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Abstract: Convolutional Neural Networks (CNNs) have become essential in deep learning applica-
tions, especially in computer vision, yet their complex internal mechanisms pose significant challenges
to interpretability, crucial for ethical applications. Addressing this, our paper explores CNNs by ex-
amining their topological changes throughout the learning process, specifically employing persistent
homology, a core method within Topological Data Analysis (TDA), to observe the dynamic evolution
of their structure. This approach allows us to identify consistent patterns in the topological features of
CNN kernels, particularly through shifts in Betti curves, which is a key concept in TDA. Our analysis
of these Betti curves, initially focusing on the zeroth and first Betti numbers (respectively referred
to as Betti-0 and Betti-1, which denote the number of connected components and loops), reveals
insights into the learning dynamics of CNNs and potentially indicates the effectiveness of the learning
process. We also discover notable differences in topological structures when CNNs are trained on
grayscale versus color datasets, indicating the need for more extensive parameter space adjustments
in color image processing. This study not only enhances the understanding of the intricate workings
of CNNs but also contributes to bridging the gap between their complex operations and practical,
interpretable applications.

Keywords: neural network interpretability; topological data analysis; convolutional kernel; Betti curve

1. Introduction

Convolutional Neural Networks (CNNs), a key part of deep learning methodologies,
have become a part of many areas of daily life because of their significant advancements
in computer vision. Introduced as early as the 1980s [1], the concept of CNNs gained
significant attention following the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012 [2,3], becoming a leading tool in computer vision tasks. CNNs employ
weight sharing and pooling layers, techniques that preserve data features while simulta-
neously reducing computational complexity, thereby significantly reducing the need for
computational power and enhancing the efficiency of the network structure. However, the
lack of transparency and interpretability inherent in neural networks has slowed down
the widespread acceptance and approval of CNNs by relevant institutions, despite their
significant advancements and community applications. This lack of interpretability can
pose significant ethical problems in the application of CNNs [4–7].

Aiming to enhance the interpretability of neural networks, researchers have proposed
a series of methods. These methods are broadly classified into local explanations and
global explanations. Local explanations focus on the behavior of models on specific inputs
or neurons, aiming to uncover the mechanisms through which models make predictions
on specific samples. For instance, generalizable complex model interpretability methods,
such as LIME [8] and SHAP [9], are quite popular. LIME creates an interpretable local
linear model around input data to approximate the behavior of complex models in that
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locality, while SHAP assigns importance values to each sample feature based on game
theory, thus explaining individual predictions. Additionally, visualizing the features and
behaviors of neural network models also falls under local explanations. For example, in
the literature, the authors of [10] visualize the outputs of hidden layer activation functions
to observe the learned features, aiding in understanding how models recognize different
types of input data. Local explanation methods focus on how specific samples or neurons
operate in neural networks, not revealing more generalized patterns of neural networks. In
contrast, global explanations aim to study the overall behavior and characteristics of models,
uncovering the general working principles of the models. For example, through theoretical
analysis, some studies have aimed to understand the capacity, stability, and generalization
abilities of models [4,11,12]. Other works test the performance and robustness of models
by constructing adversarial examples [13].

In recent years, there has been growing interest in utilizing topological tools, such
as persistent homology, to interpret the behavior of neural networks [14–19], which fits
within the field of Topological Data Analysis (TDA). These methods offer valuable insights
into the internal representations and dynamics of neural networks by analyzing their
topological properties. Typically, this analysis involves extracting features from neural
networks, such as neuron activations, weights, or other network attributes, which can be
represented as high-dimensional point clouds or graphs. Topological techniques, including
persistent homology and simplicial complexes, are then applied to extract and analyze the
topological information encoded within these high-dimensional structures [20,21]. Through
this process, researchers gain a deeper understanding of the network’s behavior and can
leverage the obtained insights to improve network architecture, optimize hyper-parameters,
enhance performance, reduce overfitting, or increase interpretability.

One aspect of the work focuses on analyzing the feature space of neural networks.
Bianchini and Franco Scarselli [22] utilize topological concepts to measure the complexity of
neural networks. They calculate the Betti numbers of decision boundaries in the data space
to evaluate the complexity of neural networks. Their research provides upper and lower
bounds for the complexity of shallow and deep networks with the same number of hidden
units, highlighting the higher complexity of deep structures. Guss and Salakhutdinov [23]
investigate the relationship between the topological complexity of datasets and the capacity
of neural networks. By understanding the topological features of datasets, more efficient
and smaller-scale network architectures can be designed, reducing computational resources
and training time. Another line of research involves the visualization of neural networks
using the Mapper algorithm. Goldfarb [24] applies the Mapper algorithm to visualize
test datasets in deep neural network models. By clustering the activations of the test set
on the neural network, they identify clusters representing misclassified samples, which
provide insights into areas where the network’s performance can be improved. Gabrielsson
and Carlsson [25,26] visualize the convolutional kernels of well-trained CNNs using the
Mapper algorithm. They observe that the point cloud formed by the kernels exhibits a “ring”
structure in the parameter space. This finding suggests that convolutional kernels tend
to form a simple topological structure during the network learning process. Furthermore,
they propose the notion of “topological simplicity” as a measure of network generalization
performance, comparing the persistence lengths of one-dimensional homology classes.

Other works also explore the parameter space analysis of neural networks. Rieck et al. [15]
introduce a method to measure the complexity of neural network structures. By con-
structing a weighted graph, where neurons are considered vertices and connections are
considered edges, they use persistent homology to quantify the 0-dimensional topological
information of the graph. This complexity measure can monitor the impact of regularization
techniques, such as dropout and batch normalization, during the network training process
and serve as an indicator of overfitting. Watanabe and Yamana [16] view the entire neural
network as a directed weighted graph and apply the construction of Clique complexes to
capture the topological features of the parameter space. This approach allows the intro-
duction of higher-dimensional topology and provides insights into the neural network’s
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structural organization and hierarchy. These studies demonstrate the diverse applications
of topological analysis in interpreting neural networks, assessing their complexity, and
guiding network design, optimization, and generalization.

Our research specifically investigates the dynamic topological evolution of CNN
kernels throughout the learning process. We analyze the shifts in the Betti-0 and Betti-1
curves of convolutional kernels, revealing patterns that highlight the network’s learning
dynamics and decision-making process. A key focus is the distinct topological adjustments
observed when CNNs are trained on grayscale versus color datasets, emphasizing the need
for significant parameter space modifications for color image learning. Our contributions
are significant in two ways: (i) unveiling the dynamic topological patterns in CNN kernels
during the iterative learning process and (ii) demonstrating how these topological changes
can serve as indicators of effective learning within the network and influence the overall
performance. This insight not only deepens our understanding of CNN internals but also
opens new pathways for optimizing their design and application in complex scenarios.

2. Theoretical Background

This section establishes the theoretical framework crucial to our exploration of CNN
kernels through the lens of TDA. We begin by introducing the concept of a simplicial
complex, a foundational structure in algebraic topology, which plays an important role in
analyzing and understanding the connectivity patterns within topological spaces. Building
on this, we explore the concepts of homology and persistent homology, highlighting
their roles in quantifying and tracking the evolution of topological features over different
scales. We then explore various representation methods for persistent homology—such
as persistence diagrams, barcode plots, and Betti curves—that enable us to effectively
visualize and interpret these complex topological characteristics. This theoretical overview
will provide the necessary tools and perspectives to decode the complex behaviors of CNNs
in our research.

2.1. Simplicial Complex

A simplicial complex, a key construct in algebraic topology, facilitates the study of
the connectivity and shape of topological spaces. It is built from simpler geometric objects
known as simplices. A simplex, the most elementary form in a simplicial complex, in
an n-dimensional Euclidean space, is the convex hull formed by (n + 1) points that do
not all lie in the same (n − 1)-dimensional space. For instance, a 0-simplex is a point, a
1-simplex is a line segment connecting two points, and a 2-simplex is a triangle formed by
three non-collinear points. By combining these simplices following specific rules, simplicial
complexes of various dimensions and shapes can be created. These complexes offer a
combinatorial approach to represent and study the properties of topological spaces using
algebraic and combinatorial techniques.

In TDA, simplicial complexes are essential for analyzing and understanding the
topological features of datasets. They provide a combinatorial representation of the data
space, constructed based on the pairwise distances or similarities among data points. In
these complexes, a k-dimensional simplex corresponds to a subset of (k + 1) mutually
close or similar data points, representing different levels of connectivity or interactions
among them. Upon constructing a simplicial complex, various topological features can be
identified and analyzed. This includes computing Betti numbers, indicative of the number
of topological features of different dimensions such as connected components, holes, or
voids. Additionally, other topological invariants such as persistent homology are computed
to determine and quantify the persistence of these features across various scales.

2.2. Homology and Persistent Homology

Homology, another fundamental concept in algebraic topology, provides a means
by which to count the number of holes in each dimension in a space. More precisely, it
associates a sequence of abelian groups, known as homology groups, with each topological
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space. These groups offer an intuitive count of n-dimensional holes; for instance, the
0th homology group counts connected components, the 1st counts “loops”, and the 2nd
counts voids.

Persistent homology, a specialized form of homology used in TDA, introduces an
additional dimension: scale, or persistence. Its main objective is to measure the persis-
tence of topological features, such as connected components (0-dimensional holes), loops
(1-dimensional holes), and voids (2-dimensional holes), across various scales [27]. This
method helps in distinguishing significant features from noise by quantifying how long
each topological feature persists as the scale changes.

The process begins with a point cloud dataset, around each point of which balls of a
certain radius are grown (as illustrated in Figure 1). As the radius increases, these balls
intersect, forming shapes and allowing the tracking of the emergence and disappearance
of homological features such as connected components or holes. These intersections form
simplices: a 1-simplex (edge) is formed when the balls of two points overlap, a 2-simplex
(triangle) forms from three overlapping points, and so forth. With the continued increase in
radius, more simplices are added, creating a sequence of spaces known as a filtration. This
filtration, alongside the corresponding homology groups, captures the evolving topological
features of the data as the scale parameter (radius) changes.
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Figure 1. Evolution of a simplicial complex with increasing radius.

2.3. Representations of Persistent Homology

Persistent homology results, illustrated through the evolution of a simplicial complex
with an increasing radius in Figure 1, can be visually represented through persistence
diagrams, barcode plots, or Betti curves [28], as shown in Figure 2. In the persistence
diagram (left panel of Figure 2), each point represents a topological feature, with the
vertical position indicating when the feature appears and the horizontal position indicating
when it becomes insignificant. Red points in this diagram correspond to the most basic
connectivity structures, while blue points represent primary cycles or loops within the
space. Similarly, the barcode plot (middle panel of Figure 2) uses red bars to denote the
persistence of the basic connectivity structures and blue bars for the primary cycles, with
the length of each bar representing the lifespan of the corresponding feature within a
specific filtration range.
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The Betti curve (right panel of Figure 2) is another visualization tool in persistent
homology. Unlike persistence diagrams or barcodes that summarize feature persistence
across filtration levels, Betti curves provide a detailed view of the evolution of individual
Betti numbers. Betti numbers denote the count of k-dimension holes in a topological space,
such as the number of connected components (0th Betti number), 1-dimensional loops
(1st Betti number), and so on.
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Figure 2. Three types of representations of persistent homology: persistence diagram, persistence
barcode, and Betti curve. These representations show the persistence of the topological features of
point clouds in Figure 1.

A Betti curve plots Betti numbers against the filtration level, illustrating how the
count of topological features changes with the filtration. This curve offers insights into the
development and disappearance of topological features at varying scales. The Betti curve
provides a more granular analysis of individual Betti numbers, complementing the overall
view provided by persistence diagrams or barcodes. It enables a deeper understanding
of the topological structure of the data, revealing intricate patterns and transitions in the
formation of holes across different dimensions.

While persistent homology provides a robust framework for analyzing topological
structures, the exploration of CNNs’ topological complexity is not limited to this method
alone. Specifically, multidimensional persistent homology broadens the scope of traditional
persistent homology, enabling the examination of data’s topological features through a
multi-faceted lens [29]. Furthermore, the Mapper algorithm reveals the shape structure
of data by creating a simplified representation. It is particularly suited for exploring the
geometric and topological properties of high-dimensional data [30]. The application of
the Mapper algorithm in the context of CNN kernels may uncover new insights into
their high-dimensional learning processes, highlighting geometric and topological features
that influence learning effectiveness and efficiency. In pursuit of clarity and to lay the
groundwork for our analysis, we initially embrace Betti curves derived from persistent
homology to map out and scrutinize the topological features of CNN kernel spaces. This
approach simplifies our initial investigations and provides a comprehensive platform for
delving into the evolutionary patterns of these features throughout the training process.

2.4. Betti Curves of Convolutional Kernels

Here, we outline the main idea underlying our research. We analyze the evolution of
convolutional kernels in CNNs through a topological approach. Initially, we reshape each
3 × 3 convolutional kernel into a nine-dimensional vector, effectively representing each
kernel as a point within a nine-dimensional Euclidean space. This transformation allows us
to create a point cloud representation of the convolutional kernels. Utilizing the concept of
persistent homology, we then quantify the topological “shape” of these kernels, identifying
consistent features and patterns that prevail across different scales. This is achieved by
calculating the persistent homology of the point cloud, which elucidates the number and
nature of “holes” or voids within the topological structure of CNN kernels.
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Key to our analysis is the use of Betti curves, which provide a graphical representation
of these topological features. These curves enable us to track and visualize the changes in
the convolutional kernels’ topology as the training of the CNN progresses. The dynamic
alterations in the weights of the kernels during training lead to changes in their topological
structure. By generating and examining Betti curves at each iteration of the training process,
we gain deep insights into the evolving patterns and complexities of the kernels’ topological
landscape. It offers a unique perspective on how convolutional kernels adapt and modify
their structures in response to the learning process.

3. Experiments

In this section, we detail our experimental approach, designed to explore the dynamic
topological evolution of convolutional kernels in neural networks. Our methodology
involves training two distinct neural network architectures on a carefully curated selection
of datasets. These datasets range from grayscale to color images, including a variety
of content types to thoroughly evaluate the universal patterns of topological changes in
the convolutional kernel space. In this series of experiments, we aim to investigate the
topological changes in convolutional kernels and the relationship between the topological
evolution of convolutional kernels and neural network performance, as measured by
traditional performance metrics such as accuracy, loss, and the area under the receiver
operating characteristic (ROC) curve.

3.1. Experiment Setup

The experimental setup is designed to examine the topological changes in convolu-
tional kernels under different learning scenarios. We selected three distinct categories of
datasets: grayscale images, color images, and synthetic images, each representing unique
challenges in color channels, classification complexity, and specific use cases. The details of
these datasets are summarized in Table 1.

Table 1. The detailed descriptions of three categories of datasets.

Image Dataset Name Image Size Categories Dataset Content Rename

Grayscale Image (A)
MNIST a 28 × 28 10 Handwritten digits (0–9) A1

Kuzushiji-MNIST b 28 × 28 10 Kuzushiji characters A2
Fashion-MNIST c 28 × 28 10 Various clothing items A3

Color Image (B)

CIFAR-10 d 32 × 32 10 Various objects and animals B1
BALL-10 e 128 × 128 10 Different sports balls B2

CIFAR-100 f 32 × 32 100 Various objects and animals B3
BUTTERFLY-100 g 128 × 128 100 Different butterfly species B4

Synthetic Image (C) NOISE-2 h 64 × 64 2 Synthesized colored noise C1
PURE-2 i 64 × 64 2 Uniform black and white images C2

a MNIST [31], b Kuzushiji-MNIST [32], c Fashion-MNIST [33], d CIFAR-10 [34], e BALL-10 https://www.
kaggle.com/datasets/samuelcortinhas/sports-balls-multiclass-image-classification (accessed on 4 October 2023),
f CIFAR-100 [34], g BUTTERFLY-100 https://www.kaggle.com/datasets/gpiosenka/butterfly-images40-species?
select=test (accessed on 4 October 2023), h NOISE-2: Synthesized colored noise dataset, generated by the authors,
i PURE-2: Dataset of uniform black and white images for testing, generated by the authors.

For this study, we employed two neural network architectures, Network I and Network
II, to evaluate the consistency of our findings across different structural designs. While
both networks share the same fully connected layers, they differ in their convolutional
layers: Network I has three, and Network II includes an additional fourth layer. This
differentiation allows us to assess the impact of convolutional layer complexity on learning
outcomes. The architectural specifics and hyper-parameters for these networks are detailed
in Table 2.

The experimental procedure involved careful hyper-parameter selection based on
insights from preliminary trials and dataset analyses. Key parameters included a batch size

https://www.kaggle.com/datasets/samuelcortinhas/sports-balls-multiclass-image-classification
https://www.kaggle.com/datasets/samuelcortinhas/sports-balls-multiclass-image-classification
https://www.kaggle.com/datasets/gpiosenka/butterfly-images40-species?select=test
https://www.kaggle.com/datasets/gpiosenka/butterfly-images40-species?select=test
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of 64 and a learning rate of 0.01, using the momentum optimization method for training. The
networks were trained using PyTorch (version 2.0.1, developed by the PyTorch team) [35],
and the Ripser tool (version 0.6.8, created by Christopher Tralie and Nathaniel Saul, sourced
from the Scikit-TDA project) [36] was used for computations related to persistent homology
and topological invariants.

Table 2. The detailed architecture and hyper-parameter selection of the neural networks. Here, H
and W represent the height and width of the image after passing through the convolutional layer
and Maxpooling.

Network Hyper-Parameters Layer 1 Layer 2 Layer 3 Layer 4 Fully Connected Layer 1 Fully Connected Layer 2

Network I

Convolution Kernel Size 3 × 3 3 × 3 3 × 3 N/A N/A N/A
Dropout (p) N/A N/A N/A N/A 0.2 0.2

Quantity 16 32 64 N/A 64 × H × W 500
Maxpooling (2,2) (2,2) (2,2) N/A N/A N/A

Layer Identifier I1 I2 I3 N/A FC1 FC2

Network II

Convolution Kernel Size 3 × 3 3 × 3 3 × 3 3 × 3 N/A N/A
Dropout (p) N/A N/A N/A N/A 0.2 0.2

Quantity 16 32 64 32 32 × H × W 500
Maxpooling (2,2) (2,2) (2,2) N/A N/A N/A

Layer Identifier II1 II2 II3 II4 FC1 FC2

3.2. Betti Curves on Diverse Datasets

The experiments, detailed in Tables 1 and 2, involved training on diverse datasets (A,
B, and C) using two distinct neural network architectures (I and II). The primary focus was
analyzing how convolutional kernels evolve across these different learning scenarios.

3.2.1. Study on Grayscale Images (Category A)

In the grayscale image category (A), we trained the networks on datasets such as
MNIST, Kuzushiji-MNIST, and Fashion-MNIST. The analysis primarily targeted the second
and third convolutional layers over 15,000 training iterations. Betti curves, representing the
topological structure of 3 × 3 convolutional kernels, were computed at regular intervals to
observe the evolution patterns. For networks with an additional fourth layer (A-II), the
analysis was extended to cover this layer as well.

Figure 3 illustrates the Betti curve results for experiments A-I and A-II, conducted
on grayscale image datasets. Each panel, corresponding to the MNIST, Kuzushiji-MNIST,
and Fashion-MNIST datasets, shows the behavior of Betti curves over successive training
iterations. A consistent trend is observed across both experimental conditions: the Betti-0
curve shifts rightward as the number of iterations increases, a pattern that becomes more
apparent when early iterations are compared to later ones, indicating rapid initial changes
in the topological structure that stabilize as training progresses. For the Betti-1 curve, as
the number of iterations increases, the peak decreases, and the curve as a whole shifts
rightward as well, indicating a reduction in the number of 1-dimensional loops within the
kernel space as training progresses.

3.2.2. Study on Color Images (Category B)

In the color image category (B), experiments were conducted on datasets such as
CIFAR-10, BALL-10, and BUTTERFLY-100. Similar to the grayscale studies, the focus was
on the evolution of convolutional kernels in the later layers of the networks. The analysis
involved tracking the Betti curves throughout the course of the training to understand the
topological changes.

Figure 4 showcases the Betti curves for Experiments B-I and B-II. These curves
represent two distinct sets for each experiment, covering the CIFAR-10, BALL-10, and
BUTTERFLY-100 datasets. Across both B-series experiments, the Betti curves exhibited con-
sistent behaviors. The Betti-0 curve displayed a rightward shift with advancing iterations,



Appl. Sci. 2024, 14, 2197 8 of 14

while the Betti-1 curve exhibited an initial increase, subsequently followed by a decrease.
There was a reduction in the peak values and a shift of the curve toward the right.

(a)

(b)

Figure 3. A comparative analysis of Betti curves, derived from convolutional kernels of two different
CNN structures trained with grayscale images, showcasing the consistency and variations in their
topological features. (a) Betti curves from convolutional kernels in Experiment A-I. (b) Betti curves
from convolutional kernels in Experiment A-II.

From the results of both experiments, a shared pattern emerges in the Betti curves,
consistently observed across different network architectures, classification targets, and
the convolutional layers in focus. This pattern is clear in the analysis of Betti curves
from both grayscale (Figure 3) and color (Figure 4) image datasets. Specifically, in both
sets of experiments, the Betti-0 curve consistently shifts rightward as training iterations
increase. Concurrently, the Betti-1 curve demonstrates an initial rise followed by a decline,
accompanied by a reduction in peak values and a corresponding rightward shift. This trend
becomes more pronounced when early iterations are compared to later ones, indicating an
initial rapid evolution in the topological structure that stabilizes over time.
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(a)

(b)

Figure 4. A comparative analysis of Betti curves, derived from convolutional kernels of two different
CNN structures trained with color images, showcasing the consistency and variations in their
topological features. (a) Betti curves from convolutional kernels in Experiment B-I. (b) Betti curves
from convolutional kernels in Experiment B-II.

3.2.3. Evaluation Using Synthetic Images (Category C)

To assess whether the observed patterns were specific to certain dataset characteristics,
we conducted experiments with synthetic images, including datasets with randomly gener-
ated noisy images and images with uniform color. This approach allowed us to compare
the Betti curves and identify any special or unusual patterns, revealing insights into how
the networks learn.

The results, as shown in Figure 5, provide clear contrasts. In the case of the NOISE-2
dataset, the Betti-0 and Betti-1 curves are fairly consistent across iterations, hinting at a
stable topological structure. However, this consistency might suggest that the network’s
learning from these datasets is not very efficient, as seen by the absence of significant,
regular patterns mentioned before in the Betti curves. The natural randomness in the noisy
dataset likely makes it difficult for the network to process and adapt. On the other hand,
the PURE-2 dataset shows small but noticeable changes in the Betti-0 and Betti-1 curves
compared to NOISE-2. Even with these changes, a level of steadiness is kept throughout
the iterations. This indicates that minor modifications in the convolutional kernels were
sufficient for achieving the desired outcomes, leading to minimal alterations in the Betti
curves. Compared to the noisy dataset, this dataset exhibits a certain level of pattern and
regularity, hinting at a more effective network training process.

Our findings show that clear, regular patterns in the Betti curves suggest the network
is training well. If we see these regular patterns, it means that the network is learning and
adjusting as expected. However, if the curve stays pretty much the same and does not have
clear patterns, it could mean the network is having trouble learning from and adjusting to
the data.
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Figure 5. Representation of Betti curves corresponding to the third-layer convolutional kernels of
Network II across two distinct datasets: one with randomly generated, three-channel noisy images
and another comprising solely images with pure black or white pixels.

3.3. Comparative Analysis of Betti and ROC Curves Across Iterations

To provide deeper insight into the relationship between the topological changes in
the convolutional kernels and the performance of the CNN models, we conducted an
experiment to track the development of the ROC curve—a reliable performance metric for
classification models—over the duration of network training. The ROC curve serves as
a graphical representation of a model’s diagnostic ability, plotting the true positive rate
against the false positive rate at various threshold settings. By examining the trajectory of
the ROC curve along with the concurrent topological shifts in the convolutional kernels,
encapsulated by the Betti-1 curves, our goal was to discern the interplay between a CNN’s
learning process and the evolution of its internal structural complexity.

The experimental results are presented in Figure 6, which includes a comparative
analysis of Betti and ROC curves across different training iterations. The ROC curve
(Figure 6a) shows the trade-off between the true positive rate and the false positive rate. To
enhance the clarity of our ROC analysis, we have included a zoomed-in view of the ROC
curve (Figure 6b), which allows for a detailed examination of the model’s performance in
the critical threshold range. The progression toward the upper left corner with increasing
iterations indicates an improvement in model accuracy.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(a) ROC Curve

Iteration 0 
Iteration 400 
Iteration 800 
Iteration 1200 
Iteration 1600 
Iteration 2000 
Iteration 2400 
Iteration 2800 
Iteration 3200 
Iteration 3600 
Iteration 4000 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

False Positive Rate
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Tr
ue

 P
os

iti
ve

 R
at

e

(b) Zoomed ROC Curve

Iteration 0 
Iteration 400 
Iteration 800 
Iteration 1200 
Iteration 1600 
Iteration 2000 
Iteration 2400 
Iteration 2800 
Iteration 3200 
Iteration 3600 
Iteration 4000 

0.05 0.06 0.07 0.08 0.09 0.10

Filtration parameter
0

200

400

600

800

1000

1200

1400

Be
tti

 n
um

be
r (

1)

(c) Betti-1 Curve
Iteration 0
Iteration 400
Iteration 800
Iteration 1200
Iteration 1600
Iteration 2000
Iteration 2400
Iteration 2800
Iteration 3200
Iteration 3600
Iteration 4000

Figure 6. Comparative analysis of Betti and ROC curves across iterations.
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The Betti-1 curve (Figure 6c) illustrates the evolution of the topological features within
the convolutional layers of the CNN. Throughout the course of training iterations, the Betti-1
curve undergoes significant changes, suggesting a refinement in the topological complexity
of the kernel space. Notably, the peak of the Betti-1 curve becomes less pronounced with
more iterations, implying that the network is optimizing its internal representations. A
correlation analysis between the shifts in the Betti-1 curve and the ROC curve demonstrates
that as the Betti-1 curve stabilizes (indicating a mature kernel topology), the area under the
ROC curve (AUC) increases. This suggests that the topological changes in the convolutional
kernels are reflective of the CNN’s learning progress.

3.4. Quantitative Analysis of Betti Curves

Building upon the insights gathered from the studies on grayscale, color, and synthetic
images, we conducted another experiment that aimed to quantitatively analyze the evolving
topological features of the convolutional kernels through a new lens—the centroids of
Betti curves. This phase focused on the datasets from Categories A and B. The objective
was to calculate the centroids of the Betti-1 curves, which had been tracked throughout
the training process for each dataset. To achieve this, we employed Simpson’s Rule—a
well-known method for its accuracy in numerical integration. This method helped us
accurately determine the coordinates of the Betti curve centroids. The process included
collecting the Betti curves at various stages of the training iterations. For each of these
curves, we calculated the centroid coordinates, which provided us with a two-dimensional
representation (x and y coordinates) of the curve’s central point. These coordinates were
then plotted against the number of training iterations, creating a dynamic trajectory that
illustrated the evolving topological structure in the kernel space as the network progressed.

The experimental results, as shown in Figures 7a,b, illustrate the changes in the
centroid coordinates of the Betti-1 curves across iterations for various datasets. Figure 7a
displays the trajectory of the x-coordinate of centroids under the Betti-1 curve throughout
the course of the training iterations. It can be observed that the x-coordinates for color image
datasets, such as CIFAR-10, CIFAR-100, and BUTTERFLY-100, show a more pronounced
increase compared to those of grayscale image datasets, such as MNIST, Kuzushiji-MNIST,
and Fashion-MNIST. Similarly, in Figure 7b presents the trajectory of the y-coordinate of
centroids under the Betti-1 curve versus iterations. Here, too, the color image datasets
demonstrate a more substantial decrease in the y-coordinates over iterations than the
grayscale datasets.

The results indicate that the topological changes in convolutional kernels, represented
by centroid shifts for color images, are more significant in both the x and y directions
compared to those for grayscale images. This could imply that the convolutional networks
are learning more complex features or adapting more extensively when trained on color
images as opposed to grayscale images.

10,000 12,000 14,000

(a)

10,000 12,000 14,000

(b)
Figure 7. The Betti curves for the third-layer convolutional kernels of the two special datasets.
(a) Centroid x-coordinate of area under Betti-1 curve vs. Iteration. (b) Centroid y-coordinate of area
under Betti-1 curve vs. Iteration.
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4. Conclusions

In this study, we observed a consistent pattern in the topological evolution of con-
volutional kernels throughout the iteration process of neural networks. Specifically, the
Betti-0 curve persistently shifted rightward, indicating a steady progression. The Betti-1
curve is characterized by initially rising and then declining, marked by a diminishing peak
and a gradual shift toward the right. Observing this pattern during training suggests that
the neural network is learning effectively. Conversely, if this pattern is not evident, it may
indicate obstacles in the learning process. Therefore, this pattern may serve as a potential
indicator of effective learning within the network. Moreover, a notable difference was
observed in the topological changes of convolutional kernels when trained on grayscale
datasets, such as MNIST, Kuzushiji-MNIST, and Fashion-MNIST, compared to those trained
on color datasets. The latter showed more significant topological adjustments, suggesting a
need for more substantial modifications in the neural network’s parameter space to learn
from color images.

Future research will involve the development of new methods to more effectively
harness the observed topological changes for improving neural network performance
and interpretability. This might include techniques for optimizing network structures or
parameter-tuning strategies based on topological indicators. Additionally, our investiga-
tions will broaden beyond the scope of persistent homology, incorporating a wider array
of analytical methods and tools. We are set to explore further methodologies, such as
multi-dimensional persistence, and to employ specialized visualization tools, including
the Mapper algorithm. These efforts are intended to facilitate a deeper analysis of the
topological complexity inherent in CNN kernels, viewed from a multitude of angles.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app14052197/s1; Supplementary File S1—Part of the code used to
reproduce the results presented in the paper. The code consists of five Python scripts, each prefixed
with a number to indicate the suggested order of execution.
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