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Abstract: The purpose of semi-supervised video object segmentation (VOS) is to predict and generate
object masks in subsequent video frames after being provided with the initial frame’s object mask.
Currently, mainstream methods leverage historical frame information for enhancing the network’s
performance. However, this approach faces the following issues: (1) They often overlook important
shape information, leading to decreased accuracy in segmenting object-edge areas. (2) They often use
pixel-level motion estimation to guide the matching for addressing distractor objects. However, this
brings heavy computation costs and struggle against occlusion or fast/blurry motion. For the first
problem, this paper introduces an object shape extraction module that exploits both the high-level
and low-level features to obtain object shape information, by which the shape information can be
used to further refine the predicted masks. For the second problem, this paper introduces a novel
object-level motion prediction module, in which it stores the representative motion features during
the training stage, and predicts the object motion by retrieving them during the inference stage. We
evaluate our method on benchmark datasets compared with recent state-of-the-art methods, and the
results demonstrate the effectiveness of the proposed method.

Keywords: video object segmentation; object motion; spatio-temporal constraints; memory network

1. Introduction

Video object segmentation (VOS) is a fundamental task in video understanding, in-
cluding many industrial information applications such as autonomous driving. In this
paper, we will focus on video object segmentation under semi-supervised learning, i.e.,
inferring the object mask in the rest of the video frames given the first frame’s object mask.

During recent years, match-based methods [1–11] have become the mainstream. This
approach makes full use of the segmented historical frames, encoding them into embedded
features stored in a memory bank to assist in the segmentation of subsequent frames.
The most recent matching-based VOS methods focus on addressing the memory cost
problem [5,6] and the distractor objects problem [7–9], both caused by the global matching
mechanism. Though they have achieved good performance, some issues still exist in those
methods: (1) The important shape information is often ignored, leading to a decrease in
accuracy for the segmentation around object-edge regions. (2) For addressing distractor
objects, pixel-level motion estimation is often involved along the video to restrict the
global matching; this brings heavy computation costs and struggles against occlusion or
fast/blurry motion.

For the first problem, this paper introduces a lightweight shape extraction module
aimed at obtaining object shape information. Specifically, a shape extraction head is added
following the low-level features outputted by the network to focus on extracting shape-
related features of the object. Simultaneously, high-level features from the network are
also used to denoise the activations in the shape extraction module, eliminating irrelevant
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noise from the low-level features. Thus, we use the extracted shape information to further
optimize the segmentation results.

For the second problem, we introduce a novel object-level motion prediction module
beyond pixel level. To this end, we propose to use a motion memory bank to store the
object-level representative motion features learned from the training stage, which can be
used to predict the motion information during the inference stage. Specifically, a recurrent
neural network [12] is used to extract object-level motion features during the training stage,
then we retrieve the stored motion features for estimating the object motion at the inference
stage in order to predict the position of the object in the next frame. This allows our method
to achieve both high efficiency and strong robustness for handling distractor objects or
fast/blurry motion.

Figure 1 illustrates the improvement in segmentation accuracy using our method. In
summary, the main contributions of this work are as follows:

• We design a lightweight object shape extraction module that exploits both the high-
level and low-level features to obtain object shape information. And the shape infor-
mation is then used to further refine the predicted masks.

• We introduce a novel object-level motion prediction module that stores the repre-
sentative motion features during the training stage, and predicts the object motion
by retrieving them during the inference stage, by which our method achieves high
efficiency and strong robustness.

• The proposed method performs well compared to recent state-of-the-art methods on
benchmark datasets. An accuracy of 85.2 J &F was obtained on the DAVIS 2017 [13]
validation set. An accuracy of 84.5 J &F was obtained on the YouTube-VOS [14] 2019
validation set.
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Figure 1. This figure shows the significant effects of the object motion prediction module (OMPM)
and object shape extraction module (OSEM) that we propose.

2. Related Works
2.1. Semi-Supervised VOS

The latest video object segmentation (VOS) solutions can be roughly categorized
into three types: (1) Methods based on online learning [15] employ online fine-tuning
techniques to adjust pretrained parameters during inference, adapting to specific objects.
While achieving some success, they are often sensitive to hyperparameters and inefficient.
(2) Propagation-based methods [16] consider video object segmentation as the task of
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predicting the current frame based on the previous frame’s mask. However, they solely
rely on the mask from the preceding frame, making them susceptible to occlusion and
error accumulation. (3) Matching-based methods [1–9] utilize the first annotated frame and
previously inferred frames to construct an explicit object model, enabling the matching and
classification of query pixels. A significant milestone in this field is STM [1], which intro-
duces external memory to explicitly and persistently store representations and masks of
past frames, leveraging the information from previous frames for more accurate segmentation.

2.2. Matching-Based VOS Networks

Recent research in matching-based video object segmentation (VOS) [1–9,17–23] has
primarily focused on improving network structures, including building more efficient
memory [5,6], adopting local matching [7–9], and incorporating background context [3,4].
Among them, STM [1] is the pioneer in the field of video object segmentation, which first
proposed the design of the memory bank, enabling VOS methods to effectively utilize
the temporal information in video sequences. STCN [2] optimized the memory retrieval
strategy based on STM, improving the performance. RDE [5] improved the memory update
mechanism, avoiding the problem of memory expansion over time. Miles [24] borrowed
the technique of knowledge distillation, making the video object segmentation method
more suitable for running on mobile devices. However, there are still challenges that
need to be addressed. On the one hand, existing methods often overlook crucial shape
information when segmenting object edges, leading to reduced accuracy in edge-region
segmentation. Inspired by [25], this paper proposes an object shape extraction module
to enhance the network’s accuracy in segmenting object edges. On the other hand, the
common approach to addressing misalignment of similar objects primarily relies on pixel-
level motion information. As a result, it often proves inaccurate in cases involving occlusion
and fast-moving objects. Inspired by [20], this paper introduces an object motion prediction
module, which relies primarily on object-level motion information not constrained by
image features. This performs better in addressing challenges such as occlusion and rapid
object movement compared to pixel-level motion.

2.3. VOS Network with Spatio-Temporal Constraint

There have been many previous attempts [8–11,18,26] to mitigate the distractor objects
problem. Kernelized memory networks [9] alleviate the issue of misalignment by intro-
ducing Gaussian kernels to reduce the non-locality of STM [1]. KMMN [18] introduces a
top-k guided and a kernel-guided memory matching module to achieve efficient memory
matching. SCM [26] introduces a spatially constrained module that utilizes spatial prior
values from previous predictions. This helps to eliminate appearance confusion and false
predictions. RMNet [8] introduces a pixel-level motion estimation method to reduce match
consumption and distractor objects. Previous methods often use pixel-level motion estima-
tion to guide the matching for addressing distractor objects. However, this brings heavy
computation costs and struggles against occlusion or fast/blurry motion. Unlike pixel-level
motion prediction, the object-level motion prediction proposed in this paper can effectively
deal with fast/blurry motion and occlusion scene challenges.

3. Methods

This section introduces the main components of our method, including the baseline
network in Section 3.1, the object shape extraction module (OSEM) in Section 3.2, and
the object motion prediction module (OMPM) in Section 3.3. The object shape extraction
module can enhance the network’s segmentation performance in the object overlap area,
and the object motion prediction module can improve the network’s robustness to distractor
objects. Figure 1 shows the intuitive effects of these two modules. In the first row, using
only the segmentation results from OSEM demonstrates high accuracy in edge-region
segmentation but comes with the issue of incorrectly segmenting distractor objects. On
the other hand, in the second row, relying solely on OMPM for segmentation noticeably
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reduces the problem of distractor objects but leads to a decrease in accuracy in edge-region
segmentation. In the third row, by simultaneously applying OMPM and OSEM, we clearly
observe the synergistic effects of both, substantially alleviating the issue of distractor objects
and successfully enhancing the accuracy of edge-region segmentation.

3.1. Network Overview
3.1.1. Encoders

Following the STCN [2], the image encoder plays a crucial role in extracting image
features from a query frame with dimensions H × W. Additionally, we utilize a mask
encoder to encode the mask, and then store it in the memory bank. Similar to the STCN [2],
we select the res4 features of the ResNet50 [27] model as the backbone features for the
image encoder, with a stride of 16, while excluding res5. For the mask encoder, we opt for
the ResNet18 [27] model for implementation. Subsequently, we generate key and value
embeddings using two projection headers, referred to as key (k ∈ H

16 ×
W
16 ×RCk ) and value

(v ∈ H
16 × W

16 ×RCv ). In this article, we set Ck to 64 and Cv to 512.

3.1.2. Memory Reading

According to [2], utilizing both an image encoder and mask encoder alongside a
single query frame and T memory frames enables the extraction of the query key kQ with
dimensions HW ×RCk

, memory value vM with dimensions THW ×RCv
, and memory

key kM with dimensions THW ×RCk
.

The affinity matrix, denoted as SL2, and its softmax-normalized counterpart W are
computed, where both matrices SL2 and W belong to the space RTHW×HW . The formula-
tions for SL2 and W are outlined below:

SL2
ij = −

∥∥∥kM
i − kQ

j

∥∥∥2

2
, (1)

Wij =
exp

(
SL2

ij

)
∑n

(
exp

(
SL2

nj

)) , (2)

In this context, SL2 indicates the application of the L2 function for assessing similarity
distances, while the feature vector located at position j is represented by k j.

3.1.3. Decoder

Our decoder’s architecture closely resembles that of the STM [1]. The features are step
by step processed and upsampled in a procedure that increases the scale by a factor of 2.
The last layer in the decoder predicts a mask with a stride of 4 and, when necessary, we
employ bilinear upsampling to align with the resolution of the input image. In scenarios
involving multiple objects, we adopt a processing strategy consistent with that described
in [28].

3.2. Object Shape Extraction Module

Mainstream methods often disregard essential shape information when dealing with
object−edge segmentation, resulting in decreased accuracy in segmenting object-edge
regions. Inspired by [25], we design an object shape extraction module (OSEM) for video
object segmentation. The module processes shape information in the form of object edges,
using a gated convolutional layer [25] and a loss function to limit its processing to only
boundary-related information. By integrating information read from the backbone network
memory with shape information, we generate segmentation results that emphasize the
edges of the object. Finally, we utilize shape information to further refine the segmentation
results, generating the ultimate segmentation results. Parts (a) in Figure 2 display the
schematic structure of our shape extraction module, while Figure 3 shows the shape
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information outputted by different gated convolutional layers. It can be seen that the shape
information becomes clearer and clearer through the shape extraction module.
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Figure 2. The main framework of this work. (a) The object shape extraction module takes as input
the image gradients, the outputs of the first, third, and the last convolutional layers of the backbone
network, and the memory readout results from the backbone network. It then generates boundary
information for the object as output. Subsequently, we feed this boundary information into a spa-
tio−temporal constraints module to obtain more accurate localized boundary information; Figure 4
illustrates the specific implementation of the spatio−temporal constraints module. This refined bound-
ary information is then used to refine the masks generated by the backbone network. (b) The object
mask mkrepresents the positional information of the k-th object. Our training process is divided into
two stages. During the training process, we have access to the ground truth labels mk

t−n:t for the object
mask, and we only update the memory bank (M) in the first step. In the inference stage, we only
perform the second step, keeping the memory bank unchanged. We utilize the masks obtained from
the network inference for frames t − n to t − 1 to predict the subsequent mask for frame t.
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Figure 3. This figure shows the shape information during the work of the shape extraction mod-
ule. The extracted shape information is progressively clearer. Gate represents our gated convolu-
tional layer.
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Figure 4. Implementation of shape spatio−temporal constraints module.

3.2.1. Utilizing Backbone Network Information

This module takes image gradients, the outputs of the first, third, and the last con-
volutional layers of the backbone network, as well as the memory reader results from the
backbone network as inputs, and then generates the boundary information of the object as
output. The architecture of this module consists of a series of residual blocks interleaved
with gated convolutional layers (GCLs) [25]. The presence of GCLs [25] ensures that the
OSEM processes only information related to the object’s shape. Since we can obtain precise
object shape information from the ground truth object segmentation mask, we can train the
OSEM using cross-entropy loss.

3.2.2. Gated Convolutional Layer

We use a gated convolutional layer [25] (GCL) to facilitate the flow of information
from the backbone network to the shape extraction module to enhance the impact of object
segmentation and object boundaries on the task. We use high-level features from the
network to denoise the activations in the shape extraction module, eliminating irrelevant
noise from the low-level features. As shown in Figure 3, it can be observed that after the
gated convolutional layer (GCL), shape noise unrelated to the object is gradually eliminated.

3.2.3. Shape Spatio-Temporal Constraints

Since the video object itself has a spatio-temporal constraint, i.e., the location of the
object is approximately the same in two sequential frames, inspired by [26], this paper
utilizes the mask information from the previous frame to make the network more focused
on the shape of the object region. The prediction mask of the previous frame has a shape of
H × W and is connected to the current shape map, which has a size of H × W × 1, forming
a feature map of H × W × 2. Subsequently, a convolution layer with a size of 3 × 3 and
the Sigmoid function generate the object’s rough location prior with a size of H × W × 1.
Finally, the shape map features are multiplied by the positional prior to obtain the spatially
and temporally constrained shape map. Next, we integrate the spatially and temporally
constrained shape map with the memory readout features in a residual manner. Figure 4
illustrates the specific implementation of this module.

To further enhance performance by leveraging shape information, especially at the
boundaries, inspired by [26] we designed a shape-based refinement module. We used
the feature maps before soft aggregation and the object boundary map as inputs to the
refinement module. Next, we resampled them with a 3 × 3 convolutional layer and the
ReLU function, followed by upsampling to the original resolution and once again merging
them through soft aggregation.

3.3. Object Motion Prediction Module

Mainstream methods to address distractor objects mainly consider pixel-level motion.
This often leads to errors, especially when dealing with object occlusion or fast motion.
Inspired by [20], we introduce a novel object motion prediciton module (OMPM) beyond
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the pixel level. Part (b) in Figure 2 displays the structure of this module. Figure 5 shows
the difference between our method and the pixel-level method. In video frames (It), where
t denotes the t-th frame, we use binary masks to represent the positional information of
objects. The binary mask is denoted as mk

t , where k represents the k-th object. This module
learns the motion from mk

t−n to mk
t−1 to predict the positional information of the object

mk
t . In our scenario, given any number of frames, the module predicts one frame forward

(mk
t = OMPM(mk

t−n:t−1)), where OMPM represents the object motion prediction module.
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Figure 5. This figure shows a significant difference between pixel-level motion and object-level
motion. In the first row, we present the previous frame’s image, the current frame’s image, and the
ground truth mask, separately. In the second row, we show pixel−level motion, primarily based on
the previous frame’s mask and precomputed optical flow information, to infer the current frame
object’s position. However, this method is prone to failure when the object undergoes rapid motion.
In contrast, the object-level motion depicted in the third row involves extracting the object motion
trajectory directly from the previous object mask, predicting the accurate position of the object in the
current frame without the need for precomputed optical flow information. This approach not only
remains effective in situations involving occlusion and rapid motion but also eliminates the need for
precomputed steps, making it more efficient.

Inspired by conditional variational autoencoder (CVAE) dynamics modeling [29], in
the training process, an encoder is utilized to understand the motion signatures extracted
from the Gaussian distribution of latent variables zt used for prediction. Meanwhile, we
store key motion signatures in the memory bank M. In the inference process, these stored
patterns refine incomplete information from (mk

t−n:t−1), incorporating object-level motion
details to predict the next frame mk

t .

3.3.1. Motion Signature Memory Bank

During training, by accessing mk
t , we utilize qϕ to learn the inference of motion

signature zk
t−n:t ∈ Rl . The resulting zk

t−n:t ∈ Rl is stored in M ∈ Rc×l , with similarity
weights wk

1:t ∈ Rc based on the standard method [30].
The softmax function computes wk

1:t,i for each memory vector vi ∈ Rl .

wk
1:t,i =

exp
{

Scos

(
vi, zk

t−n:t

)}
∑c

j=1 exp
{

Scos
(
vj, zk

t−n:t
)} , (3)
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where wk
t is a non-negative vector, enabling memory bank access. Scos(a, b) represents the

calculation of the cosine similarity between a and b. We can obtain memory features related
to a latent variable z of length l:

ẑ = wM =
c

∑
i=1

wivi, (4)

The memory bank parameters are updated through backpropagation. Equations (3) and (4)
offer an explicit means to store and retrieve various motion signatures, including zk

t−n:t.
Using the trained memory bank, we take mk

t−n:t−1 as input and obtain the mo-
tion signature zk

t−n:t−1 through the encoder pθ . Accessing the memory bank through
Equations (3) and (4), we obtain the motion signature ẑk

t−n:t−1 corresponding to zk
t−n:t−1.

During inference, we do not update the memory bank.

3.3.2. Motion Prediction Using Memory

We infer the object frame mk
t through the utilization of a network based on a recurrent

neural network (RNN). Specifically, taking mk
t−n:t−1 as input, we extract features fk

t−n:t−1
using the mask encoder Em and Conv-LSTM. Subsequently, concatenating these extracted
features with motion signatures ẑk

(·) retrieved from the memory bank, we then input them

into the mask decoder Dm to infer the mk
t . Our training process is divided into two stages.

During the training process, we have access to the ground truth labels mk
t−n:t for the object

mask, and we only update the memory bank (M) in the first step. Other training details are
consistent with [20].

3.3.3. Motion Fusion

We concatenate the features from the motion prediction module and the features
extracted from memory. These features undergo processing through the utilization of
two ResBlocks [27] and a CBAM [31] block for enhanced refinement. The CBAM block [31]
can adaptively adjust the weights of features, thereby enhancing the model’s expressive
power and generalization ability. With the model fusion module, our model can better
fuse the backbone features with the predicted motion information features so that we can
utilize the information at different levels in the model, and thus, obtain more accurate
prediction results.

4. Results
4.1. Datasets and Metrics
4.1.1. DAVIS

DAVIS 2016 [32] is a benchmark dataset for single-object video segmentation, compris-
ing a total of 50 videos. Among these, 30 are used as the training set, and 20 are allocated
to the validation set. DAVIS 2017 [13] serves as a benchmark dataset for video multi-object
segmentation, including a total of 120 videos. Its validation set and test-dev set each consist
of 30 videos.

4.1.2. YouTube-VOS

YouTube-VOS 2019 [14] is a benchmark for multi-object video segmentation, providing
a total of 3924 videos, with 507 designated for the validation set and 3471 for the training
set. The validation set includes categories not present in the training set, allowing for a
further assessment of the model’s generalization performance.

4.1.3. Metrics

For the DAVIS dataset [13], this paper employs the region similarity J . To assess
region-based segmentation similarity, specifically the count of mislabeled pixels, the Jaccard
index J is utilized. Given the output segmentation M and the corresponding ground
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truth mask G, it is formally defined as J = |M∩G|
|M∪G| . Contour accuracy, denoted as F ,

is evaluated through contour-based precision and recall, Pc and Rc. This is formally
defined as F = 2·Pc ·Rc

Pc+Rc
. The J &F , denoting the average of the region similarity metric

(J ) and contour accuracy (F ) for the DAVIS dataset, is formally defined as J &F = J+F
2 .

Unlike the DAVIS [13] dataset, in YouTube-VOS 2019 [14] classes are categorized into seen
and unseen categories. The final result (G) is the average of four metrics: J for seen
categories (JS), F for seen categories (FS), J for unseen categories (JU), and F for unseen
categories (FU).

4.2. Implementation Details

During the training phase, we opted for the PyTorch [33] framework and employed the
Adam optimizer [34] for model optimization. Regarding the learning rate, we set the initial
learning rate to 1 × 10−5 and adopted a warm-up strategy, starting with a smaller learning
rate and gradually increasing it. This strategy aimed to promote more robust convergence
of the model. Similar to prior research [2], we applied deformation operations to static
images by transforming one image into three different ones, thereby generating virtual
videos for pretraining [35]. For the main training on the YouTube-VOS [14] and DAVIS [13]
datasets, we utilized the same data processing methods as described in Ref. [36]. We resized
all input image masks to 384 × 384 with padding to preserve their aspect ratios. Similar to
STM [1], batch normalization layers were frozen during the training process. We supervised
the training of the shape extraction module by generating real mask edges from ground
truth object masks. The training approach for the motion prediction module remained
consistent with Ref. [20]. Additionally, we adopted the same training frame sampling
method as MiVOS [37], initially using a smaller sampling interval, gradually increasing
it to 25, and finally restoring it to the original value as training approached completion.
Similar strategies were employed for the shape space constraint module’s sampling of the
previous frame mask. In the inference phase, we utilized the first k filters [37], setting k to 80
on the DAVIS 2017 [13] validation set and 20 on other datasets. Additionally, we employed
kernelized memory reading [9], with a kernel size of 7. Memory storage operations were
performed every five frames, and no temporary frames were stored. We used the same
implementation as STCN [2] for our backbone network, and the gated convolutional layer
implementation in the object shape extraction module was the same as in [25]. In our
object motion prediction module, the mask encoder used two 2D-Conv layers, followed by
3-layer Conv-LSTMs. The encoders (pθ and qϕ) employed three 3D-Conv layers. For the
mask decoder, we used three 2D-DeConv layers. During both the training and inference
phases, we leveraged automatic mixed precision in PyTorch [33] to accelerate the training
and inference processes.

4.3. Comparison with Other Methods
4.3.1. Quantitative Comparison

Table 1 shows the comparison of our method on the DAVIS 2017 [13] validation set
with other methods. On the DAVIS 2017 [13] validation set we obtained competitive results,
achieving a J&F score of 85.2. Table 2 shows the comparison of our method with the
other method on the YouTube-VOS 2019 [14] validation set, where the performance of
our model improves by 0.8% compared to our baseline model [2], obtaining a J&F score
of 83.5. Table 3 shows the comparison of our method with the other method on the DAVIS
2017 [13] test-dev set, where the performance of our model improves by 1.4% compared
to our baseline model [2], obtaining a J&F score of 77.5. Table 4 shows the comparison
of our method with other methods on the DAVIS 2016 [32] validation set. Although our
method performed lower than our baseline method STCN [2] (accuracy lower by 0.2)
on the DAVIS 2017 [13] validation set, it significantly surpassed the baseline method [2]
on the DAVIS 2017 [13] test-dev set and the YouTube-VOS 2019 [14] validation set (with
accuracies higher by 1.4 and 0.8, respectively). It is worth noting that the segmentation
difficulty is relatively lower in the DAVIS 2017 [13] validation set compared to the DAVIS
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2017 [13] test-dev set and the YouTube-VOS 2019 [14] validation set. In practice, we found
that achieving high accuracy on the DAVIS 2017 [13] test-dev set and the YouTube-VOS
2019 [14] dataset better reflects the generalization performance of our method. For instance,
in STCN [2], the authors increased accuracy on the DAVIS 2017 [13] test-dev set (76.1→77.8)
and YouTube-VOS 2019 [14] validation set (82.7→84.2) substantially by using additional
training data, but the accuracy on the DAVIS 2017 [13] validation set decreased (85.4→85.3).

Table 1. Comparison of different methods on the DAVIS 2017 validation set.

Method OL M J &F J F
OSMN [38] ✓ 54.8 52.5 57.1
RGMR [28] 66.7 64.8 68.6
RVOS [39] 50.3 48.0 52.6
Track-Seg [16] 72.3 68.6 76.0
PReMVOS [40] ✓ 77.8 73.9 81.7
TVOS [41] 72.3 69.9 74.7
GC [6] ✓ 71.4 69.3 73.5
SwiftNet [42] ✓ 81.1 78.3 83.9
STM [1] ✓ 81.8 79.2 84.3
GraphMem [43] ✓ 82.8 80.2 85.2
MiVOS [37] ✓ 83.3 80.6 85.9
CFBI [3] 81.9 79.1 84.6
KMN [9] ✓ 82.8 80.0 85.6
RMNet [8] ✓ 83.5 81.0 86.0
LWL [44] ✓ 81.6 79.1 84.1
CFBI+ [4] 82.9 80.1 85.7
LCM [7] ✓ 83.5 80.5 86.5
STCN [2] ✓ 85.4 82.2 88.6
RDE [5] ✓ 84.2 80.8 87.5
SCE [45] ✓ 84.2 80.8 87.5
Miles [24] ✓ 83.7 80.2 87.1
InstMove [20] ✓ 85.1 82.3 87.9
Ours ✓ 85.2 82.3 88.0

OL stands for online fine-tuning-based approach. M stands for memory-based approach. The ✓symbol
represents ”yes”.

Table 2. Results on the YouTube-VOS 2019 validation set.

Method M G JS FS JU FU

STM [1] ✓ 79.2 79.6 83.6 73.0 80.6
MiVOS [37] ✓ 82.4 80.6 84.7 78.2 85.9
CFBI [3] 81.0 80.6 85.1 75.2 83.0
SST [46] 81.8 80.9 - 76.6 -
STCN [2] ✓ 82.7 81.1 85.4 78.2 85.9
RDE [5] ✓ 81.9 81.1 85.5 76.2 84.8
SCE [45] ✓ 81.6 81.3 85.7 75.0 83.4
Miles [24] ✓ 82.3 81.6 86.0 76.3 85.2
InstMove [20] ✓ 83.4 82.5 86.9 77.9 86.0
Ours ✓ 83.5 82.4 87.0 78.3 86.3

M stands for memory-based approach. The ✓symbol represents "yes".



Appl. Sci. 2024, 14, 2002 11 of 18

Table 3. Results on the DAVIS 2017 test-dev set.

Method OL M J &F J F
OSMN [38] ✓ 41.3 37.3 44.9
OnAVOS [47] ✓ 56.5 53.4 59.6
FEELVOS [48] 57.8 55.2 60.5
PReMVOS [40] ✓ 71.6 67.5 75.7
STM [1] ✓ 72.2 69.3 75.2
RMNet [8] ✓ 75.0 71. 78.1
CFBI [3] 76.6 73.0 80.1
KMN [9] ✓ 77.2 74.1 80.3
CFBI+ [4] 78.0 74.4 81.6
LCM [7] ✓ 78.1 74.4 81.8
STCN [2] ✓ 76.1 72.6 79.6
Ours ✓ 77.5 74.0 81.0

OL stands for online fine-tuning-based approach. M stands for memory-based approach.The ✓symbol
represents "yes".

Table 4. Results on the DAVIS 2016 validation set.

Method OL M J &F J F
OSMN [38] ✓ 73.5 74.0 72.9
MaskTrack [35] 77.6 79.7 75.4
FEELVOS [48] 81.7 81.1 82.2
RGMP [28] 81.8 81.5 82.0
Track-Seg [16] 83.1 82.6 83.6
OnAVOS [47] ✓ 85.5 86.1 84.9
PReMVOS [40] ✓ 86.8 84.9 88.6
GC [6] ✓ 86.8 87.6 85.7
RMNet [8] ✓ 88.8 88.9 88.7
STM [1] ✓ 89.3 88.7 89.9
CFBI [3] 89.4 88.3 90.5
CFBI+ [4] 89.9 88.7 91.1
MiVOS [37] ✓ 90.0 88.9 91.9
SwiftNet [42] ✓ 90.4 90.5 90.3
KMN [9] ✓ 90.5 89.5 91.5
LCM [7] ✓ 90.7 91.4 89.9
STCN [2] ✓ 91.6 90.8 92.5
RDE [5] ✓ 91.1 89.7 92.5
SCE [45] ✓ 90.8 91.7 89.9
Miles [24] ✓ 90.6 89.7 91.6
Ours ✓ 91.6 90.6 92.7

OL stands for online fine-tuning-based approach. M stands for memory-based approach.The ✓symbol repre-
sents "yes".

4.3.2. Qualitative Comparison

Figure 6 compares the segmentation results of our method and the baseline method in
similar object scenes. We have compared our method with the state-of-the-art methods,
including STCN [2], AOTT [19], RDE [5], and MiVOS [37]. STCN serves as both a memory-
based method and our baseline approach. AOTT [19] is a representative method based
on Transformer, while RDE [5] is a typical approach that occupies fixed-size memory.
MiVOS [37] is an improved version of the milestone method STM [1] within the category of
memory-based approaches. From Figure 6, it is clearly evident that our method outperforms
other techniques in terms of segmentation accuracy, particularly when dealing with similar
objects or handling fine details at the boundaries of overlapping objects. Specifically,
MiVOS [37] and STCN [2] erroneously segmented the car on the left in the background as
the object in the first scene, and incorrectly segmented the standing person on the left in the
second scene. In contrast, our method excelled in both of these scenarios. AOTT [19] and
STCN [2] mistakenly segmented the background horse and person as the object in the third
scene. In the fourth scene, AOTT [19] failed in the segmentation of the deer head on the right,
indicating inadequate precision in object-edge handling. Although STCN [2] performed
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well in object-edge-region processing, segmentation failure occurred due to the complete
confusion of two objects. On the other hand, our approach, aided by the object motion
prediction module and object shape extraction module, not only accurately segments the
edge regions of the object but also exhibits strong robustness against challenges such as
occlusion. In the fifth and final scenes, RDE [5] and STCN [2] suffer from background–
foreground confusion in the object-edge regions and object confusion errors. In contrast, our
method, leveraging shape information effectively, achieves higher segmentation accuracy.
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Figure 6. Qualitative comparison of our method with baseline methods (STCN [2], AOTT [19],
MiVOS [37], RDE [5]). We use the red dotted box to mark where the segmentation method fails. It
can be observed that our method, compared to the baseline approach, alleviates the issue of mis-
segmentation of similar objects and achieves higher accuracy in the segmentation of edge regions.

4.4. Ablation Study

We present a comprehensive analysis of the ablation experiments conducted on the
DAVIS 2017 validation dataset, focusing on the efficacy of individual modules within our
proposed model configuration. Our primary objective is to investigate the impact of each
module on model performance, with a particular emphasis on the object-edge extraction
and object motion prediction modules introduced in this paper. Unless otherwise specified,
our method only undergoes the main training phase during ablation studies.

Table 5 summarizes the results obtained from these experiments, revealing critical
insights into the contributions of various model components. Notably, our findings demon-
strate that both the object-edge extraction module and the object motion prediction module
significantly enhance the overall performance of the model. Moreover, the most substantial
performance improvement is achieved when both modules are incorporated simultane-
ously. Table 6 presents the ablation experiments we conducted on the shape spatio-temporal
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constraints module and shape-based refinement module in the object shape extraction mod-
ule. The experiments indicate that both modules contribute to the overall performance
improvement of the model, with the best results achieved when both are used simultaneously.

To vividly illustrate the impact of the modules proposed in this article on performance,
we present in Figure 1 the influence of these modules on segmentation accuracy. In the
first scenario, employing the object shape extraction module results in more accurate
segmentation of human edges, especially in regions where two individuals overlap. In the
second scenario, utilizing the object motion prediction module significantly improves the
segmentation accuracy of the carousel, effectively mitigating object misalignment issues.
Figure 7 demonstrates the visual effects of the shape extraction module. It is worth noting
that our shape extraction module can precisely capture the edges of the object without
being influenced by background edges. This accurate shape information simultaneously
enhances the refinement mask accuracy of our shape-based recovery module.
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Figure 7. The visualization result of the shape map. It can be seen that our shape extraction module
can accurately extract the object shape, and the extracted object shape can further improve the
segmentation accuracy.

In Table 7, we compared the training results of using pretraining, main training, and a
combination of both. Importantly, our study found that combining pretraining and main
training methods significantly outperformed using either method alone in terms of model
performance. Specifically, when conducting only pretraining, we achieved an accuracy of
76.9 J&F score on the DAVIS 2017 [13] validation set. With only main training, we obtained
an accuracy of 84.2 J&F score, as main training aligns more closely with the data on the
validation set. However, employing a strategy of pretraining followed by main training
resulted in an accuracy of 85.2 J&F score, a 1% improvement over the accuracy achieved
with main training alone. We believe that pretraining allows our network to learn more
generalized segmentation features.

Table 5. Ablation study.

Method J &F J F
Without OSEM and OMPM 82.5 79.3 85.7
With OSEM 83.7 80.3 87.0
With OMPM 83.9 81.3 86.5
With OSEM and OMPM 84.2 81.3 87.1

OSEM stands for object shape extraction module. OMPM stands for object motion prediction module.
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Table 6. Ablation study of object shape extraction module.

Method J &F J F
With shape spatio-temporal constraints 83.4 80.3 86.4
With shape-based refinement module 83.5 80.1 86.8
With both 83.7 80.3 87.0

Table 7. Effects of pretraining on static images/main training on the DAVIS 2017 [13] validation set.

Method J &F J F
Pretraining only 76.9 74.4 79.5
Main training only 84.2 81.3 87.1
Both 85.2 82.3 88.0

Figure 8 shows the visual display of the effectiveness of the spatio-temporal constraints
module, in which “Input” denotes the input image, “Mask T-1” denotes the object mask of
frame T-1, “Before” denotes the shape information before the spatial restriction module is
processed, and “After” denotes the shape information after the processing. It can be seen
that after the spatio-temporal constraints module is processed, it can effectively alleviate
the background interference of the object shape. A visual example of the shape-based
refinement module’s effects is shown in Figure 9. In this figure, “Input” denotes the input
image, “Shape” denotes the object shape, “Before” denotes the mask before processing
through the shape-based refinement module, and “After” denotes the mask after processing.
The figure illustrates that by leveraging shape information effectively, our shape-based
refinement module can significantly improve the segmentation accuracy at the edges of
the object.

A comparison between the intermediate layer features of our approach and STCN [2]
is presented in Figure 10. The points in the figure represent objects in a single frame
of the video, with different colors indicating different objects. The first row shows the
salsa video from DAVIS 2017 test-dev, featuring 10 similar objects and facing challenges
such as occlusion and rapid movement, making segmentation difficult. The second row
displays the sun-people video from DAVIS 2017 [13] test-dev, including four similar objects.
Observing both scenarios, compared to STCN [2], our method’s extracted intermediate
features exhibit larger feature distances between different objects, demonstrating higher
discriminability for similar objects and effectively overcoming challenges such as occlusion
and rapid movement. Figure 11 illustrates a comparison between the heatmap generated by
our method and the baseline method STCN [2]. As shown in the figure, it can be observed
that our method is less affected by background interference compared to the baseline
STCN [2], focusing more on the object. Specifically, in the first and second scenarios,
the attention of our baseline method is dispersed to irrelevant background, impacting its
segmentation accuracy to some extent, whereas our method is less affected by background
interference. In the second scenario, our baseline method [2] concentrates attention only on
part of the object, while our method’s attention covers a broader region, resulting in higher
segmentation accuracy, especially at the edges of the object.

Input T Before AfterMask T-1

Figure 8. The figure illustrates our ablation experiments on the spatio-temporal constraints module.
It can be observed that the processing of the spatio-temporal constraints module effectively alleviates
the interference of the background on the shape of the object.
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Input Shape Before After

Figure 9. The figure illustrates the results of our ablative experiments on the shape-based refinement
module. It can be observed that the shape-based refinement module effectively refines the mask,
enhancing the segmentation accuracy in the object-edge regions. The orange box indicates the areas
refined by our module.

STCN OURS

Figure 10. Comparison between the middle layer features of our method and the STCN [2]. The
points in the figure represent individual frames in the video, and different colors indicate different
objects. As can be seen from the figure, compared to STCN [2] the feature vectors of the distractor
objects of our method are more discretized.
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Figure 11. A comparison of the heatmap generated by our method with STCN [2]. As shown in
the figure, it can be observed that our method pays more attention to the object region compared to
STCN [2].
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5. Discussion and Conclusions

This paper introduces a novel video object segmentation network. The network
combines an object shape extraction module and an object motion prediction module,
effectively solving the segmentation problem of multiple overlapping and confusing objects,
and also improving the tracking ability of fast-moving objects. Our method shows excellent
robustness to confusing objects in experiments, but the segmentation accuracy decreases
in scenes with light changes. As shown in Figure 12, this is mainly because the change in
lighting conditions causes a change in the object appearance, which affects the matching
accuracy. We believe that future work should focus on the robustness of video object
segmentation methods under different natural lighting conditions, and we suggest that
more attempts can be made in the construction of datasets.
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Figure 12. Limitation. We show three cases of failure due to natural factors. Our model fails to
segment when the light changes. The red box indicates the areas where segmentation failed.
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