MOS scale.

Therefore, there are some disadvantages common to proposals employing slow-motion
benchmarking. This strategy offers merely an approximation of interactivity time since
it derives it from network packets. Furthermore, it requires only an ongoing request
from the client to correlate with the server’s response packet. Therefore, it is not suit-
able for real-time QoE measurement but rather for characterising scenarios in controlled
laboratory conditions.

5.3. Strategies Based on Audiovisual Degradation Measures

Strategies based on audiovisual degradation measures are those that seek to evaluate
the deterioration in visual or sound quality experienced by applications or services when
they are utilised through a CIA rather than locally. We explain below how researchers
quantify this phenomenon.

The literature on the evaluation of CIAs addresses different metrics for quantifying
audiovisual degradation. One of the simplest is the number of frames per second (FPS) the
user receives from a CIA. Hsu et al. [39], Penaherrera-pulla et al. [50], and Liu et al. [35]
used the FPS as a measure of QoE to evaluate cloud gaming services. If FPS decreases,
the authors interpreted that QoE also decreases. In their study, Penaherrera-pulla et al.
demonstrated that the lower the number of frames per second, the lower the game scores
for the players of a cloud gaming service. However, the FPS measure quantifies only
the amount of information the client receives, not its quality. This is why, during their
experiment, they used software to record the screen of the client and the cloud server. They
then compared, frame by frame, both video sources to extract a new distortion metric
calculated as the average of the mean squared error (MSE) between the server and client
screen pixels for each recorded frame. This proposal also did not provide a relationship
between the FPS or the MSE of the FPS and the QoE.

In the original slow-motion benchmarking work, Nieh et al. [49] focused on providing
an approximate measure of interactivity time in remote desktop environments. In addition,
the authors offered a mathematical expression to quantify the visual quality experienced
by the user when consuming video through a thin client. They proposed a term named
visual quality (VQ), which takes as a reference the amount of traffic generated when using
a slowed-down version of the applications. The cloud server plays a video stream slowly
enough so that the thin client can fully process each frame before it receives the next frame.
The methodology records the traffic for each frame of the video as a reference traffic load
for seamless playback without degradation. Thus, the visual quality is the ratio between
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the traffic generated by the CIA at a normal FPS rate and its ideal reference obtained by
the tool with a single frame on the network. Some of the proposals mentioned above used
this expression in their research to complement the information provided by the VD-DUT
metric, for instance, Alali et al. [33] and Nguyen et al. [51].

In [38], Song et al. used a similar approach for quantifying QoE on remote desk-
tops based on video quality. They started with the assumption that unlimited network
bandwidth guarantees the best display quality. Thus, visual quality is the ratio between
the traffic that CIAs generate in a bandwidth-constrained environment (the real scenario)
and the traffic they generate under unrestricted bandwidth conditions. Although these
proposals seek to quantify the visual quality experienced by users of CIAs, they did not
clarify what value of the VQ metric satisfies users’ QoE or propose a methodology to map
it to a proper QoE scale.

The peak signal-to-noise ratio (PSNR) [89] and structural similarity method (SSIM) [90]
are other metrics that allow for the evaluation of the visual quality of CIAs. Authors using
the PSNR or SSIM need to compare the quality of the video stream from the cloud server
and that of the user’s screen. A low PSNR or SSIM value indicates a large difference in
quality between the two video sources. However, the PSNR and SSIM, unlike the MSE,
not only measure the frame-by-frame quality of the video sources but also reflect the
desynchronization between them. Thus, a delay in receiving frames from the cloud server
to the client results in a reduction in the PSNR or SSIM. For the PSNR, researchers must
calculate the logarithm of the MSE for each pixel in the image. However, the SSIM is
calculated using luminance, contrast, and image structure. The PSNR is more common
because of its simple calculation and because it is a metric traditionally used in the video
field. However, the SSIM has higher sensitivity compared to the PSNR for detecting small
variations in video sources [91]. Magaña et al. [42] used the PSNR as a measure of QoE
in remote desktop CIAs by comparing two video streams. They compared the Amazon
Workspaces stream measured at the server with the received stream measured at the user’s
end. They then obtained the PSNR measurements to assess the impact of different network
conditions. Magaña et al. mapped these PSNR measurements to an MOS scale value. In
their study, Hsu et al. [39] employed the SSIM, PSNR, and FPS together to evaluate the QoE
in cloud gaming services. Such proposals offer a promising way to assess QoE. However,
they require development and optimisation to be able to compute the PSNR in real time.

The ITU-T proposed an algorithm to evaluate the quality of audiovisual content,
called the perceptual evaluation of video quality (PEVQ), which some authors used to
quantify QoE in CIAs [92]. The PEVQ is an algorithm designed for the evaluation of
streaming video and is a solution that is not often adopted in the field of CIA research.
The PEVQ is a standard metric that estimates video quality by providing an MOS value
at the output. This requires comparing the original, undegraded reference signal with the
signal received by the client. Proposals using this metric require instrumentation from both
video sources to calculate it. The ITU-T offers the PEVQ not only for the assessment of
visual degradation but also for audio degradation. In [93], the perceptual objective listening
quality analysis (POLQA) was used to measure the audio degradation in content after
receipt by the user. The algorithm uses the audio source and received audio source for its
calculation to evaluate the sampling frequency, compression, and synchronisation. The
metric provides an output with an estimated value of the MOS experienced by the user.
In [37], Dong et al. employed the PSNR, FPSs, and SSIM to analyse the user experience in
a remote residential desktop environment. In [46], Wang et al. also employed the SSIM,
PSNR, and PEVQ in their study on cloud gaming. The authors proposed a strategy to
optimise game rendering by delegating part of it to the thin client. Their proposal utilised
several configurable parameters. The study analysed the impact of the values of these
parameters and the effectiveness of their proposal compared to the state of the art. using
audiovisual degradation metrics. These metrics require the video sources of the cloud
server and the client, so their implementation in real environments is difficult. However,
they provide a concrete QoE value.
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Regarding audio, in [33], Al Ali et al. used three different metrics to compare original
and user-perceived audio: Weighted Spectral Slope (WSS) [94], Log-Likelihood Ratio
(LLR) [95], and Virtual Speech Quality Objective Listener (ViSQOL) [96]. The study focused
on remote desktop environments. The WSS provides a distance measurement between
the original signal and the one received by the user by obtaining a weighted difference
between spectral slopes in different frequency bands. The spectral slope is obtained as
the difference between adjacent spectral magnitudes in decibels. The LLR also provides
a measure that quantifies the spectral differences between the reference signal and the
compressed signal. The ViSQOL metric models the perception of human speech quality
using a spectrotemporal measure of the similarity between a reference and a test speech
signal. Similar to previous proposals, these metrics require the audio sources of the cloud
server and the client, which makes their implementation in real environments difficult.

Therefore, there are some common drawbacks of the proposals based on audiovisual
degradation measures. The main one is that the proposed measures require obtaining
audio or video signals from both the client and the server to compare degradation. This
condition can be complex and hinders real-time QoE assessment. However, these pro-
posals commonly provide a specific QoE value, which is not very common in other types
of strategies.

5.4. Strategies Based on the Instrumentation of Programming Code

This strategy refers to proposals that require modifying the source code of applica-
tions or services running on at least one element of the CIA infrastructure to provide
QoE measures.

A number of authors tried to evaluate the interactivity time or responsiveness of CIAs
through CIA instrumentation. Unlike strategies based on screen updates, authors who
opted for code instrumentation did not need to analyse the graphical content of the screen
to determine when the response to a user request was represented. Instead, they directly
instrumented the CIA code to add timestamps when functions of interest were executed.
In this case, the authors aimed to identify when the server received a user interaction and
when the client received the graphical response sent by the cloud server.

In [35], Liu et al. instrumented code to evaluate QoE in cloud gaming CIAs. They
proposed a tool called Pictor for benchmarking cloud gaming services. Pictor has two
components. The first one aims to automate and replicate the comparative tests. To do this,
Pictor generates interactions with the CIA as a real user would. The second component
is responsible for evaluating the behaviour of the service in the face of these emulated
interactions. The first component uses neural networks for its operation, so it needs to be
trained on labelled recordings from cloud gaming services. Accordingly, the researchers
instrumented the cloud gaming CIA client TurboVNC [97] to capture user interactions.
Additionally, Pictor uses image-processing techniques to identify the different graphical
objects present in the service with which the user can interact. The researcher must label
each of these objects during the training phase. The collected information makes up the
training set for a recursive neural network, specifically, long short-term memory (LSTM).
As a result of training, the neural network can interact with the cloud gaming service in
a real scenario. After automating and replicating the interactions of the CIA, the authors
subjected the service to different boundary conditions to evaluate its performance. The
second component of Pictor allows for comparing configurations and services with each
other. Due to the instrumentation, Pictor can obtain the interactivity time. Specifically,
the authors instrumented the service to monitor calls to several common graphics library
functions (OpenGL [98]), allowing them to determine how long the CIA takes to render
graphics objects after an interaction.

Jahromi et al. [36] sought to measure interactivity time by instrumenting the HTML
and JavaScript code of interactive web applications. When the user interacts with an interac-
tive web application, it triggers the rendering of various HTML components. This approach
requires a taxonomy of all HTML elements on the web. In a previous work, the researchers
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determined how many elements rendered after a given interaction represented the final
graphical state of the associated response. For each possible interaction with the CIA, the
authors calculated the thresholds for the triggered events. Using this instrumentation, the
authors monitored user input and the number of HTML elements rendered. When the
CIA receives an interaction, the instrumented code calculates the moment at which the
interactive web application renders all HTML elements of the associated response. The
output time metric is an approximation of the interactivity time, as it does not account for
the time required by the browser to transfer the screen refresh to the operating system.

In the field of interactive web applications, the literature presents various alternative
time metrics to interactivity time achieved through the instrumentation of their code to
represent QoE. Saverimoutou et al. [40] presented a tool called Web View, which automates
the collection of several of these metrics. The time to first paint (TTFP) is the time it takes
for the first pixel to appear on the user’s browser screen after the first interaction with
the web service. To calculate the TTFP, the researchers instrumented a CIA to obtain the
time elapsed between the establishment of the first connection at the network level and
the instant the first HTML element starts to be rendered. The TTFP is a metric the authors
associated with QoE. Even if it does not measure the time to render the final response, it
captures a scenario where the user becomes impatient, thinking that the CIA is stuck or not
working properly if they do not see any kind of update on the screen [40].

The Page Load Time (PLT) represents the duration between the start of browsing
and the entire web page loading. It is calculated as the time between the establishment of
the first connection at the network level and when the page finishes loading and renders
the last HTML element. The PLT was proposed by Saverimoutou et al. as a measure of
QoE. However, some HTML elements of the web page are not visible unless one scrolls
to the non-visible part of the CIA. This is why Web View obtains the Time for Full Visible
Rendering (TFVR) metric as an alternative. The TFVR represents the time it takes for the
interactive web application to render the part directly visible to the user without scrolling.
The instrumentation code automates the process of determining when each of the elements
is rendered and their respective positions on the final web page. Some HTML elements,
such as images, may be cached, and the instrumentation takes this phenomenon into
account. Once the coordinates and dimensions occupied by each element of the DOM have
been determined, the tool decides which elements and at what time the browser renders
them in the visible part.

Additionally, in the field of interactive web applications, there is the work by Hossfeld
et al. in [44], which is similar. However, the work focuses on the speed index (SI) metric.
This is a metric that evaluates the time it takes to render a change on the screen in web
applications, but may also be applicable to CIAs. Specifically, the SI quantifies the speed
with which screen updates are rendered. To do this, by instrumenting the CIA code in
the client, it measures the duration between the rendering of two known graphical states
characterised by the histogram of their pixels. Although the SI is not an approximate or
proportional measure of interactivity time, it is sometimes used as a representative metric
of QoE. For this purpose, Hossfeld et al. proposed a mathematical model to map different
SI values to an MOS scale.

Therefore, there are some common drawbacks of proposals based on the instrumen-
tation of programming code. Primarily, it can be challenging to instrument applications,
operating systems, or drivers. This implies that some of the proposals are less generalizable
and, consequently, in certain cases, the measurements they provide are approximations.

5.5. Strategies Based on Indirect Measures

This strategy refers to proposals that quantify QoE through indirect measures. Indirect
measures are those obtained from other intermediate measures that, in principle, are not
directly related to QoE. We explain below the most common intermediate measures used
by researchers to assess QoE.
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In [47], Wehner et al. proposed an alternative to avoid the instrumentation of in-
teractive web applications and obtain the SI without incurring high computational costs.
Although the SI traditionally requires the instrumentation of the CIA, the authors suggested
obtaining the metric through indirect measurements. Their proposal used network traffic
and artificial intelligence models. To train the models, Wehner et al. extracted the number
of bytes, number of packets, arrival times, and bandwidth generated by the CIA. From
these values, they calculated statistics such as the mean, maximum value, and sum. In the
study, they tested different models: k-nearest neighbours (KNN), decision trees, random
forests, extreme gradient descent (XGB), LSTM neural networks, and gated recurrent units
(GRUs). The LSTM networks provided the best results for estimating the SI from network
traffic in interactive web applications.

In [48], Graff et al. defined the relationship between different main key performance
indicators (KPIs) of the indirect measures that are relevant to determining the QoE in cloud
gaming CIAs. However, the QoE model resulting from the experiments was a conceptu-
alisation and did not provide a final definition specifying which KPI transformations are
necessary to obtain a real QoE value.

Li et al. [41] proposed latency as an indirect measure. The authors aimed to evaluate
the QoE in remote desktop CIAs by employing active traffic measurements. The study
suggested using the response time of ICMP (ping) requests from the client to the cloud
server. The approach requires creating a baseline by pinging a cloud server. Following this
previous work, Li et al. used this baseline to evaluate the QoE in CIAs in real scenarios.
When the server is more loaded or network administrators add new virtual machines to the
server, some ping requests will show higher times. Their indirect latency measure assesses
these anomalous high values that deviate from the norm. However, again, the paper did
not clarify the relationship between the indirect measure and QoE. Furthermore, it did not
use real users to evaluate whether there was a real relationship between the peak latency
phenomenon and a decrease in QoE.

Some proposals offer proprietary measures of QoS as proxy measures for QoE quan-
tification. The most common ones are CPU, GPU, RAM, disk, and network usage. These
metrics are traditionally used to evaluate equipment performance but are not necessarily
directly related to the user experience. Some authors obtained these metrics from the client
or the cloud server. In [31], Casas et al. used network metrics to evaluate QoE in remote
desktop and interactive web page CIAs. In their study, the authors analysed the QoE in
different commercial CIAs. They subjected the service to different boundary conditions and
obtained network metrics such as upstream bandwidth, downstream bandwidth, and RTT.
The authors attempted to map these metrics to QoE using laboratory tests with real users.
In these tests, the researchers also calculated the synthetic interactivity time, which can be
derived from network measurements, such as the RTT. However, the study did not provide
much detail about how to obtain the synthetic interactivity time or its measurement error.

If CPU, GPU, RAM, or disk usage is high, the different tasks running on a computer
may be queued, and the user may perceive a slowdown in the CIA services consumed.
When there are no processes running on the computers, the use of computing resources
remains stable. A significant variation in the stability of the usage of these measures may
be indicative of the start of new processes on the computers in the CIA architecture. Liu
et al. [35] measured CPU and GPU usage in their study of cloud gaming. Laghari et al.
designed and developed [53] a platform to evaluate QoE in any CIA. The objective was to
check whether the parameters offered by the service were consistent with the service level
agreement (SLA). The values compared were the CPU, RAM, and GPU usage of the client,
as well as the bit rate of the connection between the client and the CIA cloud server.

The problem with these proposals is that none of the authors established which values
of the measurements they obtained are sufficient to guarantee QoE. Although there was a
relationship identified between QoS and QoE, these studies did not use real users subjected
to different boundary conditions to verify and evaluate the correlation between QoS and
QoE. Mahmud et al. [54] developed a model to guarantee QoE in any type of CIA. The
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authors argued that by optimising different metrics, the CIA user would have a good QoE.
Their model is based on fuzzy logic and optimises two indirect measures called the Rating
of Expectation (RoE) and Capacity Class Score (CCS). Using the values of these metrics, the
authors determined the ideal location for the CIA’s cloud server to guarantee an accurate
QoE result. The RoE categorises the CIA’s requirements based on its access rate (slow,
normal, fast), expressed in user accesses per second; the computational resources it needs
(small, regular, large), expressed in CPU cores; and the processing time required (stringent,
moderate, flexible), expressed in milliseconds. The CCS, on the other hand, reflects the
state of the cloud server, categorising the cloud server requirements by the RTT (short,
typical, lengthy), expressed in milliseconds; the availability of computational resources
(poor, standard, rich), expressed in CPU cores; and the processing speed (least, average,
intense), expressed in thousands of instructions per second (TIPS). The Mahmud et al.
model allows for selecting the best location for the cloud server and for understanding in
real time whether the QoE requirements of a particular CIA can be met by thresholding the
RoE and CCS metrics. However, the proposal did not study the relationship between the
selected metrics used to calculate the RoE and CCS and the QoE perceived by users.

Therefore, proposals based on indirect measures have some drawbacks. Some studies
lack details on how to reproduce their QoE assessment methods. Sometimes, the relation-
ship between QoE and the proposed measures is not specified. In addition, there is a risk
of confusing QoS measures with QoE in certain cases.

5.6. Comparison of Strategies

Table 4 provides a summary of the strategies for QoE measurement in CIAs. It is worth
noting that the human perceptions related to QoE are considered in the proposals discussed
within each strategy. Among these, only the proposals based on indirect measures attempt
to cover the three human perceptions that influence QoE. This is because this strategy en-
compasses a variety of proposals. However, it is concerning that no strategy unanimously
offers a real measure of QoE. Only isolated proposals make an effort to establish a mapping
between their proposed metrics and a QoE scale such as the MOS. Moreover, among the
proposals that consider the human perceptions, few specify thresholds for the provided
metrics. Only a small number of proposals belonging to the screen-based approach do so.
This lack of specification makes it challenging for administrators to implement the method-
ologies suggested by the proposals. Furthermore, both the slow-motion benchmarking
strategy and the indirect methods strategy involve approximations for the measures they
propose. In the case of slow-motion benchmarking, an incomplete interactivity time is
obtained, referred to as synthetic interactivity time. In the case of the strategy based on
indirect methods, the proposals involve inaccurate mappings between QoS parameters.
Finally, Table 4 lists some of the advantages and disadvantages of the proposals described
in the text.

Table 4. A summary of strategies for QoE measurement in CIAs and systematic discussions.

Strategy
Based on

Human Perceptions Considered Real QoE
Metric

Metric
Thresholds

Strategy
Accuracy Common Proposals: Advantages Common Proposals: Drawbacks

Visual QualityAudio QualityInteractivity

Screen
updates × × ✓ None Rarely High · Real-time operation

· Widely accepted
· May require external devices

· Lack of mapping between interactivity and QoE

Slow-motion
benchmarking ✓ × ✓ Mostly none None Estimation · Widely accepted

· Required modification of CIA user behaviour
· Target metric approximation

· No real-time operation
Audiovisual degradation

measures ✓ ✓ ✓ Mostly none None High · ITU-T standardised proposals · Need both audio/video sources from the cloud server and client

Instrumentation of
programming code × × ✓ Mostly none None High · Many output metrics

· Quantify subtle aspects of interactivity

· Lack of mapping between interactivity and QoE
· Proposals difficult to generalise to other CIAs
· Requires access and knowledge of source code

Indirect measures ✓ ✓ ✓ Mostly none None Estimation · Easily obtainable input metrics
· Misuse of QoS metrics

· Lack of real users
· Target metric approximation
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6. Stages of the Quantification of QoE in CIAs

In this section, we differentiate between the three main stages that all strategies must
address in QoE assessment: collection of metrics, processing, and generation of the output.
Figure 5 represents the sequential process of these three stages.

Figure 5. Sequential process of QoE evaluation.

In the input stage, the proposals obtain metrics for some of the infrastructure compo-
nents, as depicted in Figure 4. Subsequently, the proposals process this input information
in the second stage. Finally, in the output stage, new metrics are generated, more or less
related to the QoE of the CIA being evaluated. We group the proposals according to the
metrics used by the authors in each of the stages.

6.1. Input Stage

We present a classification of the information extracted from the proposals in the
literature with respect to the sources of information or starting metrics extracted from
the elements of the CIA’s infrastructure. In particular, some researchers aimed to extract
information related to the human perceptions discussed in Section 2. In some cases, these
were the inputs used directly in the next stage of processing, whereas in others, the tools
performed transformations of the metrics to obtain other input metrics. In Figure 6, the 21
metrics or sources of input information collected from the state of the art are grouped into
four main categories.

Figure 6. Grouping of input stage metrics into four types of information sources.

The four main sources of information are as follows:

• Audiovisual content: The tools extract the input information about the graphic or
audio content from the CIA the user is consuming.
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• Device resources: The input information comes from the computational resources of
the elements of the CIA architecture.

• Network information: Incoming information comes from network traffic.
• User feedback: Tools extract input information directly from user impressions.

Table 5 summarises the proposals we discussed in Section 5 and identifies the different
types of input sources used, along with the specific metrics. Each proposal may use several
sources of input information simultaneously. The table categorises the proposals into
two broad types: specific or general scopes. This categorisation distinguishes works that
are generalizable to any type of CIA (general scope) from those in which the authors
specialise in quantifying QoE in specific CIAs (specific scope). In the case of remote
desktops, proposals that use input metrics independent of the remote desktop protocol
used by the CIA are part of the general scope group. Conversely, proposals that dissect
any given remote desktop protocol to obtain the input metrics are part of the specific
application scope.

Audiovisual content allows researchers to obtain sources of information and metrics
related to the visual and audio perceptions of the CIA user. To obtain metrics or sources
of information on visual perception, the source can be the graphic content represented by
the CIA. Some proposals attempted to obtain measurements in a timely manner, opting to
obtain screenshots of specific elements of the architecture as a source of information. Other
proposals chose to obtain measurements continuously, using screen streams as a source
of information. To obtain screenshots or screen streams, researchers either instrumented
the architecture or externally recorded some display elements. When proposals obtained
screenshots or screen streams on the client side, they obtained metrics related to the
user’s final receipt. However, proposals that obtained their source information from
the cloud server extracted information prior to any visual degradation generated by the
infrastructure. As discussed in Section 5, some researchers used graphical content to obtain
metrics such as visual quality or frames per second (FPS). These tools can obtain these
metrics from graphical content by passively monitoring the connections between graphical
representation elements (e.g., a screen monitor). Strategies that instrument the wiring
require additional custom hardware.

In remote desktop or cloud gaming CIAs, the cloud server can send compressed
or uncompressed graphical content over the network. Additionally, the cloud server
may be able to communicate with the client by employing graphical primitives of the
operating system. In such a case, the cloud server indicates how and which regions of
the client’s screen it will update. Graphical primitives save bandwidth but require an
understanding of the client’s graphical libraries and the cloud server. Even when the
graphical content was not accessible in real time, some proposals used graphical update
primitives. These proposals measured the frequency of graphical updates, either when sent
by the server or received by the client, as well as the percentage of the user’s screen updated
by each primitive. Other proposals opted for light-intensity measurements. This source
of information was interesting in cases where researchers could not instrument the client,
network, or cloud server. Some authors used comparative light-intensity measurements to
detect the frequency with which changes occurred on the screen.

To obtain metrics or information sources from sound perception, the information
sources are the sound content reproduced by the CIA. When the proposals obtained the
audio from the client, they obtained information related to the user’s final reception.
However, proposals that obtained audio from the cloud server extracted information prior
to any sound degradation generated by the infrastructure. The authors sometimes chose to
use both sources of audio information in combination.
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Table 5. Literature proposals and the input metrics used.

Ref. User Feedback

Audiovisual Content
Device Resources Network

Graphic Content Sound Content

Screen
Stream Screenshots Graphic Update

Commands
Luminic
Intensity

Signal
Cable Audio Stream

Computational Resources

User
Input

I/O
Calls

Process
Information

Source
Code

Traffic Metrics

Raw
Packets

Active
ProbingCPU GPU RAM Disk

Usage

Bit Rate
and

Packet Rate
RTT Packet

Timestamps
IP

Addresses

General scope application

Casas et al. [31] Yes Yes Yes Yes Yes

Wang et al. (2017) [46] Yes

Laghari et al. (2018) [53] Yes Yes Yes Yes Yes Yes Yes

Magana (2019) [42] Yes

Johnsen (2019) [57] Yes Yes

Mahmud et al. (2019) [54] Yes Yes Yes Yes Yes Yes

Li et al. (2019) [41] Yes

Nvidia (2020) [58] Yes Yes

Wehner et al. (2020) [47] Yes Yes

Leo Bodnar Electronicas (2021) [55] Yes Yes

Leo Bodnar Electronicas (2021) [56] Yes Yes

Hsu et al. (2021) [39] Yes Yes Yes

Penaherrera-pulla et al. (2021) [50] Yes

Graff et al. (2021) [48] Yes Yes Yes

Arellano-Uson et al. (2021) [9] Yes Yes

Dong et al. in [37] Yes Yes Yes Yes Yes

Specific scope application

Nieh et al. (2003) [49] Yes Yes Yes

Shushi et al. (2011) [43] Yes Yes Yes

Nguyen et al. (2015) [51] Yes Yes Yes

Varghese et al. (2018) [52] Yes Yes

Song et al. (2018) [38] Yes Yes Yes

Hossfeld et al. (2018) [44] Yes

Saverimoutou et al. (2019) [40] Yes

Alali et al. (2019) [33] Yes Yes Yes Yes Yes

Jahromi et al. (2020) [36] Yes

Liu et al. (2020) [35] Yes Yes Yes Yes Yes Yes Yes

Kumar et al. (2021) [34] Yes Yes

Exoprise (2024) [45] Yes
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For device resource information, Table 5 groups the eight related input metrics. Some
researchers derive metrics from the source information of the computational resources of
the architecture elements. The most common metrics are CPU, GPU, RAM, and disk usage.
Another source of information is user input. Some researchers obtain metrics related to
when the user interacts with their devices via a keyboard or mouse. User input is one
source of information that provides metrics on when they occur, how often they occur,
the type of action performed (e.g., a mouse click or a key press), and the locations of the
interactions (mouse coordinates). Another source of information is the system calls that
applications use to communicate with the operating system. Some approaches choose to
monitor the input and output (I/O) of these calls to evaluate the content, their frequency,
or the time elapsed between the system receiving the input and generating the output.
Some researchers use not only these times as a source of information but also the behaviour
of the executed processes as input metrics. This source of information is different from
I/O calls, as it allows the tools to obtain metrics of applications: the physical resources
it uses, the libraries it calls during its operation, and the execution times of its internal
processes. Some authors extract the I/O and process information from both the client and
cloud server through the APIs of their OS. Another source of information is the source
code of the applications that the literature uses to obtain metrics related to their behaviour.
Using the source code, some proposals calculate, among other things, metrics such as the
rendering time of an element of a web application, the time at which a certain response
is sent or received by the client, or when a screen update order is sent or received. This
source of information requires instrumenting the applications (APM).

The network allows input metrics to be obtained from the traffic generated by the
CIA. Some approaches monitored traffic to obtain network traffic metrics, such as bit
rate, packet rate, timestamps, or IP addresses present in the traffic. Other proposals used
the raw content of network packets. This source of information requires knowledge of
the communication protocol in use to extract parameters from the messages exchanged
between the client and the cloud server. This enables the determination of the specific
packet that contains a screen update, a user action, or the compression codec used in
the CIA. Currently, it is challenging to use this source of information, as most network
traffic is encrypted. Other proposals used active polling by generating synthetic network
traffic directed at infrastructure elements and evaluating the responses of the target devices.
Active polling allows for deriving metrics, such as response times or the status of the client
or cloud server, from response codes.

User feedback is a direct source of input information related to QoE in CIAs. Some
proposals in the literature collected user feedback through forms or surveys, allowing users
to express their opinions when the study exposed them to different boundary conditions.
Users rated their experience on a predefined scale or in their own words. The most frequent
scales used were the ACR or MOS, as mentioned above. Other scales include the Standard
Deviation of Opinion Scores (SOS) [99] and the Net Promoter Score (NPS) [100]. The SOS is
a measure that states that in properly conducted QoE evaluation tests, user ratings differ
very little, as all users experience the same boundary conditions. The NPS, on the other
hand, assesses not only user satisfaction but also user loyalty. The NPS determines how
likely a person is to recommend a brand, company, product, or service to another person.

6.2. Processing Stage: Computing QoE

Here, we present a classification of how the proposals in the literature process the
input stage metrics:

• Ad hoc heuristics: Processing techniques created to obtain an output metric that is not
generalizable to objectives other than the quantification of QoE in CIAs.

• Image processing: A set of techniques applied to digital images to transform them or
extract features.

• Artificial intelligence: Processing techniques that use a set of training data to automat-
ically build a model.
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Table 6 summarises the proposals presented in Section 5 and groups them by process-
ing technique. Some proposals use multiple processing techniques simultaneously.

Table 6. Proposals from the literature and the processing techniques used.

Ref. Ad Hoc
Heuristics

Image
Processing

Artificial
Intelligence

Nieh et al. (2003) [49] Yes

Shushi et al. (2011) [43] Yes

Casas et al. (2014) [31] Yes Yes

Nguyen et al. (2015) [51] Yes

Wang et al. (2017) [46] Yes

Varghese et al. (2018) [52] Yes

Song et al. (2018) [38] Yes

Hossfeld et al. (2018) [44] Yes

Laghari et al. (2018) [53] Yes

Magaña et al. (2019) [42] Yes

Saverimoutou et al. (2019) [40] Yes

Johnsen (2019) [57] Yes

Alali et al. (2019) [33] Yes

Mahmud et al. (2019) [54] Yes

Li et al. (2019) [41] Yes

Jahromi et al. (2020) [36] Yes

Nvidia (2020) [58] Yes

Liu et al. (2020) [35] Yes Yes Yes

Wehner et al. (2020) [47] Yes

Leo Bodnar Electronics (2021) [55] Yes

Leo Bodnar Electronics (2021) [56] Yes

Hsu et al. (2021) [39] Yes

Penaherrera-pulla et al. (2021) [50] Yes

Graff et al. (2021) [48] Yes

Kumar et al. (2021) [34] Yes

Arellano-Uson et al. (2021) [9] Yes

Dong et al. in [37] Yes

Exoprise (2024) [45] Yes

Processing techniques based on ad hoc heuristics varied. Some proposals calculated
ratios from the input metrics, related several of them through regression techniques or
mathematical adjustments, or directly thresholded one or more of the input metrics based
on studies that related their thresholds to QoE degradation. On the other hand, other
works used the metric obtained through processing as the representative value of the QoE
assessment. In these techniques, researchers did not determine whether a processing metric
was sufficient to guarantee QoE. These works were based on the hypothesis that optimising
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the obtained metrics (maximising or minimising, as the case may be) is a measure for
guaranteeing sufficient QoE to users.

Processing techniques based on image processing used digital images or image se-
quences as inputs. These processing techniques also varied. Some proposals involved
comparing images to determine if they were the same, calculating degradations, or iden-
tifying modifications in different elements of a CIA’s architecture. Authors achieve this
by comparing the bitmaps of an image pixel by pixel or using discriminators to check
whether they match previously stored reference images. Some proposals calculated hashes
(MD5, CRC, SHA-1, etc.) for discriminators, while others modified the processed images
to insert an encoding that allows for unequivocal identification of each image or frame,
differentiating one from the others with unique identifiers. These identifiers enable the
tools to determine whether two images are the same without the need to check all their
pixels. However, pixel-by-pixel comparison allows for the calculation of metrics such as
which regions differ or the percentage of updated pixels. To calculate the image degra-
dation experienced by users on the client side, traditional image-processing techniques
offer comparative measurements such as the MSE, PSNR, or SSIM. In some cases, image
processing is used to identify specific elements within them. To achieve this, strategies
must employ computer vision to recognise objects or use character recognition such as
OCR to identify text.

Artificial intelligence-based processing techniques employed machine learning (ML)
or deep learning (DL) techniques as the core of their input parameter processing. These al-
gorithms differ from traditional combinational methods because they employ a much larger
number of input parameters. These approaches attempted to find complex relationships
among input parameters and automatically relate them to QoE. To do this, researchers gen-
erated large datasets that they used to train the models. Among the algorithms we analysed
are support vector machines, random forests, naive Bayes, decision trees, k-nearest neigh-
bours, extreme gradient descent, and neural networks such as long short-term memory,
recursive, or gated recurrent units.

6.3. Output Stage

Below, we present a classification of the proposals for evaluating QoE in CIAs based
on the metrics they contribute to the output stage. We group the proposals into five
broad groups. The aim of this section is to discern which research directly assesses the
human perceptions outlined in Section 2 and actually provides QoE-related metrics. Table 7
summarises the proposals we discussed in Section 5 and groups them by their output
metrics, where more than one can be used simultaneously. In this section, we briefly review
these metrics:

• Video metrics: Metrics that quantify the human perception of visual quality.
• Audio metrics: Metrics that quantify the human perception of sound quality.
• Time metrics: Metrics that quantify the human perception of interactivity or respon-

siveness.
• QoE metrics: Metrics that directly summarise the user experience.
• Other QoS metrics: Quality of service metrics that do not relate to human perceptions

or QoE.

Video metrics assess the quality of the graphical content consumed by the CIA user. It
was common to provide measures related to the number of frames per second perceived by
the user, the number of frames lost or skipped by the architecture following its delivery
on the cloud server, or the percentage change of a frame from one screen update to the
next. Other researchers proposed output metrics directly related to their processing stage.
Some output metrics were proprietary to each work, whereas others were well known (e.g.,
PSNR or SSIM) or endorsed by institutions such as ITU-T (e.g., PEVQ).

Audio metrics evaluate the quality of the audio content consumed by the CIA user. In
the output stage, some proposals utilised well-known sound-quality metrics such as WSS,
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LLR, or ViSQOL, as discussed above. As in the case of video metrics, some authors also
used ITU-T-endorsed metrics such as POLQA.

Among the proposals that utilised output time metrics, a large number of researchers
tried to extract interactivity time: the elapsed time perceived by the user from the moment
they interact with the CIA until the representation of the associated response. Meanwhile,
other works used approximations (synthetic interactivity time). Some proposals also
provided a measure of the time it takes for users or CIA applications to complete a sequence
of tasks. Others opted to provide visual load times, often for interactive web applications
(e.g., speed index, first paint, page load time, or time for full visible rendering). These
proposals did not directly measure interactivity time but indirectly measured the human
perception of responsiveness.

Table 7. Proposals from the literature and the output metrics provided.

Ref. Video Metric Audio Metric Time Metric Other QoS
Metrics QoE

Nieh et al. (2003) [49] Yes Yes

Shushi et al. (2011) [43] Yes Yes

Casas et al. (2014) [31] Yes Yes

Nguyen et al. (2015) [51] Yes Yes

Wang et al. (2017) [46] Yes

Varghese et al. (2018) [52] Yes

Song et al. (2018) [38] Yes Yes

Hossfeld et al. (2018) [44] Yes Yes

Laghari et al. (2018) [53] Yes Yes

Magaña et al. (2019) [42] Yes Yes

Saverimoutou et al. (2019) [40] Yes

Johnsen (2019) [57] Yes

Alali et al. (2019) [33] Yes Yes Yes Yes

Mahmud et al. (2019) [54] Yes

Li et al. (2019) [41] Yes

Jahromi et al. (2020) [36] Yes Yes

Nvidia (2020) [58] Yes Yes

Liu et al. (2020) [35] Yes

Wehner et al. (2020) [47] Yes

Hsu et al. (2021) [39] Yes Yes Yes

Leo Bodnar Electronics (2021) [55] Yes

Leo Bodnar Electronics (2021) [56] Yes

Penaherrera-pulla et al. (2021) [50] Yes

Graff et al. (2021) [48] Yes Yes

Kumar et al. (2021) [34] Yes Yes

Arellano-Uson et al. (2021) [9] Yes

Song et al. (2018) [38] Yes Yes Yes

Exoprise (2024) [45] Yes

Through ACR/MOS scale values, QoE metrics often provided a real quantification of
user satisfaction. These proposals obtained these values directly by asking CIA users or
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using proprietary or previous models to map metrics from the other categories of output
metrics onto the ACR/MOS scales.

The most commonly used QoS metrics at the output stage were those indicative of the
state of computational resources such as CPU, RAM, GPU, or disk usage. Other proposals
provided network metrics such as bandwidth usage, bytes sent or received, number of
packets used, or RTT. The main deficiency of these output metrics is that most works did
not establish the relationship between QoS and QoE metrics.

7. Open Issues and Lessons Learned

Cloud-based interactive applications and services are becoming increasingly prevalent.
The pandemic situation caused by COVID-19 has strongly accelerated the deployment
of some of these solutions, particularly remote desktop services. The general public is
increasingly using solutions with high interactivity requirements. This trend must be
accompanied by efforts to assess the QoE that CIAs offer. Service administrators need
to ensure good QoE so that user productivity is sustained. We observed that over the
last three years, the number of research studies addressing the evaluation of QoE in CIAs
has increased. We hope that given the current situation, further progress will be made in
this field.

Presently, researchers need to collect input metrics for their proposals from CIA infras-
tructure elements. There is a need for CIA developers to provide specific APIs and software
for assessing the performance of CIAs deployed in public or private cloud environments.
This would streamline the work of service administrators and allow them to adjust the
computational resources of the CIA architecture in real time. In addition, communication
protocols are, in most cases, proprietary. This makes it difficult to develop methodologies
that can be generalised to more than one CIA. In view of this fact, methodologies such as
slow-motion benchmarking require instrumenting clients and modifying user behaviour to
extract QoE measurements. Therefore, the measurements may not be representative. In
addition, many of the proposals we evaluated have a particularised approach for specific
CIAs. Hence, it is necessary to develop new and more general strategies.

A number of proposals bundle QoS metrics and offer them as a new measure of
QoE quantification. Authors such as Jahromi et al. [36] and Casas et al. [31] studied the
correlation between their input metrics and the user’s final perception. To take the step
of relating QoS to QoE, the studies conducted laboratory tests with a large number of
users who experienced different boundary conditions while answering questions about
their usage experience. However, a large number of the proposals we analysed did not
demonstrate any direct relationship between their QoS metrics and the QoE evaluation
of the CIA. This is the main shortcoming we identified. This missing step is costly and
time-consuming due to the need for laboratory tests, but it will enable one to obtain truly
representative QoE metrics.

To overcome this deficiency, it is necessary to conduct controlled lab experiments [101].
The procedure has been standardised and protocolised by ITU-T [102–104]. According to
these standards, it is necessary to control the conditions of the overall evaluation process.
The experimenter must control the content and context of the process and inform and
observe the user at any moment during the lab tests. However, other possibilities are
becoming more and more common when it comes to assessing the performance of networks
and services from a QoE end-user perspective. Some authors understand that the user
experience is also influenced by factors such as the context of use, the preferences of some
services over others, or the device a user is used to [85]. This is why another possibility is to
conduct controlled experiments in the user’s own environment. These experiments would
yield more realistic results that complement those carried out in the laboratory [105], even
though they complicate the procedure by having to be conducted in the user’s environment.

Most proposals lack an assessment of the performance of the measurement system,
including its impact on the systems it operates on. Only a few studies propose methodolo-
gies, such as instrumenting elements of the CIA architecture with reduced computational
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resources (e.g., thin clients), but it is not common for researchers to thoroughly evaluate
the potential impact on CPU, RAM, or disk usage. Furthermore, many proposals are
proof-of-concept developments and often lack detailed implementation descriptions.

Finally, the proposals are often difficult to compare. In many cases, studies do not
provide information about measurement errors. Therefore, there is a need for well-defined
methodologies to ensure the comparability and reproducibility of new proposals.

The analysis of state-of-the-art papers enables us to derive several crucial lessons to
be considered in the design of future proposals. It is imperative that the measurement of
QoE in CIAs is conducted in real time, reflecting the genuine user experience. Strategies
based on screen updates and, more directly, those that utilise the service, are the most
appropriate for this purpose. It is of utmost importance to raise awareness among CIA
developers about the significance of incorporating quality experience monitoring as a
service feature, using monitoring APIs to export this information to third-party tools,
and implementing appropriate alerting mechanisms. This monitoring should prioritise
interactivity time and video quality as key indicators, without neglecting the use of other
metrics for troubleshooting in the event of issues.

8. Conclusions

This survey focused on analysing methodologies and tools for the evaluation of
QoE in interactive cloud-based applications. We analysed more than 28 proposals from
academia and industry and identified the three most relevant human perception aspects
that influence the user’s QoE: visual quality, sound quality, and interactivity. We also
identified the three categories of CIAs—remote desktops, cloud gaming services, and
interactive web applications—and the importance of the human perception aspects in each
of them. We dissected the functioning schemes of the CIAs and the particularities of each
type. We also identified the components that make up the CIA architecture, how they work,
and how they differ from other applications deployed in the non-interactive cloud.

Likewise, we classified the proposals in the literature based on their working strate-
gies: screen updates, slow-motion benchmarking, measures of audiovisual degradation,
instrumentation of the programming code, and indirect measures. In this process, we
outlined the procedure each proposal uses to quantify QoE and identified its shortcomings.
From this, we systematised the identification of the input metrics the proposals extracted
from the infrastructure. We identified four main groups of input metrics and more than
21 input metrics common in the state of the art. The taxonomy revealed the tendency of
researchers to opt for more than one input metric simultaneously. We further classified the
proposals based on the processing they applied to the input metrics. We detected three
types of processing: ad hoc, image processing, and artificial intelligence. This taxonomy
revealed that artificial intelligence techniques are becoming increasingly frequent, and their
results seem promising.

We grouped the output metrics into five main categories: video metrics, audio metrics,
time metrics, other QoS metrics, and QoE metrics. This taxonomy revealed that a large
number of proposals focused their studies on providing QoS metrics without clarifying
their relationship with QoE and that much work remains to be done in this regard.

Finally, we dedicated a specific section to open issues, where we discussed possible
areas for improvement in the measurement of QoE in CIAs. In particular, it is necessary to
deploy strategies that can be generalised to more than one CIA and to define metrics and
procedures that allow the research community to compare the accuracy and performance
of the different strategies.
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