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Abstract: The inductive relation prediction of knowledge graphs, as an important research topic,
aims at predicting the missing relation between unknown entities with many real-world applications.
Existing approaches toward this problem mostly use enclosing subgraphs to extract the features of
target nodes to make predictions; however, there is a tendency to ignore the neighboring relations
outside the enclosing subgraph, thus leading to inaccurate predictions. In addition, they also neglect
the rich commonsense information that can help filter out less convincing results. In order to
address the above issues, this paper proposes a commonsense-guided inductive relation prediction
method with a dual attention mechanism called CNIA. Specifically, in addition to the enclosing
subgraph, we added the multi-hop neighboring relations of target nodes, thereby forming a neighbor-
enriched subgraph where the initial embeddings are generated. Next, we obtained the subgraph
representations with a dual attention (i.e., edge-aware and relation-aware) mechanism, as well as
the neighboring relational path embeddings. Then, we concatenated the two embeddings before
feeding them into the supervised learning model. A commonsense re-ranking mechanism was
introduced to filter the results that conformed to commonsense. Extensive experiments on WN18RR,
FB15k-237, and NELL995 showed that CNIA achieves better prediction results when compared to
the state-of-the-art models. The results suggested that our proposed model can be considered as an
effective and state-of-the-art solution for inductive relation prediction.

Keywords: inductive relation prediction; commonsense; dual attention; contrastive learning

1. Introduction

Knowledge graphs (KGs) are composed of organized knowledge in the form of factual
triples (entity, relation, entity), and they form a collection of interrelated knowledge, thereby
facilitating downstream tasks such as question answering [1], relation extraction [2], and
recommendation systems [3]. However, even state-of-the-art KGs suffer from an issue
of incompleteness [4,5], such as FreeBase [6] and WikiData [7]. To solve this issue, many
studies have been proposed mining missing triples in KGs, in which the embedding-based
methods become a dominant paradigm, such as TransE [8], ComplEx [9], RGCN [10], and
CompGCN [11]. In particular, certain scholars have explored knowledge graph completion
under low-data regime conditions [12]. In actuality, the aforementioned methods are often
only suitable for transductive scenarios, which assumes that the set of entities in KGs is fixed.

However, KGs undergo continuous updates, whereby new entities and triples are
incorporated to store additional factual knowledge, such as new users and products on
e-commerce platforms. Predicting the relation links between new entities requires inductive
reasoning capabilities, which implies that generality should be derived from existing datasets
and extended to a broader spectrum of fields, as shown in Figure 1. The crux of the
inductive relation prediction [13] resides in utilizing information that is not specifically tied
to a particular entity. A representative strategy in inductive relation prediction techniques
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is rule mining [14], which extracts first-order logic rules from a given KG and employs
weighted combinations of these rules for inference. Each rule can be regarded as a relational
path, comprising a set of relations from the head entity to the tail entity, which signifies
the presence of a target relationship between two entities. For example, consider the
straightforward rule (X, part_of, Y) ∧ (Y, located_in, Z) → (X, lives_in, Z), which was derived
from the KG depicted in Figure 1a. These relational paths exist in symbolic forms and are
independent of particular entities, thus rendering them inductive and highly interpretable.
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(a) Training Graph (b) Inductive Inference

Figure 1. An explanatory case in inductive relation prediction, which learned from a (a) training
graph, and generalizes to be (b) without any shared entities for inference. A red dashed line denotes
the relation to be predicted.

Motivated by graph neural networks (GNNs) that have the ability of aggregating local
information, researchers have recently proposed GNN-based inductive models. GraIL [15]
models the subgraphs of target triples to capture topologies. Based on GraIL, some
works [16–18] have further utilized enclosing subgraphs for inductive prediction. Re-
cent research has also considered few-shot settings for handling unseen entities [19,20].
SNRI [21] extracts the neighbor features of target node and path features, solves the prob-
lem of sparse subgraphs, and introduces mutual information (MI) maximization to model
from a global perspective, which improves the prediction effect of inductive relationships.

Nonetheless, we still observe several issues from the existing literature: (1) Ignorance
of neighboring information outside the enclosing subgraph. Inductive relation prediction models
relying on the enclosing subgraph disregard the remaining neighbors of the node. However,
neighbors in proximity to the target nodes harbor valuable information for inferring the
relation; (2) Overlooking the influence of different neighboring relations. Existing methods
overlook variations in the impact of distinct structures on subgraph modeling, as well as in
the diverse relationships of target nodes regarding relation predicting; and (3) Generation
of facts that violate commonsense. Some of the predictions generated violate commonsense,
which can be easily avoided by introducing the commonsense knowledge for screening.

To address these issues, we propose a Commonsense-guided Neighboring relation
InfoMax model based on a dual-Attention mechanism (CNIA). CNIA was built upon the
popular inductive relation prediction framework but improves on the following aspects:
(1) In order to fully leverage the neighboring relations of target nodes, we constructed a
neighbor-enriched subgraph so as to include the useful neighboring information in addition to
the enclosing subgraph; (2) To account for the structure of KGs, a dual attention mechanism
was employed. This mechanism combined edge-aware attention, which addresses varia-
tions in the influence of different edges on target nodes, as well as relation-aware attention,
which addresses the variations in the influence of diverse relationships on predicted rela-
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tionships. Together, these two types of attention enable more accurate predictions within
KGs. (3) A commonsense-based re-ranking strategy was used to update the score function
of the triples to filter out less convincing prediction results. By integrating the aforemen-
tioned strategies during training, CNIA ensures the complete and effective retention of
neighboring relation and path information, thereby enhancing the accuracy and rationality
of KG relation predictions.

Contributions. The contributions of this work can be summarized into three aspects:

• We put forward a commonsense-guided inductive relation prediction method with a
dual attention mechanism, CNIA, which can enhance the representation learning and
the accuracy of results;

• We propose to construct a neighbor-enriched subgraph to retain more useful neighbor-
ing information to aid the prediction;

• We compare the CNIA with state-of-the-art models on benchmark datasets, and the
results demonstrate the superior performance of our model.

Organization. Section 2 provides an overview of the related works. Section 3 introduces
the module. Section 4 describes the experimental design and analyzes the results, and this
is followed by the conclusions in Section 5.

2. Related Works

In this section, we first present the existing solutions to inductive relation predictions.
Next, we briefly introduce commonsense knowledge.

2.1. Relation Prediction Methods

In order to increase the completeness of KGs, state-of-the-art methods use a KG
internal structure [8,15] or external KG information [22,23]. In this work, we focused on the
former and studied the relation prediction problem.

Transductive methods. Transductive methods are used to learn an entity-specific
embedding for each node, which have one thing in common: reasoning over original KGs.
However, it is difficult to predict the missing links between unseen nodes. For example,
TransE [8] is based on translation while RGCN [10] and CompGCN [11] are based on GNN.
The major differences between them are the scoring function and whether the structure
information in KGs is utilized. Wang et al. proposed to employ a global neighborhood
aggregator to obtain the global structural information of an entity to solve the problem of
sparse local structural information under certain snapshots [24]. Meng et al. proposed a
multi-hop path inference model based on sparse temporal knowledge graphs [25]. Recently,
Wang et al. proposed knowledge graph completion for multi-level interactions, where
entities and relations interact simultaneously at both fine- and coarse-grain levels [26].

Inductive methods. Inductive methods can be used to learn how to reason on unseen
nodes. There are two main categories of methods: rule-based and graph-based. Rule-
based methods aim to learn entity-independent logical rules of reasoning. For instance,
NeuralLP [14] and DRUM [27] integrate neural networks with symbolic rules to learn logic
rules and rule confidence in an end-to-end microscopic manner.

Concerning graph-based methods, in recent years, researchers have drawn inspiration
from the local information aggregation capability of graph neural networks, and they have
incorporated graph neural networks (GNNs) into their models. GraIL [15] acquires the
topology of target nodes by extracting the enclosing subgraph of the target triad, thus
exhibiting inductive prediction abilities. Building on this model, TACT [16] introduces the
correlation of relations in subgraphs and constructs a relational correlation network (RCN)
to enhance the encoding of subgraphs. CoMPLIE [17] proposes a node-edge communication
message propagation network to enhance the interaction between nodes and edges, and it
naturally deals with asymmetric or anti-symmetric relations so as to enhance the adequate
flow of relational information. ConGLR [13] formulates a contextual graph that represents
the relationship paths in the subgraph, whereby two GCNs are applied to deal with the
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enclosing subgraphs and contexts, in which different layers utilize counterpart outputs
interactively for better feature representation. RE-PORT [28] aggregates relational paths
and contexts to capture the connections and intrinsic nature of entities through a unified
hierarchical transformation framework. However, since the experimental metrics of RE-
PORT are different from those of other state-of-the-art models, the RE-PORT model was
not chosen as a comparison model in the experimental part of this paper. RMPI [29] uses a
novel relational message passing network for fully inductive knowledge graph completion.
SNRI [21] extracts the neighbor relational features and path embeddings of nodes to make
full use of the full neighbor relational information of the entities to obtain a better inductive
effect. However, all these methods only add additional simple processing load, and they do
not take full advantage of the whole structural feature of KGs. Different from SNRI, CNIA
keeps integrated neighboring relations, utilizes a dual attention mechanism to process the
structural feature of subgraphs, and it introduces commonsense re-ranking.

2.2. Commonsense Knowledge

Commonsense knowledge is a crucial link in addressing the bottlenecks of AI and
knowledge engineering technology. And the acquisition of commonsense knowledge is the
basic problem in this field. The earliest construction method involves experts manually
defining the schema and relationship types of the knowledge base. Lenat [30] constructed
CYC, one of the oldest knowledge bases, in the 1980s. However, the expert construction
method requires substantial human and material resources. Consequently, researchers have
began developing semi-structured and unstructured text extraction methods. The com-
monsense knowledge base constructed by YAGO [31] contains more than 1 million entities
and 5 million facts, which were derived from semi-structured Wikipedia data and har-
monized with WordNet through a well-designed combination of rule-based and heuristic
approaches.

The aforementioned approaches prioritize encyclopedic knowledge and structure
storage by establishing a well-defined entity space and a corresponding relationship system.
However, actual general knowledge is much more loosely structured and challenging to
apply to the model of two entities with known relationships. Therefore, the existing solution
is to model the entity parts as natural language phrases and the relations as any concepts
that can connect the entities. The OpenIE approach, for example, reveals the properties
of open-text entities and relations. However, the method is extractive and it is difficult to
obtain the semantic information of the text.

3. Methodology

In this section, we introduce the framework of CNIA. Next, we describe the foundation
framework of the inductive relation prediction. Finally, we elaborate on the components of
CNIA. An overview of our proposed model, CNIA, is shown in Figure 2.

3.1. Problem Statement

The inductive relationship prediction aims to predict the relationships between entities
outside the training set. Given the KG dataset and the target triple as inputs, the model
needs to generate scores of the predicted relationships of the target triple as the outputs.
Previous solutions toward this task fail to take into account the full adjacency features and
commonsense constraints. To fill in these gaps, our proposed model CNIA extracts more
comprehensive neighboring relational features. In addition, we applied a dual attention
mechanism to improve the representation learning. We also adopt commonsense re-ranking,
for the first time to our knowledge, to refine the prediction results.
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Figure 2. The overall framework of CNIA, which consists of the following parts: (1) extraction of
the subgraphs with complete neighboring relations and initialization of the node features; (2) the
feeding of subgraphs into the SNN with dual attention mechanisms to learn representations and
extract neighboring relational path features; (3) commonsense-based re-ranking; (4) maximizing the
MI between subgraph to graph to model the neighboring relations in a global way.

3.2. Model Overview

The core idea of CNIA is that the subgraph structure and relationship information
around two nodes can predict the relationship rt between two nodes (u, v). Thus, only the
structure and relationship information is extracted as the model input. Firstly, we extracted
the neighboring relational features from the multi-hop neighbor subgraph surrounding
the target nodes, which resulted in the creation of a neighbor-enhanced subgraph. We
then utilized the subgraph neural network (SNN) to obtain the local subgraph embeddings
from this enhanced subgraph. To capture the distinct influences of the different edges on
target node embeddings and the different relationships associated with the target relations,
we introduced edge-aware and relation-aware attention mechanisms. These mechanisms
enabled us to learn more informative representations. Additionally, we modeled the neigh-
boring relational paths to obtain relational path embeddings, which further contribute to
the overall representation learning process. Subsequently, we concatenated the subgraph
embeddings and relational path embeddings before inputting them into the supervised
learning phase. And we utilized MI maximization to contrast the learning from global and
local perspectives. Furthermore, we introduced a commonsense re-ranking mechanism to
prioritize the results that align with commonsense knowledge and conform to general ex-
pectations. This mechanism ensures the selection of more reliable and sensible predictions.
Figure 2 shows the steps of the whole process.

The notation table can be found in Table 1.

3.3. Foundation Framework

In this subsection, we introduce the general model of inductive relation predictions.

Neighboring Relational Feature Extraction. The neighboring relational feature model
consists of two parts: subgraph extraction and node initialization. The local graph neigh-
borhood of a specific triple in the KGs contained the logical evidence needed to infer the
relationship between the target nodes; as such, the first step was to extract the subgraphs
around the target nodes that contain complete neighbor relationships to initialize the node
features. For the subgraph extraction, the target triple (u, rt, v) was identified and the
enclosing subgraph G(u, rt, v) around the target triple was extracted. More details can
be found in the GraIL paper [15]. Then, regarding node initialization—considering that
the inductive inference method cannot utilize the node attribute features—the node initial
features were obtained by extracting the node’s positional features and adjacency features.
The details can be found in [21].
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Subgraph Representaton Learning. As the main component of the foundation frame-
work, this stage includes two parts: (1) obtaining the representation of subgraph entity
nodes by the subgraph neural networks; (2) extracting and modeling the neighboring
relational paths across target triples.

Table 1. Definitions of the notations.

Symbols Descriptions

(u, rt, v) Target triple
rt Target relationship to be predicted

G(u, rt, v) Extracted subgraph for target triple
hG The representation of subgraph G
VG Node set of subgraph G
λ The weight of MI maximization mechanism

pG The relational path representation of the subgraph
sG The representation of subgraph G
βk

u,r Edge-aware attention
γk

r,rt
Relation-aware attention

αk
u,rt ,v Joint neighbor attention

(ch, rt, ct) Common sense
ω The weight of commonsense in score function

For subgraph modeling, the subgraph G(u, rt, v) of the target triad (u, rt, v) was first
input into the GNN. SNRI defines the update strategy of the node features at each layer
of the neural network. Inspired by CoMPILE [17], it feeds all node embeddings HL of the
last layer to a gated recurrent unit to increase the expressive ability of the network. Finally,
to obtain the representation of subgraph G, it uses an average readout function as follows:

hG =
1

|VG| ∑
i∈VG

hL
i . (1)

The neighboring relational path modeling aims to obtain valuable information from
the relationship paths of (u, v) as this helps to predict the type of relationship between u
and v. The specific procedure can be found in reference [21].

The subgraph representation hG and neighboring relational path representation pG
were concatenated as the final representation of subgraph sG as follows:

sG = [hG ⊕ pG]. (2)

The score function of target triple is

Score(u, rt, v) = Ws

[
hL

u ⊕ hL
u ⊕ eL

rt ⊕ sG

]
, (3)

where hL
u , hL

u , and eL
rt represent the embeddings of the target nodes u, v, and target relation

rt at the L layer of the SNN.

Supervised training. A loss function for supervised learning was constructed:

Lsup = ∑
(u,rt ,v)∈G

max
(
0, Score

(
u′, r′t, v′

)
− Score(u, rt, v) + θ

)
, (4)

where (u, rt, v) and (u′, r′t, v′) refer to the positive and negative samples, and θ is the
margin hyperparameter.
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Contrastive Learning. Contrastive learning was widely used in unsupervised learning
to attract positive samples and repel negative samples to obtain a higher-quality repre-
sentation. To avoid the SNN in SNRI over-emphasizing the local structure, we further
modeled the neighboring relations in a global way by subgraph–graph mutual information
maximization, that is, SNRI sought to enable the neighboring relational features and paths
to capture the global information of the entire KG, which would be realized in [21]. And the
loss function LMI could also be obtained.

Joint Training. The ultimate learning goal of this task was to train the following loss
function:

L = Lsup + λLMI , (5)

where λ controls the contribution of the MI max mechanism.

3.4. Our Model

Next, we introduce our model (cf. Figure 2), which improves over the foundation
framework in four respects, i.e., neighbor-enriched subgraph extraction, neighboring re-
lational paths, subgraph modeling based on a dual attention mechanism, and common-
sense re-ranking.

3.4.1. Neighbor-Enriched Subgraph Extraction

Based on the enclosing subgraph extraction, the other neighboring relationships of
each node were expanded to obtain the neighbor-enriched subgraph. The specific steps are
as follows:

Step 1 Obtain the set of three-hop neighbor nodes Nk(u) and Nk(v) of the target nodes u
and v in the KG, respectively. The neighbor nodes obtained here do not distinguish
the direction.

Step 2 Take the intersection Nk(u) ∩ Nk(v) of the neighbor nodes of u and v to obtain the
nodes of the enclosing subgraph.

Step 3 Filter out the isolated nodes or nodes with a distance that is greater than three from
any of the target nodes to obtain the enclosing subgraph with a path length that
does not exceed the length between the target nodes.

Step 4 Keep the complete three-hop neighbor relationship Nr(i) of each node i , which
includes the part omitted by the enclosing subgraph.

3.4.2. Neighboring Relational Path

As shown in Figure 3, to solve the sparse subgraph problem, we modeled the neigh-
boring relational paths.

tr

Relation Context

Relation Path

4h

2h

3h

1h

5h
1r

2r

3r

4r

5r

6r

Figure 3. An example of the neighbor relational paths, which are denoted by orange arrows, connect-
ing the head to tail. And the relation context is denoted by blue edges.

A relational path is a sequence of relations on a target node, e.g., p1 = (r1, r2), where
r1 and r2 are the surrounding relations on the target nodes u and v. Define P as the set of
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all neighboring relational paths on (u, v) in the subgraph. For each relation path p, GRU
modeling is first applied as follows:

mk
u = ∑

i∈N(u)
hk

i , (6)

hk+1
i = σ

([
mk

u ⊕ mk
v ⊕ hk

i

]
· Wk + bk

)
, (7)

where i ∈ N(u) is a neighboring edge of node u and h0
i is the initial characterization of i.

Repeat the above equation for K rounds, and then splice to obtain the path representation
of the subgraph as follows:

pG = σ
([

mK−1
u ⊕ mK−1

v

]
· Wk−1 + bk−1

)
. (8)

3.4.3. Subgraph Modeling Based on a Dual Attention Mechanism

For subgraph modeling, in order to improve the accuracy of the subgraph information
utilization and distinguish the role played by different structures in modeling, we propose
to integrate edge and relation dual attention mechanisms into a GCN. Generally, the entity
embedding for updating subgraphs employs the traditional iterative message passing
strategy of a GCN.

hk+1
v = ∑

(u,r)∈Ns(j)
αk
(u,r,v)W

k
t1ϕ

(
hk

u, ek
r

)
+ Wk

t2hk
v, (9)

where (u, r, v) is the example triple and Ns(·) is the set of neighbors containing entity rela-
tionship pairs. Wk

t1 and Wk
t2 are transformation matrices, and hk

v represents the embedding
of entity v at layer k.

In actuality, there are differences between the neighbors in entity modeling. For ex-
ample, neighbors (h3, r2), as well as (h4, r6), have different effects on the representation
of h2. Meanwhile, predicting different target relationships affects the representation of h2.
In order to distinguish these effects, we propose two types of attention, edge-aware βk

u,r
and relation-aware γk

r,rt , to compute the joint neighbor attention values.

βk
u,r = σ

(
Wk

1

(
hk

u ⊕ ek
r ⊕ hk

v

))
, (10)

γk
r,rt = σ

(
Wk

2

(
ek

r ⊕ ek
rt

))
, (11)

αk
(u,r,v) = softmax

(
βk

u,r + γk
r,rt

)
, (12)

where Wk
1 and Wk

2 are transformation matrices.
To enable information sharing and improve representation, we integrated updated

entity embeddings to enhance the representation as follows:

Hk+1
index(v) = λ1Hk

index(v) + (1 − λ1)hk+1
v , (13)

where index(v) indicates the actual index of entity v.
Based on this, we can obtain the embedding matrix HL, which consists of the embed-

ding vectors of all the entities in the subgraph of the last GCN. To further improve the
representational power of the model, a two-way gated recursive unit GRU, as inspired
by [17,32], was added after the last layer of the GCN. Since the entities in the subgraph are
sorted according to the distances to the target entities, the GRU that handles the sequences
can be used to increase the inter-entity interactions, thereby updating the embedding
representation as follows:

HL
′ = BiGRU(HL). (14)
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Finally, the average readout function (1) was used to process HL
′ to obtain the repre-

sentation hG of the subgraph G.

3.4.4. Commonsense Re-Ranking

To ensure that the generated triples conform to commonsense, they are compared
to commonsense knowledge. The generation of commonsense knowledge is specifically
divided into four steps:

Fine tuning BERT to acquire contextual representations. The pre-trained language
model BERT is suitable for acquiring the contextual representations of triples. Specifically,
given a tuple (u, r, v), u, r, and v are iteratively masked such that the encoder predicts the
masked elements using the other two unmasked elements, which enables the BERT model
to better understand the relationships between the tuple elements.

Filtering abstract concepts. Replacing ternary entities with entity concepts may result
in concepts with a high level of abstraction. We use entity and concept representations to
compute the probability of a concept appearing in an entity to measure the abstraction
level of the concept. A threshold is set to filter out concepts with a higher abstraction level
whose occurrence expectation is lower than the threshold.

Entity-to-concept mapping. After filtering out the higher degree of abstraction, concepts
were used instead of entities in the triad to obtain conceptual triples. Commonsense
knowledge in the individual form C1 was obtained by eliminating duplicate concept-
level triples. Commonsense knowledge in the set form C2 was then obtained by merging
concept-level triples that contained the same relations.

Filtering relationship-independent concepts. The commonsense knowledge obtained
by substituting concepts for entities would also suffer from the problem that concept c is
not related to relation er. To measure the degree of relevance of concept c and relation er,
the following cosine similarity was calculated to obtain the similarity score.

R(r, c) = cos(er, c), (15)

er = mean
ei∈Nr

(ei), (16)

where Nr denotes the set of relations r corresponding to the head entity or the tail entity,
and c and er are the contextual representations of concepts and entities, respectively.
A threshold was set to filter the target of relationship-independent concepts.

Based on the constructed commonsense knowledge database, we propose a simple
commonsense-based re-ranking strategy, i.e., one that is based on the KGs of the train set
or test set. Moreover, if the triple (u, rt, v) satisfies the commonsense (ch, rt, ct), the score of
the ternary is increased by ω > 0.

Score(u, rt, v) = Ws

[
hL

u ⊕ hL
v ⊕ eL

rt ⊕ sG

]
+ ω(I((u, rt, v) ∈ (ch, rt, ct))), (17)

where I(·) is the indicator function. We substituted the updated triple score function
into the original loss function (4). Then, we used MI maximization to obtain a global
representation and train joint training strategy (5).

3.4.5. Algorithmic Descriptions

The algorithm of the whole model is presented in Algorithm 1.

4. Experiments

In this section, we first introduce the experimental configurations. Next, we pro-
vide the empirical results and discuss the performance, and then we finally discuss the
further experiments that were conducted.
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4.1. Experimental Configurations

In this subsection, we introduce the experimental configurations, including the datasets,
evaluation metrics, parameter settings, and the baseline models.

4.1.1. Datasets

WN18RR [33], FB18k-237 [34], and NELL-995 [35] are widely used in transductive link
prediction. As for inductive relation prediction, we follow GraIL to conduct experiments
based on the variants of WN18RR, FB18k-237, and NELL-995, where entities in a test set are
not contained in a train set. And every dataset induces four versions with increasing sizes.

Algorithm 1 The inductive process of the CNIA model

Input: KG, target triple (u, rt, v)
Output: the Score of (u, rt, v)

1: Extract subgraph G of target triple (u, rt, v) from KG
2: Initialize node representation h for all the nodes in G
3: for all k in K of GCN layers do
4: Update the embedding hk

j of each entity j at layer k

5: Calculate edge attention value βk
r,rt according to Equation (10)

6: Calculate relation attention value γk
r,rt according to Equation (11)

7: Generate general attention αk
(u,r,v) according to Equation (12)

8: Update the embedding matrix Hk
index(v) of all entities

9: end for
10: Obtain entity embedding HL

′ through BiGRU
11: Obtain hG through a readout function
12: Establish a Neighboring Relational Path Model to obtain path representation pG

Equation (8)
13: Establish score function Score and loss function Lsup by Equations (3) and (4)
14: Update Score by commonsense re-ranking according to Equation (17)
15: return Score

The specific sampling method was divided into the following three steps: (1) Uni-
formly sample several root entities as root nodes in the original KGs; (2) Take the concate-
nated set of the multi-hop neighbors of the root node as the training KGs. To prevent the
number of nodes from growing exponentially, the size of k needs to be limited; (3) Remove
the sampled training set from the entire original KGs and then repeat Steps 1-2. Then,
sample the test set so as to ensure that the entities in the test set are not included in the
training set. The detailed statistics of the dataset are shown in Table 2.

Table 2. The statistics of three inductive datasets. #E and #R, respectively, denote the number of
entities and relations. #TR1 represents triples, which are utilized to form KG G, while triples in #TR2
are utilized to evaluate.

Version Split WN18RR FB15k-237 NELL-995
#R #E #TR1 #TR2 #R #E #TR1 #TR2 #R #E #TR1 #TR2

v1
Train 9 2746 5410 630 183 2000 4245 489 14 10,915 4687 414
Test 9 922 1618 188 146 1500 1993 205 14 225 833 100

v2
Train 10 6954 15,262 1838 203 3000 9739 1166 88 2564 8219 922
Test 10 2923 4011 441 176 2000 4145 478 79 4937 4586 476

v3
Train 11 12,078 25,901 3097 218 4000 17,986 2194 142 4647 16,393 1851
Test 11 5084 6327 605 187 3000 7406 865 122 4921 8048 809

v4
Train 9 3861 7940 934 222 5000 27,203 3352 77 2092 7546 876
Test 9 7208 12,334 1429 204 3500 11,714 1424 61 3294 7073 731
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4.1.2. Evaluation Metrics

The majority of existing models, such as SNRI, use AUC-PR and Hits@10 as evaluation
metrics. In order to make a fair comparison, we followed previous works and also used
these two metrics. Specifically, AUC-PR is a classification indicator that computes the area
under the precision–recall curve. Hits@10 is defined as the proportion of correct entities
ranked in a top 10 of candidate entities. The results are obtained by averaging over five
runs for an accurate evaluation.

4.1.3. Parameter Settings

In the subgraph extraction section, the experiment selected k = 3, indicating that only
the neighboring nodes within three hops of the target node were retained for the union
operation. The learning rate was set to 0.0005, the dropout rate was 0.5, and the embedding
dimension was 32. The margin parameter θ for the supervised learning loss function was
10, and the coefficient λ for the joint loss function was 5. Simultaneously, L2 regularization
was applied to prevent overfitting, the maximum training epoch was set to 50, and Adam
was employed as the optimizer for the training model parameters. All experiments were
conducted in PyTorch and executed on an NVIDIA RTX 3090.

4.1.4. Baseline Models

To explore the performance of our proposed model, we compared five state-of-the-art
GCN-based baselines, including the following:

• GraIL [15]: This method pioneered a novel approach to inductive reasoning by in-
troducing subgraph encoding for the first time, whereby it addressed the invisible
entities in entirely new KGs.

• TACT [16]: This approach models the semantics between relationships and uses
relationship topology to detect correlations for inductive relation predictions.

• CoMPILE [17]: This method is grounded in the structure of local directed subgraphs,
and it exhibits a robust inductive bias for handling entity-independent semantic
relations.

• SNRI [21]: This approach leverages the full adjacency of entities in subgraphs using
neighbor relationship features and neighbor relationship paths. This forms the basis
for inductive relation predictions in KGs.

• ConGLR [13]: This method constructs a contextual graph that represents relational
paths and subsequently processes them with two GCNs, each incorporating enclosing
subgraphs.

• RMPI [29]: This approach passes messages directly between relations to make full use
of the relation patterns for subgraph reasoning.

4.2. Experimental Results

In this subsection, we first report the main results. Then, we discuss the ablation study
that was subsequent conducted.

4.2.1. Main Results

The main experimental results are presented in Tables 3 and 4. “Avg.” denotes the
average metric values of the four versions of the same KG. The optimal and suboptimal
results are marked in bold and underlined text, respectively. “—” represents the results
that were not provided in the original work (and cannot be reproduced).
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Table 3. The AUC-PR metric values (%) of inductive relation predictions on twelve dataset versions.

Model WN18RR FB15k-237 NELL-995
v1 v2 v3 v4 Avg. v1 v2 v3 v4 Avg. v1 v2 v3 v4 Avg.

GraIL 94.32 94.18 85.80 92.72 91.75 84.69 90.57 91.68 94.46 90.35 86.05 92.62 93.34 87.50 89.87
TACT 95.43 97.54 87.65 96.04 94.16 83.15 93.01 92.10 94.25 90.62 81.06 93.12 96.07 85.75 89.00

CoMPILE 98.23 99.56 93.60 99.80 97.79 85.50 91.68 93.12 94.90 91.30 80.16 95.88 96.08 85.48 89.04
SNRI 99.10 99.92 94.90 99.61 98.38 86.69 91.77 91.22 93.37 90.76 — — — — —

ConGLR 99.58 99.67 93.78 99.88 98.22 85.68 92.32 93.91 95.05 91.74 86.48 95.22 96.16 88.46 91.58
RMPI 95.00 95.96 88.53 95.78 93.82 85.25 92.19 92.09 92.80 90.58 81.12 93.46 95.35 91.77 90.43

CNIA (ours) 99.89 99.91 94.95 99.90 98.66 86.99 92.75 93.42 94.80 91.99 95.50 95.43 96.25 88.13 93.83

Table 4. The Hits@10 metric values (%) of inductive relation predictions on twelve dataset versions.

Model WN18RR FB15k-237 NELL-995
v1 v2 v3 v4 Avg. v1 v2 v3 v4 Avg. v1 v2 v3 v4 Avg.

GraIL 82.45 78.68 58.43 73.41 73.24 64.15 81.80 82.83 89.29 79.51 59.50 93.25 91.41 73.19 79.33
TACT 84.04 81.63 67.97 76.56 77.55 65.76 83.56 85.20 88.69 80.80 79.80 88.91 94.02 73.78 84.12

CoMPILE 83.60 79.82 60.69 75.49 74.90 67.64 82.98 84.67 87.44 80.68 58.38 93.87 92.77 75.19 80.05
SNRI 87.23 83.10 67.31 83.32 80.24 71.79 86.50 89.59 89.39 84.32 — — — — —

ConGLR 85.64 92.93 70.74 92.90 85.55 68.29 85.98 88.61 89.31 82.93 81.07 94.92 94.36 81.61 87.99
RMPI 82.45 78.68 58.68 73.41 73.31 65.37 81.80 81.10 87.25 78.88 59.50 92.23 93.57 87.62 83.23

CNIA (ours) 89.36 85.94 72.06 83.03 82.60 74.20 86.51 89.43 89.39 84.88 85.22 94.11 94.55 82.03 88.98

The two tables present the results of the comparative experiments. CNIA demon-
strated optimal performance in both AUC-PR and Hits@10 metrics across most datasets,
thus confirming the effectiveness and sophistication of CNIA. Specifically, the CNIA model
outperformed the GraIL, TACT, and CoMPILE models on all datasets, and it surpassed the
SNRI and ConGLR models on most datasets, albeit with suboptimal results on individual
datasets. When averaging the metrics across the three datasets, it was evident that the
average AUC-PR value of CNIA was optimal on all three datasets, while the Hits@10 value
was suboptimal on WN18RR and optimal on the other two datasets.

Compared with the base model SNRI, the experimental results on both WN18RR
and FB15k-37 were significantly improved, and the average AUC-PR and Hits@10 values
were greatly increased, thereby indicating that CNIA is superior and can enhance the
performance of inductive link prediction. Compared with the state-of-the-art model RMPI,
CNIA is constantly better on the majority of datasets.

In comparison to the ConGLR model, the average AUC-PR improved by 0.44% on
the WN18RR dataset, 0.25% on the FB15k-237 dataset, and 2.25% on the NELL-95 dataset.
However, the average Hits@10 was lower than ConGLR on the WN18RR dataset, but it
improved by 1.95% on the FB15k-237 dataset and 0.99% on the NELL-95 dataset. ConGLR
only performed well on WN18RR-v2,v4 as on other datasets it did not perform well, which
indicates that ConGLR’s biased logical reasoning method is specifically suited for certain
WN18RR datasets. In contrast, our model CNIA consistently performed well across various
datasets, thus demonstrating its versatility and stability across different scenarios.

Among the AUC-PR metric values, CNIA exhibited more pronounced advantages on
the WN18RR and NELL-995 datasets. Upon observing Table 2, it was noted that the #R
value of WN18RR and NELL-995 datasets consistently remained lower than that of FB15k-
237, thus indicating that the subgraphs in these two datasets were more likely to be sparse
and lack the structural information for reasoning. CNIA effectively leveraged the adjacent
relationship information when compared to the baseline model, thereby addressing the
issue of subgraph sparsity. However, the improvement effect on the FB15-237 dataset was
not as noticeable, possibly because the subgraph density of this dataset was high and due to
the fact that the effective structural information could be extracted using closed subgraphs,
thus making the baseline model easily predictable.
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4.2.2. Ablation Study

The ablation study explored the impact of each component on the overall model
performance, and we conducted the ablation experiment using the WN18RR dataset. This
experiment mainly consisted of five parts: (1) removal of the dual attention mechanism
(w/o Att), (2) removal of the neighboring relational feature module (w/o NRF), (3) removal
of the neighboring relational path module (w/o NRP), (4) removal of the commonsense-
based re-ranking module (w/o CSR), (5) removal of the comparative learning (w/o CL).
Table 5 shows the results of the ablation experiment, and we were able to find that the
CNIA removal of any of the modules was worse than the original model, thus proving the
effectiveness of each module.

Table 5. The Hits@10 metric values (%) of the ablation experiment.

Ablation WN18RR
v1 v2 v3 v4

CNIA 89.36 85.94 72.06 83.03
CNIA w/o Att 85.64 84.69 66.69 82.40

CNIA w/o NRF 86.45 85.06 71.40 72.98
CNIA w/o NRP 84.16 85.10 71.81 74.07
CNIA w/o CSR 86.44 83.90 70.00 82.15
CNIA w/o CL 85.12 80.95 64.49 73.79

• CNIA w/o Att: Remove the dual attention mechanism and directly splice to obtain the
neighboring relationship features. The Hits@10 was reduced by 3.72%, 1.25%, 5.37%,
and 0.63%. This showed that ignoring the effect of different edges on nodes and the
effect of different relations on the target relation reduces the accuracy of inference.

• CNIA w/o NRF: Remove the neighbor relational features and predict directly from the
node features obtained by initialization. Ignoring the neighbor relationship makes the
node features less expressive, which results in losing the effective information, and it
also cannot completely portray the nodes.

• CNIA w/o NRP: Remove the neighboring relational path feature and ignore the
message propagation path feature from the head node to the tail node. This makes the
performance degradation obvious, thereby indicating that the neighboring relational
path feature plays an important role in dealing with sparse subgraphs.

• CNIA w/o CSR: Remove the commonsense re-ranking module that fails to filter out
the predictions that do not conform to commonsense. The experiments verified that
the absence of the commonsense re-ranking will produce relationships that do not
conform to commonsense, thus degrading model performance.

• CNIA w/o CL: Remove the contrastive learning and do not perform this operation of
MI maximization. This resulted in the Hits@10 being reduced by 4.24%, 4.99%, 7.57%,
and 9.24%. The results showed that, without contrastive learning, the results of most
of the metrics dropped, thus demonstrating that global information helps to better
model neighboring relational features.

4.2.3. Hyper-Parameter λ Analysis

In CNIA, λ governs the contribution of the contrastive learning MI InfoMax mecha-
nism (Equation (5)). In this section, we further analyze the multiple values of lambda in [0,
0.5, 1.0, 5.0, 10.0]. The changes in Hits@10 values in WN18RR-v1, v2, v3, and v4 are depicted
in Figure 4. It was observed that inductive relation prediction performance varies with λ
values. Both excessively large and small λ values lead to a decrease in model performance.

When λ = 1, the results are the worst on the v2 and v3 datasets, and they are moderate
on the v1 and v4 datasets, thus indicating that the prediction performance is unstable.
Thus, simply setting the weights of the two to be equal is not conducive to maximizing the
performance. Notably, the effect is generally better when λ > 1 compared to λ < 1, thereby
indicating that contrastive learning plays a more significant role than supervised learning.
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In summary, this discussion establishes that a better performance can be achieved
when the coefficient λ is set to five, and it underscored the importance of contrastive
learning through the ablation experiments.

0 0.5 1 5 10
Values

70

75

80

85

90

95

100

H
its

@
10 85.12 84.84

87.17
89.36 88.29

WN18RR-v1

0 0.5 1 5 10
Values

70

75

80

85

90

95

100

H
its

@
10

80.95 82.12

77.89

85.94

80.61

WN18RR-v2

0 0.5 1 5 10
Values

50

55

60

65

70

75

80

H
its

@
10 64.49

68.02

63.39

72.06

65.12

WN18RR-v3

0 0.5 1 5 10
Values

60

65

70

75

80

85

90

H
its

@
10

73.79 73.93

81.1
83.03

79.07

WN18RR-v4

Figure 4. Discussion of the λ values in the WN18RR dataset.

4.2.4. Learning Rate Analysis

The learning rate is an important hyperparameter for controlling parameter updates
during neural network training. The value of the learning rate affects the training efficiency.
When the learning rate is too small, the learning speed is slow, which means that it is
vulnerable to overfitting and the convergence speed is slow; when the learning rate is too
large, the learning speed is fast but prone to the oscillation problem such that the training
value fluctuates up and down in the optimal value.

The learning rate of the basic model SNRI in the experiment was set to 0.001. This was
chosen in order to improve the efficiency and effect of the experiment. Next, we discussed
the learning rate of the experiment and, respectively, took the values of 0.01, 0.05, 0.001,
0.005, and 0.0001 in the WN18RR dataset to conduct the experiment.

As shown in Figure 5, the experimental results on the v1 and v2 datasets were more
stable when the learning rate was changed, with the Hits@10 remaining above 80%. When
the learning rate was 0.01, the experimental effect was the worst on the v3 and v4 datasets.
And when the learning rate was set to 0.0001, the Hits@10 decreased on all sub-datasets,
thus indicating that the learning rate was too small to affect the prediction effect. The overall
trend peaked at a learning rate of 0.005 and then fell back.
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5. Conclusions

In this study, we proposed a novel inductive relation prediction method called CNIA,
which leverages commonsense knowledge and employs a dual attention mechanism to
enhance relationship inference accuracy. By fully utilizing neighbor relational information
and incorporating a commonsense filtering process, CNIA was able to extract neighbor
relational features through an edge-aware and relation-aware dual attention mechanism.
Moreover, we employed contrastive learning for global modeling to further improve the
performance of our model. The experimental results on the three benchmark datasets
showed that CNIA outperforms other state-of-the-art models (we conducted an ablation
study to verify the effectiveness of each module).

Regarding future research prospects, reasoning with multimodal knowledge graphs
could be explored, where elements such as images can be added to improve inductive
reasoning. KG completion with temporal constraints is also worthy of exploration, where
temporal information should be taken into account when scoring triples. Building on
existing research, we plan to extend our exploration into the temporal dimension and
investigate inductive relation prediction methods on time series knowledge graphs. In
addition, as large language models continue to advance, there is great potential to leverage
these models to enhance inductive reasoning and build more accurate inductive models.
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