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Abstract: Fingermarks play an important role in document identification. At the same time, fin-
germarks on paper documents are often accompanied by signatures and background text, which
introduce noise to the original fingermark textures and increase the difficulty of detection. A signed
fingermark detection method based on deep residual networks and a decision-level fusion strategy
was proposed to defend against spoofing attacks from fake fingermarks. Firstly, the multi-scale
structure was introduced in the residual module, which improved the network’s depth and breadth
without increasing the parameters. Then, the multi-probability label strategy was refined and em-
ployed to enhance the local encoding ability of the feature extraction. A score fusion strategy was
designed, with weights allocated based on the difference in signed interference levels of local image
blocks. Finally, a model fusion strategy based on evidence theory was suggested, which improved de-
tection accuracy by leveraging complementarity between models. A large-scale fingermark database
was established, which included real fingermarks made from real fingers and fake fingermarks
made from various materials, and this was divided into two sub databases: signed and unsigned.
The experimental results show that the proposed method achieves 96.16% accuracy based on the
fingerprint dataset of the global liveness detection competition called LivDet2017 and achieves 99.30%
accuracy based on the signed fingermark database, while it has good resistance to spoofing attacks
from unknown materials.

Keywords: biometric recognition; signed fingermark; liveness detection; deep residual network;
decision-level fusion

1. Introduction

Biometric technology is extensively used in modern society. With the advancements
in science and technology, biometric identification has gradually replaced traditional au-
thentication methods such as keys and passwords for personal identity authentication.
Fingerprint authentication is highly reliable, easily accessible, unique, and constant, making
it the most widely used and trusted method on the market [1]. Fingerprint identification
technology has matured, and it is a reliable method of identification. However, it is impor-
tant to acknowledge that it also presents security risks. The easy accessibility of fingerprints,
compared to irises and other biometric features, is both an advantage and a vulnerability. It
is crucial to address this susceptibility to spoofing attacks in order to enhance the security
of identification systems. Spoofing attacks, particularly those involving artificial finger-
print replicas created using mold-making materials, pose the biggest threat to fingerprint
identification systems. It is important to be aware of this common and convenient means of
spoofing attack. This is due to the ease with which counterfeiters can imitate the fingerprint
image by creating the corresponding fingerprint negative mold. Fingerprint liveness detec-
tion technology is a proven solution to the growing problem of spoofing attacks. Extensive
research has been conducted on this technology and it is widely implemented.

Since antiquity, fingermarks, generally formed by dipping a finger in pigment or seal-
ing clay and pressing it on paper documents, have often appeared on documents with legal
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effect. In particular, fingermarks have been employed in private lending and borrowing,
such as on the occasion of financing between two natural persons, based on concerns
regarding the easy imitation of and the uniqueness of fingermarks, often in accordance
with the traditional custom of the mixed use of signatures and fingermarks. This type of
fingermark is often accompanied by signatures, text and other background noise interfer-
ence, also known as signed fingermarks, and the detection of signed fingermarks is thus
more difficult. Fake fingermarks can lead to false convictions, not only causing personal
losses, but also affecting the credibility of justice. Traditional fingerprint authentication
mainly uses manual identification methods based on expert experience, which is highly
subjective and time-consuming. The existing literature on computer-based fingermark
liveness detection methods is sparse, and the detection accuracy is relatively low. Based on
this status quo, it is necessary to further investigate high-performance signed fingermark
liveness detection methods.

The main aims of this paper are as follows:

(1) To propose a network model, SFNet (Signed Fingermark Net), based on deep residual
networks and a multi-probability label classification strategy, which achieves the
purpose of signed fingermark liveness detection and achieves high accuracy on a
fingermark dataset.

(2) To design and combine a multi-score fusion strategy based on the quality weights of
local blocks of fingermark and a model fusion strategy based on evidence theory to
further improve the detection accuracy.

2. Related Works

Liveness detection methods for fingerprints can be classified as hardware-based or
software-based. Hardware-based methods use additional hardware devices to obtain the
biological features unique to real fingers, such as sensors that detect skin temperature [2] or
bioelectrical signals [3]. However, fingermarks lack these vital features. Software-based
methods use machine learning or deep learning algorithms to extract dynamic or static
features from fingerprint images [4]. These methods determine the liveness of the images
and are suitable for various applications, including real-time fingerprint detection and
verification. They are highly compatible, cost-effective, and allow for algorithm updates
at any time, without requiring additional hardware equipment. Fingermark liveness
detection is better suited to static features rather than dynamic features. This is because
dynamic features are easily influenced by factors such as finger pressure and skin condition,
which are continuous and uncontrollable physiological changes. It is impractical to extract
dynamic information from fingermarks on paper documents. Therefore, it is recommended
to focus solely on static features for fingermark liveness detection.

The ridge texture is the most commonly used static feature for detecting the authen-
ticity of fingermarks. Authentic and fake fingermarks can be distinguished based on
differences in continuity, clarity, and ductility. These characteristics provide a strong foun-
dation regarding physical properties for effective liveness detection [5–10]. It is crucial
to recognize that traditional texture-based liveness detection methods heavily depend
on expert knowledge of manually labeled features. However, as science and technology
advance, new means of forgery emerge, making it increasingly challenging to define the
characteristics of liveness in fingermark standards. If the manual features used to define
the standard are targeted and avoided, these types of liveness detection methods will
inevitably become ineffective.

Convolutional neural networks [11] have been widely used in computer vision. Re-
searchers have applied deep learning to the field of fingerprint liveness detection, providing
better robustness and higher performance than detection methods using manual features.
Biometric methods applying deep neural networks can be combined with various score
fusion strategies [12] to improve recognition accuracy. MobileNet, proposed in [13], signifi-
cantly reduces the model parameters compared to VGG-19 [14]. CNN-based cross-layer
fusion and multi-model voting strategies were proposed in [15] to achieve a better average
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performance of the network. The DRN designed in [16] achieved good accuracy based on
the benchmark dataset LivDet2017 [17,18].

Through testing, it is found that the accuracy of the method originally used for
fingerprint liveness detection is not ideal after migrating to signed fingermark liveness
detection. Compared with the fingerprint images obtained by a fingerprint capture device,
the fingermarks obtained from paper documents through a document scanner have to
pass through multiple layers of media, with relatively fuzzy texture details and noise
interference, such as text, signatures, and other elements, and the influence of signatures
on liveness detection is still not clear. Exploring this issue is the goal of this paper.

In order to cope with these challenges brought about by signed fingermark spoofing
attacks, this paper proposes a network model, SFNet, based on a deep residual network
structure and combining a multi-probability label classification strategy, designing and
combining a multi-score fusion strategy based on the quality weights of the local blocks
of fingermarks and a model fusion strategy based on the theory of evidence, in order to
achieve the liveness detection of signed fingermarks and to achieve a higher precision
based on the fingermark dataset.

3. Proposed Method
3.1. Input Data Preprocessing

The network input uses local blocks from the original fingermark image after prepro-
cessing. This approach avoids introducing incorrect information into the network, which
could result in the loss of discriminative information required for effective network training.
Signed fingermarks’ local blocks are preferred over those with rich textures to ensure
network training effectiveness. Signed fingermark preprocessing involves foreground ex-
traction, local block extraction, and image enhancement. The foreground region is extracted
from the original fingermark image file using the color space method. An average color
threshold per unit area is used to identify the effective area of the fingermark, filtering out
interference items that may be similar in color to the fingermark (e.g., stamps).

The center of gravity of the foreground region, which represents the original image of
the fingermark, is calculated and positioned as the central point. A sliding window with a
fixed size of p × p (p = 300 pixels) is then used to intercept the local blocks by sliding in
steps of 50 pixels, as illustrated in Figure 1.
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To ensure the continuity and consistency of strokes, a larger window size should be
selected for signed fingermarks, as they have complex stroke lines. This will avoid limiting
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the characteristics of stroke lines and reduce the risk of accuracy reduction in liveness
detection. It is important to ensure that the training data contains sufficient fingermark
information and does not have a large number of blank areas. The accuracy of signed
fingermark liveness detection is significantly reduced when the size of the localized blocks
is too small or too large. To increase diversity and enrich the data, the intercepted local
blocks are augmented with random-direction mirror flipping and random-angle rotation
(rotation angles of 0◦, 90◦, 180◦, and 270◦) before being sent to the network for training.
To enhance network efficiency, we convert local blocks to single-channel grayscale maps
without color information. We then perform contrast enhancement based on the grayscale
histogram, using the formula given in Equation (1).

F(s) = round(
cdf(s)− cdfmin

(w × h)− cdfmin
)× 255 (1)

where w and h refer to the width and height of the image, respectively; cdf is the cu-
mulative distribution function; s is the original gray value; and round represents the
rounding function.

Enhancement of the image contrast is performed using grayscale stretching to increase
the grayscale difference between the texture of the fingermark and the blank background
and to reduce the effect of some of the fingermarks not being visible in the curve of the line
due to too light a press.

3.2. SFNet

Figure 2 illustrates the main structure of the proposed signed fingermark liveness
detection network, which consists of convolutional layers, average pooling layers, and
residual blocks. The fingermark image’s local features are obtained through convolutional
layers. The average pooling layer downsamples the image, removes redundant information,
and compresses the number of parameters to prevent overfitting. The enhanced residual
structure improves the network’s ability to extract high-dimensional features and filter
effective features. Batch normalization layers and activation units are added after all of
the convolutional layers in the network. This reduces the difference in the distribution of
the training data, accelerates data convergence, improves network generalization ability,
reduces parameter interdependence, and mitigates possible overfitting. The prediction
results are confidently achieved through the classification layer, utilizing the feature maps
of the localized blocks to accurately detect the liveness of signed fingermarks.
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The rectified linear unit (ReLU) activation function is employed in the network’s acti-
vation unit to enhance its expressive power. The loss function of the network is represented
by Equation (2) and is expressed as cross entropy.

L =
1
N∑

i
−[yi· log(pi) + (1 − yi) · log(1 − pi)] (2)

where yi denotes the label of sample i, pi denotes the probability that sample i is predicted
to be true, and 1 − pi is the probability that sample i is predicted to be false.

The residual block in the fingermark liveness detection network combines the residual
structure proposed in [19] with the multiscale backbone structure proposed in [20]. This
fusion results in a structure that is better suited for the signed fingermark liveness detection
network. The improved residual block structure is shown in Figure 3. The features are de-
composed into multiple groups of equal-length sub-features equally by the decomposition
layer, and the class residual structure is introduced between the multi-scale sub-features to
deepen the chunking depth. The multiscale residual structure [20] accurately represents
multiscale features at a finer granularity level, ensuring consistency in the depth of sub-
features across scales. This improvement has been extended to multiple scales through the
class residual structure, resulting in a significantly larger sensory field. The connection
layer is successfully reorganized into a single feature and connected with the input feature
residuals to form a residual block embedding network. This approach effectively improves
the depth and breadth of the network without increasing the number of parameters.
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3.3. Multimodal Decision-Level Fusion Approach

This paper presents an improved method for detecting the liveness of signed finger-
marks. The method uses a multimodal decision-level fusion approach, which includes a
score fusion strategy that takes into account the quality weights of the localized blocks
of the fingermarks and a model fusion strategy based on the theory of evidence. This
approach is highly effective in accurately detecting the liveness of signed fingermarks.
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3.3.1. Multi-Probability Labeling Strategy

The traditional classification task performs the final classification through the fully
connected layer. As shown in Figure 4a, the classification label confidence prediction of the
input fingermark image is performed by the fully connected layer based on the features
obtained from the network.
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SFNet replaces the first fully connected layer with a convolutional layer for dimen-
sionality reduction prior to final classification, as illustrated in Figure 4b. This technique
significantly reduces the number of parameters and computations required without sacri-
ficing network performance.

On this basis, the multi-probability labeling strategy is proposed in combination with
the patch-label strategy in [21], as shown in Figure 4c. The patch-label strategy, described
in [21], involves preprocessing the image and inputting it into the Inception network. The
network performs dimensionality reduction using a fully connected layer and outputs the
classification probability through the convolutional layer with confidence. SFNet employs
an improved labeling strategy over the patch-label approach described in [21]. The fully
connected layer is replaced with a convolutional layer that achieves the same effect. The
SFNet subject network takes an image of size 300 × 300 pixels as the input to generate
10 × 10 × 512 feature maps, and the convolutional layer outputs probability distribution
maps of size 10 × 10 × 2. The final prediction output of the network is obtained by
taking the weighted average of the weights corresponding to the 10 × 10 probability table
generated after the SoftMax operation, which is trained using the ground truth label. The
probability table represents a local block at the corresponding position of the input image
and is utilized to train the local coding capability of the feature extraction network.

3.3.2. Score Fusion Strategy

To ensure prediction accuracy, the network typically receives only a single localized
block when classifying and predicting fingermark images. This input strategy, however, can
introduce randomness and reduce the robustness of the results. For this reason, we propose
the multi-input score fusion strategy. We use a sliding window in the image preprocessing
step to intercept multiple local blocks and feed them into the network. This results in
multiple independent prediction probabilities, which we combine using the score fusion
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method to calculate the final classification prediction probability, as shown in Figure 5.
The final classification prediction probability of the input fingermark image is determined
by utilizing the voting results of multiple prediction inputs. Equation (3) presents the
calculation formula for the classification prediction probability.

Ppredict =
1
N
(P(y1|x1) + P(y2|x2) + . . . + P(yN|xN)) =

1
N

N

∑
i=1

pyi(1 − p)1−yi (3)

where P(yi|xi) denotes the prediction score of the current local block, xi denotes the current
local block input to the network for prediction, yi is the prediction label of the corresponding
local block output by the network, and P is the confidence level corresponding to yi.
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However, considering that the local blocks obtained from the sliding window inter-
cepts have an uneven texture distribution and are affected by signatures, the score fusion
strategy with equal weights cannot reflect individual differences. The effective area con-
tained in the localized block has large individual differences, and too large a background
area will lead to performance degradation of the detection algorithm. In addition, the
region impacted by the signed lines will affect the performance of the detection algorithm,
i.e., the proportion of the signed lines in the local block is negatively correlated with the
credibility of the detection results of the local block. Therefore, in this paper, we design the
score fusion method based on the quality weight of fingermark localized blocks and pro-
pose the quality score calculation method based on the effective region and the proportion
of signed lines, and the calculation formula is shown in Equation (4):

Q = σQROI + τQSignature = σ
1

w × h

w

∑
i=1

h

∑
j=1

ε[p(i, j)−PROI] + τ
1

w × h

w

∑
i=1

h

∑
j=1

ε
[
p
(
i, j)−PSignature

]
(4)

where ε(t − t0) is the step function whose value is 1 at t − t0 ≥ 0 and 0 vice versa; w and h
are the width and height of the localized block, respectively; p(i, j) is the pixel value of the
current coordinate; PROI is the threshold for distinguishing between the valid area of the
fingermark and the blank background, Psignature is the threshold for distinguishing between
the signed line and the valid area; and σ and τ are correction coefficients for effective region
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weights and signed line weights. From this, the quality weight of the current localized
block ω can be obtained, and the calculation formula is shown in Equation (5):

ωi = Qi/
n

∑
j=1

Qj (5)

where Qi is the mass fraction Q calculated from the current localized block i. The final
prediction probability formula is obtained by improving Equation (3) by using the localized
block mass fraction of the fingermark as the weight of the fraction fusion, as shown in
Equation (6):

Ppredict =
N

∑
i=i

{ϖ i · [P(yi| xi)− threshold]} + threshold (6)

where threshold denotes the liveness probability judgment threshold. The score fusion
strategy takes into account the variation in quality distribution of the fingermark image
when making liveness detection decisions using local block quality weights. This approach
leverages the individual differences in local blocks to a greater extent, resulting in improved
network classification performance.

3.3.3. Model Fusion Strategies Based on Evidence Theory

Fingermark liveness detection accuracy is influenced by various factors, such as
the raw material type of the fingermarks and the liveness detection methods employed.
Additionally, the accuracy can be affected by the use of models with different classification
strategies. This paper argues that network models with different classification strategies
have their own strengths and that there is a degree of complementarity between them.
The accuracy of forgery detection can be further improved through the method of model
fusion. Evidence theory provides a powerful tool for characterizing and fusing uncertain
information for decision making. Model fusion strategies based on evidence theory are
designed and used to coordinate the complementarities between different models to achieve
optimal results. The experiments in this paper only address the fusion of two models.

For a problem, all possible outcomes constitute a discriminative framework de-
noted by θ, where θ is a non-empty set. The problem in this paper is fingermark live-
ness discrimination, so θ = {A, B}, where A is true and B is false. Its power set is
2θ = {∅, {A}, {B}, {A, B}}.

Another important concept in the theory of evidence is the basic probability as-
signment (BPA), whose mass function m satisfies the following condition, as shown in
Equation (7): 

m(A) ≥ 0, for all A ⊆ 2θ

m(∅) = m(A, B) = 0
∑

A⊆2θ
m(A) = 1

(7)

where m(A) denotes the extent to which the evidence supports Proposition A. There are
two mass functions, m1 and m2, in this paper. If m(A)! = 0, then A is said to be a focal
element. Assuming that the focal elements are {A1, A2, . . . , An} and {B1, B2, . . . , Bn}, in
each decision, the two models are two sources of evidence, and the confidence output of
their dichotomization is the evidence. In this paper, uncertainty weights are introduced
to synthesize m1 and m2 into a new probability assignment function m12 according to the
Dempster–Shafer combination rule, whose synthesis rule is shown in Equation (8):

m1 ⊕ m2 = m12(A) =
1

1−K ∑
Ai∩Bj=A

α · m1(Ai) · β · m2(Bj);

A ̸= ∅, K = m1(A)m2(A) + m1(B)m2(B)

(8)
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where α and β represent the uncertainty weights of the two models, while K is the conflict
coefficient, which represents the degree of conflict between the evidence, and the size of
K is positively correlated with the degree of conflict. After the BPA calculation, the joint
support m12(A) and m12(B) of the two models for the classification results can be obtained.
If m12(A) > m12(B), the input image decision can then be categorized as a real fingermark,
or otherwise a fake one.

4. Experiments
4.1. Database

Publicly available open source fingerprint databases are widely used in liveness
detection, such as LivDet2017, FVC2002 and ATVS [22]. To verify the effectiveness of
the proposed network for unsigned fingermarks, this paper first tests it on the publicly
available fingerprint activity detection dataset LivDet2017, the details of which are shown
in Table 1.

Table 1. Details of LivDet2017 database.

LivDet2017
Train Test

Live Ecoflex Body Double WoodGlue Live Gelatine Latex Liquid Ecoflex

Green Bit 1000 400 400 400 1700 680 680 680
Orcanthus 1000 400 400 400 1700 680 658 680

Digtial Persona 999 400 399 400 1700 679 670 679

However, there is no publicly accessible database of signed fingermarks. For this
reason, the research team in this paper created a fingermark database containing two
subsets: the unsigned fingermark dataset and the signed fingermark dataset. The original
fingermarks were made from real fingers or fake fingermarks dipped in sealing clay
and pressed onto paper documents. In order to simulate the real scenario, the signed
fingermark data were created using paper documents with different types of signed pens,
and then fingermarks were pressed, in line with the habit of signing first and pressing
later. The original document was scanned by a document scanner at a resolution of 600 dpi,
the original fingermark image was obtained and then cropped to a fingermark image of
500 × 300 pixels in size, and the corresponding real value label was created and categorized
according to attributes (attributes include: liveness, raw material, date of collection, gender
and age of the provider, etc.).

The database of fingermarks includes both live and fake fingermarks. The materials
used to make fake fingermarks included all kinds of common chemical raw materials, and
the specific types and quantities are shown in Table 2.

Table 2. Details of fingermark database.

Type
Train Test

Signed Unsigned Signed Unsigned

Live Fingermarks 32,667 25,511 8649 6459

Fake
Fingermarks

Conductive silicone 6637 7500 1618 2124
Skin color silicone 6322 3930 1440 1220

Wood glue 5393 600 1365 160
Clear silicone 7453 8790 1885 2343

Fingerprint seals 5141 2280 1256 550

Total 63,613 48,611 16,213 12,856

The fake fingermark materials include conductive silicone, skin-color silicone, wood
glue, clear silicone and fingerprint seals, all of which are commonly used in previous
spoofing attacks. Because it is usually difficult to distinguish between fingermarks made
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using different materials with the naked eye, as shown in Figure 6, it is necessary to ensure
the diversity of materials in the dataset.
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4.2. Experimental Environment and Evaluation Indicators

In this paper, stochastic gradient descent with a batch size of 64 samples was used to
train the model. The initial learning rate was set to 0.01, which dynamically reduced as the
number of iterations increased. Based on the PyTorch framework with version number 1.1.0.

The experiments in this paper were evaluated in terms of test sample detection accu-
racy, i.e., the rate of correctly classifying the test set samples (live and fake fingermarks).
In this paper, the probability scoring threshold for liveness of fingermarks was set to 0.5,
and fingermark images greater than or equal to the threshold were considered as live
fingermarks, otherwise they were considered as fake fingermarks.

The training samples of the network with live fingermarks and fake fingermarks
were randomly distributed and fed into the network to ensure that the training data
were randomized. Each fingermark had a corresponding correct label: the label of the
live fingermark was set to 1, and the label of the fake fingermark was set to 0. The test
samples were fed into the trained network model to obtain the prediction probabilities
corresponding to the two types of data, and the prediction labels were judged according to
the probability score threshold. If the predicted label of the test sample was the same as the
label of the real value, the prediction was correct; otherwise, the prediction was wrong.

4.3. Analysis of Experimental Results
4.3.1. Fingerprint Verification

Although the fingermark liveness detection method is proposed for signed finger-
marks, it still needs to have the basic ability to detect the liveness of unsigned fingerprints.
In this paper, the SFNet model was tested on the public fingerprint dataset LivDet2017 to
verify the effectiveness of the proposed network structure, and the experimental results are
shown in Table 3, and the other four sets of models were from the results of the LivDet2017
competition [23]. It can be seen that compared with the four best performing algorithms
in the LivDet2017 competition, SFNet achieves the optimal results in terms of detection
accuracy on all sub-datasets, which indicates that SFNet has a better fingerprint liveness
detection capability.

Table 3. Comparison results of detection accuracy of different models based on the LivDet2017
dataset. Unit: %.

Model Green Bit Digital Persona Orcanthus Overall

JLW_A 95.08 94.09 93.52 94.23
JLW_B 96.44 95.59 93.71 95.25
ganfp 95.67 93.66 94.16 94.50
ZYL_2 96.26 94.73 93.17 94.72
SFNet 96.82 96.64 95.27 96.16
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4.3.2. Signed Fingermark Verification

Experiments were conducted in the database established in this paper to verify the
effectiveness of the proposed SFNet and multi-probability labeling strategy for signed
fingermarks. The network was confidently trained with unsigned fingermark data to ensure
its ability to detect the liveness of unsigned fingermarks, without any interference from
signed noise. SFNet models and an SFNet model incorporating a multi-probability labeling
strategy were trained on a comprehensive fingermark dataset containing both signed and
unsigned fingermarks (SFNet_1). The test results in Table 4 demonstrate that the signed
fingermark liveness detection network has a detection accuracy of over 98%, indicating
that SFNet exhibits superior liveness detection performance on both signed and unsigned
fingermark datasets. The method that incorporated the multi-probability labeling strategy
had higher accuracy on both signed and unsigned fingermark datasets, with 99.00% and
99.26%, respectively. This confirms that the multi-probability labeling strategy significantly
improves the accuracy of liveness detection and enhances network performance.

Table 4. Detection accuracy results for SFNet and multi-probability label strategy. Unit: %.

Model Train Live Fake Overall

SFNet
Signed 98.41 98.68 98.54

Unsigned 98.96 98.84 98.90

SFNet_1
Signed 98.49 99.00 98.73

Unsigned 98.97 99.26 99.13

SFNet_2
Signed 70.62 67.96 69.35

Unsigned 97.98 97.79 97.89

In order to verify the existence of signatures interfering with the liveness detection
of fingermarks, a set of SFNet models incorporating a multi-probability labeling strategy
is trained on the unsigned fingermark training set (SFNet_2). The model’s recognition
accuracy for the signed fingermark test set is significantly lower than its performance
on the unsigned test set, demonstrating a failure to meet the requirements of liveness
detection. This confirms that the presence of a signatures has a negative impact on the
accuracy of liveness detection, underscoring the need for a signed fingermark database to
be established.

The original purpose of signed fingermark liveness detection algorithms is to defend
against spoofing attacks. Therefore, the ability to resist attacks from fake fingermarks made
from different materials is one of the important criteria for a liveness detection method.
In this paper, we test the accuracy of a signed fingermark dataset made from different
materials, as shown in Table 5. It can be seen that SFNet has good detection results for
all five materials in the dataset, which indicates that SFNet has high recognition accuracy
for known materials and can withstand spoofing attacks from most known materials. In
addition, latex was tested as an unknown material, and compared to the known materials,
the number of fake signed fingermarks obtained from latex production is lower, but also has
a high recognition accuracy, which indicates that SFNet has a certain degree of robustness
to unknown materials.

Table 5. The performance of the network on the signed fingermark database made using different
materials. Unit: %.

Type SFNet SFNet_1

Fake

Conductive silicone 98.76 99.07
Skin color silicone 98.68 98.12

Wood glue 99.12 99.19
Clear silicone 98.62 98.99

Fingerprint seals 99.52 99.28

Live 98.41 98.49
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To verify the effectiveness of the proposed local block quality-based score fusion strat-
egy, the effect of SFNet combined with the score fusion strategy was tested on the signed
fingermark test set, and the experimental results are shown in Table 6. SFNet_3 represents
the SFNet combining the multi-probability labeling strategy with the equal-weight score
fusion strategy, and SFNet_4 represents the SFNet combining the multi-probability labeling
strategy with the image quality-weight score fusion strategy. It can be seen that SFNet_4,
which is based on the quality weight score fusion strategy, significantly improves the de-
tection performance of the proposed method compared to SFNet without the score fusion
strategy and SFNet_3, which is based on the equal weight score fusion strategy.

Table 6. Comparison of detection performance of SFNet combined with the score fusion strategy.
Unit: %.

Model Live Fake Overall

SFNet 98.49 99.00 98.74
SFNet_3 98.71 99.15 98.92
SFNet_4 99.08 99.27 99.17

To confirm the hypothesis that different network models enhance each other and
boost the accuracy of the liveness detection method, we implemented a model fusion
strategy based on the theory of evidence. We combined the original SFNet with the SFNet
that integrates the multi-probability labeling strategy and the image quality weight score
fusion strategy. The resulting ROC and P–R curves, depicted in Figure 7, demonstrate the
success of our approach. This section compares three versions of SFNet: the original SFNet
(curve a), SFNet_3 (curve b), and SFNet_4 (curve c). SFNet_3 combines the multi-probability
labeling strategy and the equal weight score fusion strategy, while SFNet_4 combines the
multi-probability labeling strategy and the image quality weight score fusion strategy.
The figure clearly demonstrates that the AUC value and the equilibrium point value
are significantly higher after fusion than the two curves before fusion, providing strong
evidence for the superior performance of the fused model. These results unequivocally
establish the complementarity between network models with different strategies and the
effectiveness of the model fusion strategy.
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4.3.3. Ablation and Migration

In order to demonstrate the effectiveness of the improved residual blocks, correspond-
ing comparison experiments were conducted. The residual block in SFNet combining the
multi-probability labeling strategy and the image quality weight score fusion strategy was
replaced with a different residual module as the control group, and the replaced residual
modules were the original residual block proposed in [19] and the Res2Net module pro-
posed in [20], respectively. The results, as shown in Table 7, show that the test accuracies
of the control group on the comprehensive test set are only 97.19% and 98.39%, while the
test accuracy of SFNet combining the multi-probability labeling strategy and the image
quality weight score fusion strategy using the improved residual block is 99.17%, which is a
significant improvement. This result indicates that the improved residual block has higher
performance in the signed fingermark liveness detection task and proves the effectiveness
of the improvement.

Table 7. Comparison of detection performance of different residual blocks. Unit: %.

Model Live Fake Overall

ResNet [19] 97.23 97.14 97.19
Res2Net [20] 98.23 98.58 98.39

Our work 99.08 99.27 99.17

This conclusion is based on the examination of the impact of local block sizes of training
and test data on the network and showcases the importance of carefully selecting the
appropriate block size for signed fingermarks. A local block size that is too small increases
the effect of signatures in the image block on the fingermark texture. This paper argues
that a larger localized block size is needed to obtain sufficient fingermark information
and mitigate the negative effects of signed occlusion, which destroys the texture of the
fingermarks. This paper presents two comparison experiments using localized block sizes
of 112 × 112 pixels and 224 × 224 pixels, which are commonly used in fingermark-related
studies. A control group using the original image size of 500 × 300 pixels is also included.

The results of the experiments are displayed in Table 8. It is evident that the effective-
ness of the two comparison experiments with smaller sizes drops significantly, particularly
for the signed fingermark test set. Notably, the accuracy falls below 90.0% when the local
block size is 112 × 112 pixels. Using different local block sizes increases the interference of
signatures on the texture of fingermarks in the image block, which affects the effectiveness
of the algorithm for signed fingermark liveness detection. It is worth noting that the perfor-
mance of the original image with a size of 500 × 300 pixels is lower than that of the image
block of 224 × 224 pixels. This is due to the significant individual differences exhibited in
the original images, with some samples containing numerous blank areas. Furthermore, the
average effective information per unit area of the uncropped original images is much lower
than that of other groups. The experiment results indicate that a larger size of localized
fingermark block should be selected, as long as it contains sufficient valid information per
unit area.

Table 8. The performance of the network under different local block sizes. Unit: %.

Block Size Signed Unsigned Overall

112 × 112 91.02 96.13 93.26
224 × 224 95.09 97.68 96.23
300 × 300 99.08 99.27 99.17
500 × 300 93.97 95.12 94.47

Finally, other algorithms are migrated for comparison experiments with this paper’s
algorithm. Due to less research on fingermark liveness detection methods, this paper
migrates two well-established fingermark liveness detection methods and one fingermark
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liveness detection method: the Slim-ResCNN [24], the method in [25] based on the CNN
architecture, and Inception [21], which combines the patch-label strategy, which is trained
on a comprehensive fingermark dataset and tested on a signed fingermark dataset.

The results are shown in Table 9, and under the same conditions, the detection accuracy
of these methods for signed fingermarks is not satisfactory, and the lowest accuracy is lower
than 90.0%, while the SFNet proposed in this paper, which combines the multi-probability
labeling strategy and the image quality weight score fusion strategy, achieves the optimal
test accuracy.

Table 9. The performance of migration methods on signed fingermark database. Unit: %.

Model Live Fake Overall

Slim-ResCNN [24] 92.36 91.03 91.73
An CNN architecture [25] 82.13 84.47 83.24

Inception with patch-label [21] 98.57 98.14 98.37
SFNet after model fusion 99.15 99.46 99.30

Counterfeiters may use novel materials to carry out spoofing attacks on the liveness
detection algorithm. The ability of a liveness detection algorithm to resist attacks with
unknown materials is also one of the criteria for judging the robustness of the algorithm.
Unknown materials refer to materials that do not exist in the algorithm’s training dataset.
In this paper, a small dataset was created based on five unknown materials, including
glass glue, vulcanized silicone, glue, emulsion, and a bionic finger. Among them, the
bionic finger was made of mixed materials to simulate a real finger, which has a flexibility
and ductility very close to those of real skin, and has a similar appearance and touch to a
real finger.

The experimental results are shown in Table 10. It can be seen that SFNet can be
effectively protected against attacks from unknown materials, which is better than other
methods. It can be seen that SFNet shows a slight degradation in accuracy against bionic
fingers, so further research will need to consider investigating how to defend against
unknown materials with high ductility and flexibility.

Table 10. The performance of migration methods on unknown materials. Unit: %.

Type SFNet after
Model Fusion

Inception with
Patch-Label [21]

Slim-ResCNN
[24]

Fake

Glass glue 96.38 91.30 81.88
Vulcanized Silicone 97.73 93.18 75.14

Glue 98.96 91.67 83.32
Emulsion 92.96 89.63 72.59

Bionic finger 89.17 83.33 69.17

5. Conclusions

This paper proposes an effective method for detecting signed fingermark liveness
to counter fingermark spoofing attacks and meet the needs of applications like judicial
document authentication. The method is based on deep residual networks and multi-
probability labels. The method combines the residual network structure and the multi-
scale backbone structure to improve the accuracy of liveness detection. This is achieved
through the use of a multi-probability label classification strategy, a multi-input score
fusion strategy, and a model fusion strategy. The signed fingermark liveness detection
method achieved a remarkable 99.17% success rate on the comprehensive dataset using
different strategies, which was further improved to 99.30% after model fusion. These
results demonstrate the method’s high effectiveness. It is worth noting that the method
can also handle signed fingermarks on special paper backgrounds, such as squares and
stripes, in practical scenarios. In the future, we will study liveness detection algorithms for
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signed fingermarks with complex backgrounds to significantly improve the practicality of
fingermark liveness detection.
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