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Abstract: Addressing the limitations, including low automation, slow recognition speed, and limited
universality, of current mudslide disaster detection techniques in remote sensing imagery, this study
employs deep learning methods for enhanced mudslide disaster detection. This study evaluated six
object detection models: YOLOv3, YOLOv4, YOLOv5, YOLOv7, YOLOv8, and YOLOX, conducting
experiments on remote sensing image data in the study area. Utilizing transfer learning, mudslide
remote sensing images were fed into these six models under identical experimental conditions for
training. The experimental results demonstrate that YOLOX-Nano’s comprehensive performance
surpasses that of the other models. Consequently, this study introduces an enhanced model based on
YOLOX-Nano (RS-YOLOX-Nano), aimed at further improving the model’s generalization capabilities
and detection performance in remote sensing imagery. The enhanced model achieves a mean average
precision (mAP) value of 86.04%, a 3.53% increase over the original model, and boasts a precision rate
of 89.61%. Compared to the conventional YOLOX-Nano algorithm, the enhanced model demonstrates
superior efficacy in detecting mudflow targets within remote sensing imagery.

Keywords: deep learning methods; debris flow disaster target detection; YOLOX-Nano; transfer
learning; remote sensing imagery

1. Introduction

China’s vast territory, with its complex and variable terrain in the east and west,
experiences frequent geological disasters. Among these, mudslides, occurring in steep
terrain areas due to heavy rain, heavy snow, or other natural disasters, trigger landslides
carrying a large amount of mud and rocks. These disasters pose a serious threat to local
economic development and the safety of people’s lives and property [1].

Traditional geological disaster interpretation primarily depends on manual visual
interpretation, involving the observation of image color, texture, shape, and other aspects
for comprehensive modeling. This process, including visual interpretation and result
map creation, typically consumes significant amounts of time, manpower, material, and
financial resources. Furthermore, this method greatly relies on image preprocessing and
feature selection. Particularly, geological disaster information not identifiable by the naked
eye tends to be overlooked, leading to a significant underutilization of remote sensing
data [2]. Consequently, this method exhibits limited universality and practicality in field
investigations, is challenging to implement in field geological exploration, and struggles
to satisfy the urgent demands of post-disaster emergency response and rapid disaster
assessment, particularly in emergency relief scenarios.

In recent years, owing to the rapid advancement of machine learning and artificial
intelligence, scholars have increasingly favored teaching computers to recognize high
spatial resolution characteristics of mudslides in remote sensing images. This approach

Appl. Sci. 2024, 14, 2158. https://doi.org/10.3390/app14052158 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14052158
https://doi.org/10.3390/app14052158
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14052158
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14052158?type=check_update&version=1


Appl. Sci. 2024, 14, 2158 2 of 17

employs image texture and spectral characteristics to facilitate the automatic extraction
of mudslide inundation area information, thereby enabling quick, accurate, and efficient
target detection [3]. Deep learning, a branch of machine learning, attains meaningful data
representation by mining information on multiple levels and automatically extracting
all features. Particularly in image object detection, deep learning outperforms manual
feature extraction by automatically extracting various features and performing progressive
information distillation and purification, resulting in significantly improved outcomes
compared to traditional algorithms [4]. Among these, the region-free algorithm, a leading
deep learning object detection algorithm, inputs the entire image into the neural network
and produces immediate detection results [5,6]. Notable examples are the YOLO series and
the SSD algorithm. The YOLO series, in particular, maintains high detection accuracy and
the ability to detect small objects, rapidly completing detections and making it suitable
for remote sensing image object detection [7]. Currently, leveraging the YOLO algorithm,
numerous research endeavors have successfully achieved high-precision detection of var-
ious targets in remote sensing images, including fire smoke [8] and maritime vessels [9].
Considering the aforementioned issues and research, to detect debris flow geological haz-
ard targets in remote sensing imagery rapidly, precisely, efficiently, and intelligently, this
study initially conducts comparative experiments on geological hazard target detection
models utilizing six algorithms: YOLOv3, YOLOv4, YOLOv5, YOLOv7, YOLOv8, and
YOLOX. It then selects the model demonstrating higher accuracy and efficiency as the
foundational model for debris flow target detection in large-scale, high-resolution remote
sensing imagery. The comprehensive analysis of experimental results reveals that YOLOX
discards the traditional anchor frame mechanism in favor of anchor-free technology for
target parsing and recognition [10]. This approach offers smaller parameter size, faster
floating-point operations, lower latency, and maintains high detection accuracy, rendering
it ideal for the precise identification of mudslide geological disasters over extensive areas.

Consequently, this paper introduces an enhanced target detection algorithm based on
YOLOX-Nano, which boosts detection performance by incorporating an attention mecha-
nism (AM) to heighten the model’s focus on geological disaster locations. Simultaneously,
the algorithm modifies the network structure of the Focus, SPP, and PAFPN modules,
aiming to augment the model’s feature retention capacity, secure more precise feature
information, and employ an improved loss function (eIoU) to supplant the traditional
target box regression loss function IoU during training, thereby enhancing the regression
accuracy of the target box.

2. Related Work

This section delves deeper into pivotal advancements in natural disaster detection
technology, with an emphasis on mudslide identification. A myriad of recent publications
underscore the integration of machine and deep learning techniques to refine mudslide and
geological hazard detection. Specifically, Cheng et al. (2016) underscore the transformative
role of convolutional neural networks (CNNs) in interpreting remote sensing data for
landslide identification, setting a foundational framework for subsequent research [11].
Building on this, Wang et al. (2022) demonstrate the strategic application of deep learn-
ing and transfer learning to swiftly evaluate mudslide-impacted zones, showcasing the
pre-trained models’ role in boosting detection precision [12]. This paper’s novelty lies in
harnessing the YOLOX-Nano algorithm, enriched with an attention mechanism and opti-
mized network modules, to eclipse prior methods in detecting mudslide hazards swiftly
and accurately. Additionally, we draw upon a broader spectrum of literature to anchor
our innovations firmly within the evolution of disaster detection technologies, thereby
ensuring a comprehensive understanding of our contribution against the backdrop of
existing research.
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3. Data and Methodology
3.1. Data
3.1.1. Source of Data Sets

The study area addressed in this paper is situated in the Xinjiang Uyghur Autonomous
Region of China, including some territories beyond its borders, and extends to countries
such as Kyrgyzstan, Pakistan, and India. Initially, the debris flow sample data’s range
within the study area was defined as (72◦, 38◦), (73.5◦, 38◦), (72◦, 37◦), and (73.5◦, 37◦).
The data utilized in this study primarily originate from two sources: high-resolution, non-
offset Google remote sensing imagery data with a resolution of 0.80 m provided by the
Xi’ning Center for Comprehensive Survey of Natural Resources under the China Geological
Survey, and geological disaster vector data acquired through field investigations conducted
by professionals.

3.1.2. Production of Data Sets

Firstly, employing 0.80 m high-resolution, non-offset Google remote sensing imagery
supplied by the project team, the data were uniformly projected onto the WGS_1984
coordinate system. The debris flow vector data were then overlaid onto the high-resolution
remote sensing imagery to compile the sample set, as illustrated in Figure 1. The sample
set was subsequently processed by executing a cutting script, uniformly cropping and
normalizing the images into 512 × 512 pixel blocks, yielding a total of 1268 geological
disaster (debris flow) samples in JPG format. Following a preliminary screening, 898 valid
geological disaster (debris flow) samples were acquired, as illustrated in Figure 2.
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To prevent overfitting and effectively enhance the sample diversity during the train-
ing process, thereby ensuring the model’s robustness across various environments, data
augmentation techniques were employed. Following data augmentation processes includ-
ing image cropping, contrast, brightness, and noise adjustments, the count of geological
disaster (debris flow) samples increased to 4585. The augmented geological disaster (debris
flow) samples, in JPG format, were imported into the Labelimg 1.8.6. Utilizing vector debris
flow location information, all samples were annotated in accordance with the Pascal VOC
dataset format, resulting in the generation of .xml type annotation files, as illustrated in
Figure 2. Lastly, to maintain the dataset’s independence, it was partitioned into training,
validation, and test sets in an 8:1:1 ratio.
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3.2. Methodology

A prominent representative in object detection algorithms is YOLO, proposed by
Redmon et al. [13] Operating on an end-to-end basis, it delineates and classifies objects
in the original image, demonstrating effective recognition capabilities, albeit with some
limitations in accuracy. To enhance accuracy, Redmon et al. [14] introduced YOLOv3,
employing Feature Pyramid Networks (FPN) to augment detection performance, notably
in small object scenarios. However, YOLOv3’s efficacy in detecting objects with complex
features was suboptimal. Bochkovskiy et al. [15] conducted multiple optimizations on the
YOLO series, leading to the proposal of YOLOv4, which achieved enhanced performance
metrics in applications. Jocher et al. [16] built upon this with YOLOv5, introducing modifi-
cations such as a Focus structure and adaptive anchor box calculations, resulting in a more
streamlined architecture and enhanced accuracy. The YOLOv7, proposed by Bochkovskiy
et al. [17], further enhances and refines this approach, introducing the E-ELAN module to
bolster network learning capabilities. The YOLOv8, specifically the YOLOv8-Nano variant,
proposed by Ultralytics et al. [18], adopting anchor-free technology, addressed the limi-
tations of anchor box-based models, simplifying computational demands for lightweight
applications. Finally, the YOLOX, with a focus on the YOLOX-Nano model proposed by
Ge et al. [19], combines various strengths of the YOLO series. It innovatively incorporates a
decoupled head for faster convergence and higher precision, alongside anchor-free methods
and SimOTA dynamic positive sample matching, achieving high-precision, rapid object
detection and recognition in compact, resource-constrained environments.

In conclusion, to effectively detect mudslide geological disasters in remote sensing
imagery and enhance target detection capabilities, the study adopted the following research
methodologies:

• Utilizing the meticulously prepared dataset, comparative analyses of the YOLO models
in their varying sizes—nano, small, medium, large, and X-large—were conducted
under identical environmental conditions. This comprehensive comparison led to the
conclusion that the YOLOX-Nano model, among the variants assessed, demonstrated
the most superior performance for our specific application in detecting mudslide
geological disasters. Consequently, YOLOX-Nano, being a lightweight derivative of
YOLOX, was chosen as the fundamental model for the accurate detection of mudslide
geological disasters in expansive regions.

• Attention mechanisms were integrated into the Focus, SPP, and PAFPN modules of the
YOLOX-Nano network, thereby augmenting the accuracy of mudslide target detection
and increasing the network’s sensitivity to smaller targets.

• The research incorporated an advanced regression loss function, known as eIoU, in lieu
of the traditional IoU function within the base model. This modification was aimed at
intensifying the regression accuracy of predictive bounding boxes for smaller targets,
consequently leading to an improvement in the model’s overall detection capabilities.
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• Data augmentation was accomplished using Mosaic and Mixup techniques, thereby
enhancing the model’s capacity for generalization.

3.2.1. Network Structure

YOLOX-Nano is architecturally segmented into three primary components: the back-
bone, dedicated to feature extraction; the Neck, responsible for augmenting the feature
extraction process; and the Prediction, serving as the detection head. The model employs
CSPDarkNet53 [20] as its core feature extraction network, which produces feature layers
of three distinct scales. These layers undergo further processing in the Neck’s advanced
feature extraction layer (FPN) [21], facilitating multi-scale feature fusion and in-depth
feature extraction. Subsequently, the extracted feature maps, comprising three layers, are
fed into the Prediction segment to perform regression prediction, as illustrated in Figure 3.
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3.2.2. Enhancing Architectures with Integrated Attention Mechanisms

Attention mechanisms allow models to selectively concentrate on pertinent informa-
tion, acting as a resource allocation strategy that effectively addresses information overload.
Standard convolutional layers are unable to model inter-channel correlations, resulting in a
uniform treatment of channels and thus a subdued representation of crucial information.
In remote sensing imagery applications, challenges such as small targets, partial occlusions,
and complex backgrounds are common; the incorporation of attention mechanisms can, to
some extent, enhance model performance [22–24].

This research has undertaken an optimization of the YOLOX-Nano network. Following
the model’s lightweight transformation, the reallocation of channel weights has rendered
important channels more prominent, ensuring the retention of critical target space and
feature information. Within the YOLOX-Nano network, distinct attention mechanisms were
implemented in the Focus, SPP, and PAFPN modules, tailored to the specific functions
of each module. The squeeze-and-excitation attention (SE), for example, employs global
pooling to derive a 1 × 1 × C dimension (C being the number of channels), using two fully
connected layers and an activation function for non-linear processing. This approach is
effective for managing intricate inter-channel correlations, yielding a 1 × 1 × C channel
weight that aligns with feature map layers. Utilizing global pooling, SE compresses overall
information into channel weights, thereby effectively discerning the relative importance of
various channels, as illustrated in Figure 4.
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Figure 4. Computational processes of squeeze-and-excitation attention (SE) and coordinate attention
(CA).

The channel attention (CA) [25] conducts pooling and convolution operations along
the width and height dimensions of feature map layers, resulting in the generation of
feature encodings and their aggregation across two channel dimensions. In contrast to
squeeze-and-excitation (SE), which primarily redistributes channel weights, CA is capable
of capturing long-range dependencies in one spatial direction while preserving precise
location information in another. This enables the model to locate and recognize target
areas with greater accuracy, thereby significantly enhancing the network’s ability to retain
information. The computational workflow of CA is illustrated in Figure 4.

The convolutional block attention module (CBAM) [26] initiates with channel at-
tention, conducting global average pooling and max pooling on each feature layer, sub-
sequently processed through shared fully connected layers and applying the sigmoid
activation function to derive channel-specific weighted values. The acquired weights are
then multiplied with the original feature layers, resulting in an augmented feature map.
Spatial attention ensues, applying max and average operations on the channel-attention-
processed feature layers, modulating the number of channels via a convolutional kernel,
and determining the weight of each feature point through the sigmoid activation function,
as illustrated in Figure 5. Ultimately, these weights are applied to the original feature layers,
yielding an optimized feature representation, thus enhancing the model’s comprehension
of image content and its performance in tasks like image classification and object detection.
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Pertaining to the Focus module, located at the network’s forefront and directly pro-
cessing the original image, the accurate preservation of location information and capturing
of long-range dependencies are essential for effective feature extraction. In this study, the
CA (channel attention) mechanism is utilized to enhance the Focus module. After interval
sampling of the image, channel attention is integrated to preserve the original image’s
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positional information within the expanded channels, thereby further augmenting the
Focus network’s capability to retain features, as depicted in Figure 6.
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In neural network models, the deeper feature layers encapsulate richer semantic in-
formation, transforming positional information into highly abstracted semantic content.
To expand the receptive field, YOLOX-Nano incorporates the SPP (spatial pyramid pool-
ing) module within its deeper network layers. Given that the deeper network channels
predominantly store abstract semantic information, each channel functions as an inde-
pendent repository for this data. Building on this insight, this research integrates the SE
(squeeze-and-excitation) attention mechanism into the SPP module, realigning the weight
distribution of concatenated channels to ascertain their relative importance. The integration
of an SE mechanism within the SPP module is depicted in Figure 7. This adjustment
aims to enhance the deep network’s extraction and utilization of semantic information,
optimizing the network structure for a better understanding of image content.
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In the enhanced feature extraction PAFPN module, this study integrates the CBAM
(convolutional block attention module), which amalgamates channel and spatial attention
mechanisms. The input feature layers undergo processing through both channel and spatial
attention mechanisms. The convolutional attention mechanism reallocates feature map
weights across various channels, thereby enhancing the network’s deep-layer information
extraction. This approach enables the network to concentrate on critical features and
disregard less significant ones, as depicted in Figure 8. This optimization allows the network
to focus on salient features while minimizing attention to irrelevant details, optimizing
overall feature recognition and analysis.



Appl. Sci. 2024, 14, 2158 8 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 17 
 

map weights across various channels, thereby enhancing the network’s deep-layer 
information extraction. This approach enables the network to concentrate on critical 
features and disregard less significant ones, as depicted in Figure 8. This optimization 
allows the network to focus on salient features while minimizing attention to irrelevant 
details, optimizing overall feature recognition and analysis. 

 
Figure 8. The PAFPN module after it is improved. 

3.2.3. Loss Function 
YOLOX employs bounding box regression technology for precise target localization. 

Bounding box regression is extensively utilized across object detection networks, with 
numerous mainstream models adopting this strategy for localization tasks. The principle 
behind bounding box regression involves using the overlap area between the predicted 
and actual boxes as the loss function, continuously iterating to refine the predicted box. 
This approach is commonly referred to as the intersection over union (𝐼𝑜𝑈) loss function. 
The IoU metric serves as a crucial component in optimizing the accuracy of target 
localization, reinforcing the model’s effectiveness in detecting and delineating objects 
within an image. 

The formula for calculating 𝐼𝑜𝑈 is as follows: 𝐼𝑜𝑈 = |𝐵 ∩ 𝐵 ||𝐵 ∪ 𝐵 |       (1)

In this context, 𝐵  denotes the predicted bounding box, while 𝐵  signifies the 
ground-truth box. 

The formula for calculating loss function of 𝐼𝑜𝑈  loss function is calculated as 
follows: 𝐿 = 1 |𝐵 ∩ 𝐵 ||𝐵 ∪ 𝐵 | = 1 𝐼𝑜𝑈 (2) 

The formula for calculating 𝐸𝐼𝑜𝑈 is as follows: 𝐿 = 𝐿 + 𝐿 + 𝐿  (3) 𝐿 = 1 𝐼𝑜𝑈 (4) 

𝐿 = 𝜌 𝑏, 𝑏𝑐  (5) 

𝐿 = 𝜌 𝑤, 𝑤𝐶 + 𝜌 ℎ, ℎ𝐶  (6) 

Figure 8. The PAFPN module after it is improved.

3.2.3. Loss Function

YOLOX employs bounding box regression technology for precise target localization.
Bounding box regression is extensively utilized across object detection networks, with
numerous mainstream models adopting this strategy for localization tasks. The principle
behind bounding box regression involves using the overlap area between the predicted and
actual boxes as the loss function, continuously iterating to refine the predicted box. This
approach is commonly referred to as the intersection over union (IoU) loss function. The
IoU metric serves as a crucial component in optimizing the accuracy of target localization,
reinforcing the model’s effectiveness in detecting and delineating objects within an image.

The formula for calculating IoU is as follows:

IoU =

∣∣Bpr ∩ Bgt
∣∣

|Bpr ∪ Bgt|
(1)

In this context, Bpr denotes the predicted bounding box, while Bgt signifies the ground-
truth box.

The formula for calculating loss function of IoU loss function is calculated as follows:

LIoU = 1 −
∣∣Bpr ∩ Bgt

∣∣
|Bpr ∪ Bgt|

= 1 − IoU (2)

The formula for calculating EIoU is as follows:

LEIoU = LIoU + Ldis + Lasp (3)

LIoU = 1 − IoU (4)

Ldis =
ρ2(b, bgt)

c2 (5)

Lasp =
ρ2(w, wgt)

C2
w

+
ρ2(h, hgt)

C2
h

(6)

The formula for calculating loss function of EIoU loss function is calculated as follows:

LEIoU = 1 − IoU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

C2
w

+
ρ2(h, hgt)

C2
h

(7)

In this context, b represents the predicted bounding box, bgt represents the ground-
truth bounding box; ρ2(b, bgt) represents the Euclidean distance between the center points
of the predicted and ground-truth boxes, and c is the length of the diagonal of the smallest
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enclosing box that contains both the predicted and ground-truth boxes. Thus,
ρ2(b,bgt)

c2

represents the ratio of the Euclidean distance between the centers of the predicted and
ground-truth boxes to the diagonal distance of the smallest enclosing box. Similarly,
ρ2(w,wgt)

C2
w

and
ρ2(h,hgt)

C2
h

represent the ratios of the Euclidean distances of width and height to

the width and height of the smallest enclosing box, respectively.

3.2.4. Data Augmentation

The Mosaic augmentation technique involves using four images, subjected to opera-
tions like scaling, translation, flipping, and color domain transformations, subsequently
stitched together. Each image contains corresponding bounding boxes, and post-stitching, a
composite image showcasing the bounding boxes from all four images, is created. This sig-
nificantly diversifies the environments where the targets are present. The implementation
process is depicted in Figure 9. Figure 9a illustrates the four images before transformation,
while Figure 9b displays the effect post-transformation and stitching. It is evident that the
composite image offers a more enriched background compared to the original four images,
with the locations of targets exhibiting greater diversity. Consequently, this technique
substantially expands the original dataset, augments the model’s target detection precision,
and bolsters detection robustness, thus enhancing the overall performance of the model in
various detection scenarios.
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Mixup is a data augmentation strategy that involves class mixing. This technique
randomly selects two samples from each training batch, each comprising an image and its
associated label. The images and labels from these samples undergo linear interpolation
based on a predefined ratio λ. A weighted summation of the images is calculated, and the
labels are similarly mixed according to this ratio. This method effectively enhances the
diversity and richness of the training data, aiding in the development of more robust and
accurate models. The formula for Mixup is as follows:

Imagemixed = λ × Image1 + (1 − λ)× Image2 (8)

Labelmixed = λ × Label1 + (1 − λ)× Label2 (9)

λϵ[0, 1] (10)

Using mudslide remote sensing images as an example, in the training phase, an initial
sample image is loaded, depicted in Figure 10a. Subsequently, a second sample image is
randomly selected, illustrated in Figure 10b. These images are then combined through a
weighted fusion process, culminating in a composite image, as exhibited in Figure 10c. This
method effectively synthesizes diverse visual data, enriching the dataset and enhancing
the model’s ability to generalize from complex remote sensing imagery.
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In this research, the data augmentation strategy for RS-YOLOX-Nano model training
was enhanced by integrating Mosaic, complemented by Mixup as an additional reinforce-
ment technique. For each training batch, 50% of the samples are randomly chosen for
Mosaic data augmentation, followed by further Mixup processing of 50% of the Mosaic-
enhanced images. This approach amplifies the randomness and diversity of the data
augmentation, supplying the model with an array of varied and enriched image sam-
ples. Utilizing these samples for training significantly bolsters the model’s robustness and
generalization capacity. These improvements endow the RS-YOLOX-Nano model with
greater adaptability, enabling it to more effectively handle target detection tasks across
diverse scenarios.

4. Experiments
4.1. Experimental Environment

The study was conducted using the Pytorch1.7 deep learning framework, powered
by an Intel(R) Core(TM) i5-11260H @ 2.60 GHz processor, 8 GB of RAM, and an NVIDIA
GeForce RTX 3060 Laptop GPU, with CUDA11.0 serving as the underlying parallel comput-
ing framework. Training parameters were set as follows: the SGD optimizer was employed
for a total of 1000 iterations. During the initial 50 epochs, the backbone network was subject
to frozen training, with an initial learning rate of 0.001, a weight decay of 0.0005, and a
batch size of 16. Subsequent epochs (51–1000) involved unfrozen training, with an initial
learning rate of 0.0001, weight decay of 0.0005, and a reduced batch size of 8. This training
configuration was meticulously designed to maximize the efficiency and effectiveness of
the model training process.

4.2. Evaluation Indicators

The post-training evaluation of the model encompasses the harmonic mean F1 score
(F1 − score), recall (Recall), precision (Precision), average precision (AP), detection speed
(frames per second, FPS), and model size. These metrics collectively provide a comprehen-
sive assessment of the model’s performance. The calculation formulas for F1, Precision,
and Recall are delineated below, offering a quantitative measure of the model’s accuracy,
reliability, and efficiency in processing. This multifaceted evaluation approach ensures a
thorough understanding of the model’s capabilities and limitations.

Precision =
TP

TP + FP
× 100% (11)

Recall =
TP

TP + FN
× 100% (12)
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APi =
∫ i

0
Pi(Ri)dRi (13)

mAP =
1
n

n

∑
i=1

APi (14)

TP (true positive) denotes the count of accurately identified positive samples, while
FP (false positive) signifies the quantity of falsely identified positive samples, and FN (false
negative) indicates the count of incorrectly identified negative samples. F10.5 represents the
harmonic mean of model precision and recall at an intersection over union (IoU) threshold
of 0.5. AP (average precision) is defined as the area under the precision-recall (PR) curve,
with values ranging from 0 to 1; AP0.5 calculates the average precision at various recall
levels when IoU is set at 0.5. The mAP (mean average precision) metric, representing
the average of these average precision values, serves as a comprehensive indicator of the
overall accuracy of object detection algorithm models. This metric is crucial for evaluating
the effectiveness of the model across different detection scenarios.

4.3. Experimental Results and Analysis

To ascertain the viability of the model enhancements and their efficacy in mudslide
target detection, this research incorporated a series of comparative experiments. These
included an exhaustive evaluation of six fundamental models: YOLOv3, YOLOv4, YOLOv5,
YOLOv7, YOLOv8, and YOLOX, with a focus on aspects such as detection accuracy,
model parameter size, and inference speed. Additionally, a comparative analysis was
conducted between the enhanced RS-YOLOX-Nano model and the standard YOLOX-Nano,
assessing metrics like model detection Precision, Recall rate, F1 score, mAP value, and
actual detection outcomes. Furthermore, ablation studies were undertaken to gauge the
effects of varied enhancement strategies on the mAP value in mudslide target detection,
providing comprehensive insights into the overall performance and improvements of
the models.

4.3.1. Comparative Experiment of Mainstream Lightweight Network Performance

To objectively reflect the performance of the YOLOX-Nano network, this study also
trained other lightweight YOLO models and the standard YOLOv3 model using the same
parameters and settings for comparison with the YOLOX-Nano model. The comparative
results of these five object detection networks are presented in Table 1. It is evident
that under the same testing set, the mAP0.5 value of the YOLOX-Nano network reached
82.51%, which is higher than that of the other models. Furthermore, the mAP0.5 value of
this network shows an increase of 3.44%, 10.71%, 0.72%, 1.27%, and 1.93% compared to
YOLOv3, YOLOv4-Tiny, YOLOv5-S, YOLOv7-tiny, and YOLOv8-Nano, respectively. In the
context of debris flow geological disaster detection in remote sensing images, the Recall rate
is an essential metric for assessing the model’s coverage of targets, as missing debris flow
targets could lead to severe consequences. Observing the Recall values, it is discernible
that the YOLOX-Nano network model demonstrates approximately a 15% increase in the
Recall rate compared to other lightweight YOLO network models. Therefore, with similar
Precision rates, the significant improvement in the Recall rate of the YOLOX-Nano model
results in its composite performance indicators, the F1 score and mAP0.5 value, being
higher than those of other benchmark models, making it most suitable as a base model for
debris flow disaster target detection in remote sensing images.



Appl. Sci. 2024, 14, 2158 12 of 17

Table 1. Results of comparative performance experiments on mainstream lightweight networks.

Method Para/MB FPS Precision/% Recall/% F10.5 mAP0.5/%

YOLOv3 235.0 36.98 86.00 73.76 0.79 79.07

YOLOv4-tiny 22.5 162.05 80.43 64.84 0.72 72.34

YOLOv5-s 26.98 77.16 89.06 56.58 0.69 81.79

YOLOv7-tiny 23.12 92.46 88.93 59.80 0.72 81.24

YOLOv8-Nano 11.65 92.16 87.95 71.36 0.79 80.58

YOLOX-Nano 3.71 63.48 88.51 84.12 0.86 82.51

4.3.2. Comparative Experiments between the Original and Improved Models

The original YOLOX-Nano algorithm has a small parameter size and exhibits good
performance in both detection accuracy and speed. The improved RS-YOLOX-Nano algo-
rithm, presented in this paper, shows an increased parameter size of 0.12 MB compared to
the original YOLOX-Nano, with a detection speed of 62.45 fps, a decrease of 1.03 fps. It can
effectively and promptly detect debris flow geological disasters in remote sensing images
in most scenarios. Despite a reduction in detection speed, it meets the real-time detection
requirements for relevant scenarios and is capable of performing real-time detection tasks
for debris flow geological disasters, suitable for hardware deployment. Most importantly,
as shown in Table 2, the enhanced RS-YOLOX-Nano network achieves an mAP of 86.04%
for debris flow geological disasters, an increase of 3.53 percentage points over the previous
mAP of 82.51%, thereby demonstrating superior detection and recognition capabilities for
such disasters.

Table 2. Results of comparative experiments between the original and modified models.

Method Para/MB FPS Precision/% Recall/% F10.5 mAP0.5/%

YOLOX-Nano 3.71 63.48 88.51 84.12 0.86 82.51

RS-YOLOX-Nano 3.83 62.45 89.61 85.61 0.88 86.04

4.3.3. Ablation Experiment

To demonstrate the direct impact of the improved algorithm on detection performance,
a series of ablation studies were conducted. Using the original YOLOX-Nano as the
backbone network, various optimization algorithms were incrementally added to assess
their effects on network detection performance. The results of these experiments are
presented in Table 3. After incorporating the Mosaic and Mix up strategies, the mAP value
increased to 83.52%. Substituting the IoU loss function with EIoU led to a further increase
in algorithm performance, due to more accurate target identification. With the improved
Focus and SPP modules, the mAP value further increased to 85.31%. Upon integrating
various AM algorithms, the network performance varied, with CBAM showing the best
effect, elevating the mAP to 86.04%. However, the use of ECA and SE resulted in a decrease
in the mAP; thus, the final model adopted the CBAM attention mechanism. In summary,
the incremental addition of each optimization algorithm led to a steady improvement in
mAP values, validating the effectiveness of each step in the improvement strategy. This
resulted in the RS-YOLOX-Nano algorithm achieving better results in the detection of
debris flow geological disasters.
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Table 3. Ablation experiment results.

Mixup Mosaic EIoU Focus SPP
PAFPN

mAP0.5/%
ECA SE CBAM

√ √
83.52

√ √ √
83.99

√ √ √ √ √
85.31

√ √ √ √ √ √
80.32

√ √ √ √ √ √
83.19

√ √ √ √ √ √
86.04

5. Discussion
5.1. Overall Performance Analysis of RS-YOLOX-Nano

Utilizing the YOLOX-Nano model as the foundational network, this study integrates
data augmentation strategies that combine Mosaic and Mix-up, employing the EIoU loss
function to replace the original IoU loss function. Additionally, it incorporates redesigned
Focus, SPP, and PAFPN modules, enhanced with various attention mechanisms, to substi-
tute the original modules in the RS-YOLOX-Nano improvement network.

5.1.1. Introducing Combined Data Augmentation Strategies of Mosaic and Mix-Up

The network model trained using a combined data augmentation strategy of Mosaic
and Mix-up demonstrated an average reduction of 8 ms in single-sample image detection
time compared to before the improvements. Concurrently, its mean average precision
(mAP) increased by 1.01%. This approach not only reduced the time required for detection
inference but also enhanced the average detection accuracy for debris flow geological
disasters. Thus, the introduction of the combined data augmentation strategy using Mo-
saic and Mix-up to expand the dataset evidently improves the efficiency of debris flow
geological disaster detection, enabling more comprehensive model training and reduced
inference time.

5.1.2. Introducing the EIoU Loss Function

Different bounding box regression loss functions have varying impacts on detection
accuracy. The experiment compared the performance of the original model’s IoU loss
function with the EIoU loss function employed in this study to determine the most suitable
regression loss function. The final experiment revealed that the YOLOX-Nano using the
IoU loss function achieved an mAP of 82.51%, whereas the YOLOX-Nano with the EIoU
loss function reached an mAP of 82.99%. The combination of the EIoU loss function with
the YOLOX-Nano network, as adopted in this study, resulted in better control over the
bounding box boundaries on the dataset, significantly enhancing the detection accuracy of
debris flow geological disasters.

5.1.3. Introducing Various Attention Mechanisms

The YOLOX-Nano model exhibits relatively low accuracy in detecting and recogniz-
ing debris flow geological disasters, with a mean average precision (mAP) of only 82.51%.
This is attributed to the complex and multifaceted nature of debris flow disaster char-
acteristics. Different attention mechanisms can impart distinct features to the network’s
various channels, selectively amplifying the weight of channels associated with debris flow
characteristics. The SE attention mechanism compresses global information into channel
weights, effectively discerning the importance among different channels. The CA attention
mechanism captures long-range dependencies along one spatial direction while preserving
precise positional information along another. The CBAM attention mechanism assigns
varying weights to different feature points within the same feature map, distinguishing in-
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ternal pixel points. After integrating various attention mechanisms, the model’s parameter
size increased from 3.71 MB to 3.83 MB and single-sample inference time rose by 18 ms,
but the mAP value improved from 82.51% to 84.56%, significantly enhancing the accuracy
of debris flow geological disaster detection. Using the Grad-CAM tool [27], the feature
extraction layers post-attention mechanism processing were visualized [28], elucidating
their impact on feature extraction. As demonstrated in Figure 11, before the introduction of
attention mechanisms, the network’s feature extraction from samples was somewhat arbi-
trary, lacking adequate focus on characteristic points in debris flow disaster areas. After the
implementation of attention mechanisms, the network increasingly prioritized important
feature channels during forward propagation, allowing it to focus on essential parts. This
enabled the improved RS-YOLOX-Nano model to more efficiently extract features from
complex images.
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5.1.4. Actual Detection Results

It is evident from the detection result images that the improved algorithm demon-
strates an enhanced performance compared to its prior version. The original algorithm
previously exhibited issues with missing and falsely detecting debris flow targets, which
have been substantially ameliorated following the revisions. As illustrated in Figure 12,
the enhanced algorithm now detects more accurate targets with greater confidence than its
predecessor, yielding superior detection performance.
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6. Conclusions

This study focuses on the application of detecting debris flow geological disasters in
remote sensing imagery. Compared to manual visual interpretation methods, utilizing
computer vision for detecting debris flow geological disasters offers advantages such
as lower cost, higher accuracy, and reduced latency. This paper introduces attention
mechanisms to enhance the Focus, SPP, and FPN modules of the YOLOX-Nano classification
model, and integrates Mosaic and Mix-up data augmentation strategies. By replacing the
IoU loss function with the EIoU loss function, an improved YOLOX-Nano optimized
network is proposed. Utilizing this network for training and testing on a debris flow
disaster remote sensing image dataset, and deploying it on a platform for intelligent
detection of feature factors in remote sensing images enhances the level of intelligence in
the field of remote sensing geological interpretation. The conclusions are as follows:

Adopting YOLOX-Nano as the foundational network, and enhancing its Focus, SPP,
and PAFPN modules with various attention mechanisms, has led to more effective ex-
traction of debris flow geological disaster features. This approach not only maintains a
low parameter count but also boosts the model’s recognition and classification accuracy,
enhancing the mAP for debris flow geological disaster detection by 3.53% compared to the
original model.

Various attention mechanisms facilitate the redistribution of weights across different
feature map channels, augmenting the extraction of deep structural information and fine-
grained features. Moreover, the combination of Mosaic and Mix-up data augmentation
strategies enhances smaller network performance, and the EIoU loss function more effec-
tively controls the boundaries of detection boxes, thereby improving the detection accuracy
of debris flow geological disasters in remote sensing images.

Comparative analyses with multiple models, under identical training conditions, re-
veal that the improved RS-YOLOX-Nano model, with a parameter size of just 3.83 MB,
offers substantial advantages in terms of computational efficiency and recognition accu-
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racy. This refined model significantly reduces the computational demands on deployment
platforms, providing robust technical support for the intelligent recognition of debris flow
geological disasters.
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