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Abstract: In the rapidly evolving landscape of urban development, where smart cities increasingly
rely on artificial intelligence (AI) solutions to address complex challenges, using AI to accurately
predict real estate prices becomes a multifaceted and crucial task integral to urban planning and
economic development. This paper delves into this endeavor, highlighting the transformative impact
of specifically chosen contextual open data and recent advances in eXplainable AI (XAI) to improve
the accuracy and transparency of real estate price predictions within smart cities. Focusing on Lisbon’s
dynamic housing market from 2018 to 2021, we integrate diverse open data sources into an eXtreme
Gradient Boosting (XGBoost) machine learning model optimized with the Optuna hyperparameter
framework to enhance its predictive precision. Our initial model achieved a Mean Absolute Error
(MAE) of EUR 51,733.88, which was significantly reduced by 8.24% upon incorporating open data
features. This substantial improvement underscores open data’s potential to boost real estate price
predictions. Additionally, we employed SHapley Additive exPlanations (SHAP) to address the
transparency of our model. This approach clarifies the influence of each predictor on price estimates
and fosters enhanced accountability and trust in AI-driven real estate analytics. The findings of
this study emphasize the role of XAI and the value of open data in enhancing the transparency and
efficacy of AI-driven urban development, explicitly demonstrating how they contribute to more
accurate and insightful real estate analytics, thereby informing and improving policy decisions for
the sustainable development of smart cities.

Keywords: open data; smart cities; real estate predictions; urban development; artificial intelligence;
machine learning; eXplainable AI; XGBoost; Optuna; shapley additive explanations (SHAP)

1. Introduction

In an era marked by rapid urbanization, the emergence of smart cities represents
a critical evolution in how urban spaces are conceived, designed, and managed. These
cities are not just innovative paradigms but also data-driven ecosystems that significantly
improve the quality of life of their inhabitants while promoting sustainability and re-
silience [1,2]. They are at the forefront of addressing some of the most pressing challenges
of our times—from complex environmental challenges like environmental degradation,
resource strain, and escalating demands on infrastructure to efficient urban governance and
growing digitization, leading to more efficient, data-driven, and citizen-oriented decision-
making models [3,4].

Smart cities and artificial intelligence (AI) are closely intertwined [5]. AI has significant
potential to address the urbanization challenges faced by cities. The prospects of smart
urban technologies, including AI, range from expanding infrastructure capacity to improv-
ing decision making and supporting businesses and cities. AI systems can be integrated
into various urban development areas, such as energy, mobility, public safety, healthcare,
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education, and urban planning [6–8]. Integrating AI into city management promises sub-
stantial economic benefits, as smart cities are becoming hubs for job opportunities and
economic development.

An advanced aspect of AI’s application in urban environments is the deployment of
probabilistic AI algorithms. These algorithms excel in forecasting and risk management,
which is crucial for addressing urban hazards. For example, probabilistic models like
the multi-head attention-based that combines convolutional neural networks (CNN) and
bidirectional long short-term memory (BiLSTM) networks have revolutionized day-ahead
wind speed forecasting [9] and may empower cities to mitigate the impact of severe
weather events preemptively. Similarly, Bayesian optimization frameworks for predicting
dynamic infrastructure responses to typhoons [10] offer cities the tools to enhance resilience
and ensure public safety during extreme weather conditions. These examples illustrate
probabilistic AI’s critical role in enabling urban planners to devise more effective emergency
response strategies and infrastructure resilience plans, safeguarding communities against
floods, fires, and other hazards.

Integrating these advanced AI technologies into urban management underscores the
necessity of responsible urban innovation. Collaborative efforts between local governments
and AI developers are crucial for maximizing AI’s positive impacts in cities, ensuring both
beneficial and ethical applications while minimizing negative consequences [6]. AI aligns
perfectly with the data-driven ethos of a smart city, making this research highly relevant in
the current times.

Open data is also thoroughly related to smart cities as it plays a crucial role in their
development and functioning [2,11]. Open data refers to information that is freely available
and accessible to the public, allowing for its use, reuse, and redistribution. In smart
cities, open data initiatives aim to promote transparency, enhance governance, and foster
citizen engagement [2]. The availability of open data has led to increased research using
artificial intelligence for various applications. Furthermore, open data has been recognized
as a catalyst for machine learning (ML), particularly in air pollution prediction, traffic
forecasting, urban design, and transport features analysis [12]. It has facilitated knowledge
discovery by making data findable, accessible, interoperable, and reusable, as per the
FAIR Data Principles [13]. The availability of open data allows researchers and developers
to gather relevant and diverse data inputs for their machine learning models, enabling
them to analyze and extract insights from large datasets [14]. However, using open data
in ML applications also presents challenges, such as data quality, data format, and data
integration from multiple sources [15]. The risks associated with open data, such as privacy
concerns, data accuracy, and decision making based on faulty data, need to be assessed
and mitigated [2]. Nevertheless, open data is crucial in enabling intelligent solutions,
promoting sustainable and innovative urban environments, and propelling research in
machine learning. It facilitates the creation of predictive models and decision-making tools
tailored for smart city applications [15,16].

AI plays a fundamental role in sectors like engineering and construction, helping
to address housing challenges and infrastructure development, thereby improving the
quality and efficiency of urban services [1]. The development of smart cities significantly
impacts the housing market, affecting factors such as housing supply, prices, and quality.
Studies have shown that the availability of smart cities’ housing infrastructure and quality
are generally higher than in the surrounding regions [17]. Smart cities prioritize the
development of physical infrastructure and digital technologies for urban management,
resulting in improved housing resources [18]. Therefore, these cities offer more extensive
and better housing infrastructure than the provinces they are located in, indicating a higher
standard of living for their residents [19]. Additionally, smart cities focus on convenience
and sustainability in housing, incorporating smart systems for heat supply, water supply,
sewage networks, and the use of energy-efficient building materials [15,20].

The housing market dynamics in smart cities are influenced by various factors such
as accessibility, diversity of amenities, and sustainability [15,21]. The concept of smart
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cities emphasizes the importance of walkability and accessibility to different services in
determining the price of a property [22,23]. Factors like distance to key locations and the
number of commercial establishments within a certain radius can significantly impact
a house’s price per meter value [19]. Additionally, the housing market in major cities
tends to experience more volatility and higher price fluctuations than in other regions [24].
Differences in housing market characteristics, regulations, and cultural preferences also
contribute to variations in housing prices and supply across regions [25]. Overall, the
housing market in smart cities is influenced by a combination of physical attributes, location-
specific factors, and market dynamics, making it a complex and evolving sector.

On the other hand, the housing supply in smart cities is influenced by a complex
interplay of various factors, including financing costs, construction costs, vacancy rates,
and regulatory constraints [26]. Studies have shown that financing costs, such as interest
rates, have a negative effect on housing starts—a crucial economic indicator, as it reflects
the health and direction of the housing market and, by extension, provides insights into
broader economic conditions [12]. Similarly, construction costs, including material and
wage costs, can also affect the housing supply, although the results are inconclusive in
some cases [19]. Vacancy rates and sales delays have been found to have a negative impact
on housing starts, indicating that longer selling times can lead to fewer housing starts [20].
Regulatory constraints, such as land regulation and planning controls, can influence the
housing supply, with more restrictive regulations leading to fewer housing starts [24]. The
housing market in smart cities is not always perfectly competitive, and policy interventions
may be necessary to maximize social welfare and ensure affordability and inclusion [19,24].
Other factors also play crucial roles in measuring and understanding housing supply,
such as housing stock, demolitions and renovations, market availability, and geographical
distribution. In essence, these factors highlight the complex dynamics involved in the
housing supply of smart cities, and understanding these dynamics is crucial for promoting
a sustainable housing market and achieving the goals of smart city initiatives.

The real estate market, characterized by its complexity and dynamism, necessitates
using advanced predictive tools capable of deciphering the interplay of numerous variables.
In recent years, tree-based machine learning models and artificial neural networks (ANN)
have emerged as front-runners to enhance prediction accuracy for real estate prices [27–31].
Due to their capacity to capture non-linear relationships and interactions, these models
consistently outperform traditional linear models [29,32,33]. However, a significant chal-
lenge arises when these models are adopted in real-world scenarios due to their lack of
interpretability [34]. As black-box models, they provide limited visibility into their internal
decision-making processes, causing a trade-off between accuracy and interpretability [35–40].
Recently, eXplainable Artificial Intelligence (XAI) techniques have been explored to en-
hance model transparency and interpretability, addressing the black-box nature of complex
ML models.

Integrating fairness, transparency, and accountability in AI systems is paramount to
addressing and mitigating biases within data sources and algorithms. Verhulst (2023) [41]
highlighted that combating bias and discrimination involves encouraging fair and unbiased
data-handling practices that ensure equal treatment for all individuals, regardless of pro-
tected characteristics such as race or gender. This approach is further supported by using
synthetic data to address existing dataset biases, thus promoting better representation of
populations and fostering more equitable outcomes.

Vainio-Pekka et al. (2023) [42] emphasized the critical role of Explainable AI in detect-
ing flaws and biases within systems, thereby ensuring the transparency of these systems.
XAI techniques not only aid in reducing biases in data but also facilitate a deeper under-
standing of the problem at hand, promoting ethical AI practices that are understandable
and interpretable by humans. The necessity of integrating ethical considerations into AI
development is underscored to prevent the perpetuation of societal biases and ensure
equitable outcomes.
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As noted by Arrieta et al. (2020) [34], the fairness discipline includes methods for bias
detection within datasets, especially those concerning sensitive data that affect protected
groups via variables like gender and race. Ethical concerns with black-box models arise
due to their potential to unintentionally create unfair decisions by considering sensitive
factors. Proposals centered on fairness aim to discover correlations between non-sensitive
and sensitive variables, detect imbalanced outcomes that penalize specific subgroups, and
mitigate the bias effect on model decisions.

Furthermore, the Royal Society (2019) [43] notes that data collection issues can sig-
nificantly impact the performance of machine learning systems, with image recognition
systems failing to work accurately for minority ethnic groups. This challenge highlights the
broader ethical challenges of AI, including fairness, transparency, and privacy protection,
as emphasized by Yigitcanlar et al. (2021) [6].

Collectively, these insights stress the importance of addressing biases in data and
algorithms to ensure fairness, transparency, and accountability in AI systems. Via the
development and implementation of XAI techniques and other bias mitigation strategies,
such as the use of synthetic data, it is possible to promote ethical AI practices that are not
only understandable and interpretable by humans but also ensure that AI systems do not
perpetuate existing societal biases, thereby ensuring equitable outcomes for all individuals.

Like in many sectors, the importance of interpretability cannot be overstated, and in
the real estate market, stakeholders, including investors, policymakers, and urban planners,
often demand clear and comprehensible explanations behind predictions as they plan
and make informed decisions [4]. Here, XAI techniques provide insights into the factors
influencing selling prices and help stakeholders make informed decisions [27,30,32,35,44].

Developing XAI techniques conveys a promising solution for enhancing the potential
use of AI in smart cities as it enables unboxing black-box AI models and explicitly describes
their mechanisms, thus providing transparency, interpretability, and informed decision-
making processes [45]. Currently, XAI technologies are being developed and applied in
smart city projects, focusing on traffic volume prediction, population estimation, and urban
analytics [7,46] by leveraging the benefits of AI while ensuring responsible and accountable
use in urban governance [38].

In this study, we use a cutting-edge technique within XAI—the SHapley Additive
exPlanations (SHAP) by Lundberg and Lee [47]. The SHAP framework is grounded and
derived from the Shapley values [48], a concept rooted in cooperative game theory that
offers a consistent and locally accurate method to interpret model predictions. In machine
learning, SHAP provides a unified measure of feature importance by assigning each feature
an importance value for a particular prediction. SHAP values are the SHAP method’s
output, quantifying each feature’s contribution to a particular prediction. These values give
an intuitive understanding of feature contributions toward individual predictions, thereby
lifting the veil on machine learning models. The SHAP value for a feature represents the
average contribution of that feature to every possible prediction. These model-agnostic
values are applicable for interpreting the results from any machine learning model, and
they are trendy for tree-based models, such as the eXtreme Gradient Boosting (XGBoost)
we use in this study. These values can explain why a model made a specific decision and
offer a consistent and locally accurate way to explain the outputs of ML models [40,49].

This study’s objective is to leverage open data effectively for improving real estate
price prediction. Concurrently, it aims to enhance the predictive model’s transparency and
interpretability by applying XAI, understanding which features are most influential, and
measuring their impact on the model’s price prediction for the property listings in our
dataset. This dual approach seeks to bridge the gap between advanced model performance
and the ability to interpret this model. Open data provides broader and more diverse data
for precision analysis, while XAI will offer insights into how model predictions are made,
thereby fostering trust and accountability in real estate analytics. We demonstrate that
increased model interpretability can coexist with high prediction accuracy via systematic
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experimentation and detailed evaluations and offer practical benefits for urban planning
and smart city development.

In our three-phase approach, the proprietary data are the starting point for the analysis,
which are then augmented by open data. We first train an XGBoost model with features
from a proprietary dataset for predicting real estate prices and provide the rationale behind
selecting XGBoost over other considered models. The second phase entails retraining
this model by incorporating open data features. This method provides the ability to
evaluate the consequential impact on the model’s predictive accuracy and identify which
features significantly affect real estate prices. We also explore the integration of Optuna—a
hyperparameter optimization framework, with our XGBoost machine learning model and
fine-tune it. In the third phase, we leverage SHAP values analysis to explain our model
predictions effectively. This step facilitates a profound exploration of feature interactions
and quantifies their relative importance. This approach is intended not only to advance
the field of real estate analytics but also to contribute to more informed decision making in
urban development, aligning with the needs of rapidly evolving housing markets.

Our results reveal that integrating open data features significantly enhances model
predictive power, with open data features such as bank evaluations, culture, and subway
distance displaying the most substantial impact on real estate prices. The findings of this
study add to the understanding of the symbiotic relationship between the real estate market
and urban dynamics. This novel insight offers more transparent, understandable, and
accountable investment guidance to various stakeholders, assists in designing effective
housing policies, and aids in formulating informed strategies for smart city development.

The remainder of this paper is structured in the following manner: Section 2 delivers
a comprehensive overview of the data, methodology, and ML and XAI techniques used.
Section 3 presents and discusses the results, detailing the steps and the options taken to
address the research objectives. In Section 4, we engage in a discussion of the findings,
exploring their implications and significance. Lastly, Section 5 concludes the paper, sum-
marizing the key findings and contributions and suggesting directions for future research.

2. Materials and Methods

This section presents the data and the methods used in our study to predict real estate
prices using ML and XAI.

2.1. Data

This sub-section provides details of the data utilized in our study. We describe the
study area and the specific datasets used for analysis, detailing our selection criteria and
the sources from which the data were compiled. The process of feature engineering—how
we chose and refined the dataset features for optimal relevance and insight—is then
discussed. We conclude with the presentation of descriptive statistics that summarize the
key characteristics of our data, setting the stage for the following analyses.

2.1.1. Study Area

In aiming to leverage open data for increased and transparent real estate predictions
in smart cities, the study area under scrutiny in this research focuses on Lisbon. As
Portugal’s capital, this city nestles on the north bank of the Tagus River and the Atlantic
coastline, making it the westernmost city in continental Europe. From an administrative
perspective, Lisbon is subdivided into 24 counties. According to the Portuguese Census of
2021, its resident population was 545,796 (population density 5456.32/km2). The number of
conventional dwellings was 319,640, and the number of households was 242,065 (https://
censos.ine.pt/) (accessed on 11 January 2024), with an average annual growth of the House
Price Index from 2011 to 2021 by about 5.25% (https://bpstat.bportugal.pt/) (accessed on
11 January 2024).

Lisbon’s housing market has significantly changed over the past decade, becoming
increasingly attractive to tourists and investors. These changes have resulted in a significant

https://censos.ine.pt/
https://censos.ine.pt/
https://bpstat.bportugal.pt/
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increase in foreign direct investment in real estate and construction. Furthermore, the
government bore the expenses for redevelopment, allowing private capital to profit from
property rehabilitation. Consequently, this trend has led to widespread housing and
commercial gentrification and the rise of tourism-centric urban areas, consistent with
broader patterns observed across Southern Europe [23,50].

A study by Marques et al. [51] revealed that housing affordability in Lisbon has de-
creased in the past years, particularly affecting the middle classes and younger generations.
This fact is due to local incomes not keeping pace with the escalating market prices, mak-
ing housing needs persistent. A surge in international investments, especially in upscale
properties and tourist accommodations, has driven up house prices, with inner-city areas
of Lisbon being the most affected. Notably, in 2019, the average duration properties stayed
on the market (both for rent and sale) decreased to record low levels, indicating high
demand and limited supply. Traditionally, homeownership has been viewed as a wealth
accumulation strategy [52]. However, in Lisbon, where the homeownership rate stands at
52%, owning a home has become less feasible for many, given the relatively modest local
salaries. In response to the housing challenges, the government has introduced housing
policies focused on strengthening the public housing supply in the city. These initiatives
prioritize the rehabilitation of public buildings, especially those most deteriorated. Also,
efforts are being made to improve public services and transportation connections outside
Lisbon’s central regions, making these peripheral areas more attractive to residents and
ensuring they offer a comparable quality of life [53].

The spatial distribution of our dataset for the housing transactions in Lisbon from
2018 to 2021 in Figure 1 presents a distinct pattern that underscores the city’s real estate
dynamics and infrastructure influence. A pronounced concentration of the most expensive
transactions is evident within the city center. This area of high-value real estate transactions
aligns predominantly along a north/south axis. This axis mirrors the trajectory of the
principal subway line, suggesting a strong correlation between transit accessibility and
property values. Such a pattern underlines the importance of efficient public transportation
and its role in shaping real estate prices. The subway, serving as a primary urban artery, not
only facilitates mobility but also accentuates the desirability of properties in its proximity,
leading to a premium on centrality. As we move away from this central axis, there is a
discernible decrease in transaction values. From the city center outward, this gradient is
a classic representation of urban real estate dynamics where centrality often commands
a premium.

Nevertheless, new zones of real estate significance are emerging as we move toward
the city’s peripheries, particularly along the edges of the Tagus River. The Parque das
Nações county, located on the easternmost side of the river, is witnessing a surge in
real estate activity. Its contemporary urban planning, waterfront vistas, and modern
amenities are driving its transformation into a sought-after residential and commercial
hub. Conversely, the historic Belém county is also experiencing a renewed interest in
the city’s westernmost edge. Renowned for its cultural landmarks, Belém blends its
rich history with modern development, making it a compelling choice for real estate
investment opportunities.

This spatial distribution, from the bustling city center to the evolving river edges, ex-
emplifies Lisbon’s dynamic real estate market. The interplay between historical significance,
urban infrastructure, accessibility, and waterfront development is crafting a multifaceted
real estate landscape. For stakeholders, from investors to urban planners or policymakers,
understanding such patterns and the factors driving them is crucial for future strategies
and decision making.
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Figure 1. Spatial distribution of real estate transactions by price in Lisbon (2018–2021): This map
visualizes property sales in Lisbon, differentiated by price ranges depicted in various colors, providing
a clear indication of pricing hotspots and the economic landscape of Lisbon’s real estate market over
four years. Key counties such as Parque das Nações and Belém are marked alongside city and county
boundaries for contextual reference.

2.1.2. Data Sources and Datasets

The data used in this study come from housing transactions in Lisbon that took place
between 2018Q1 and 2021Q4. The original dataset under scrutiny captured 23,781 real
estate transactions within Lisbon. This raw data are proprietary and were provided by Con-
fidencial Imobiliário (https://www.confidencialimobiliario.com/ (accessed on 11 January
2024)), an independent databank, and encompass a listing collection with the properties’
intrinsic attributes, such as technical specifications, amenities, and location, and the extrin-
sic details related to the transactions. Technical specifications include variables such as
the private gross area in square meters, the energy performance certificate, and property
quality status. House amenities include the number of bedrooms and whether the dwelling
has a garage, pool, terrace, or patio. Concerning the location, we have information about
the geographical coordinates, the postal code, and the county denomination. Transaction
specifications include the selling price in Euros, the initial asking price, the transaction date,
and the market placement date.

Predictive modeling aims to harness data that contribute to a robust understanding
of trends and allow for precise predictions. The enrichment process is a common practice
in data science to add value to existing data and to provide deeper insights by linking
related information from different domains. In our study, this enrichment process combines
proprietary real estate data with external open datasets for a more comprehensive analysis.
Therefore, integrating contextual open data may significantly enhance the performance of
machine learning models. This enrichment is essential for optimizing predictive modeling,
leading to more effective solutions for smart cities [12,15,16,54]. Therefore, to improve
our machine learning model performance and accuracy, we assembled several public
datasets from various open data platforms covering the same period, which we used as
comprehensively as possible to investigate and derive valuable insights into Lisbon’s real
estate dynamics during these years, understand the factors influencing property prices,
and predict future trends in this ever-evolving market.

https://www.confidencialimobiliario.com/
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The open data gathered covers a wide range of specific urban indicators, from mobility
(bus stops and proximity to subway and train stations) [44,55,56], quality of life and well-
being (culture, commerce, education, health, leisure, and environment) [35,57–61], and
governance (housing licensing, safety, and security) [21,62,63] to broader macroeconomic
and financial indicators (inflation rate, unemployment, gross domestic product, and bank
appraisals) [24,33,64,65]. These indicators play a crucial role in influencing the functionality
and growth of a smart city and are instrumental in cities’ assessment and evaluation. They
offer valuable insights into urban development, economic performance, financial stability,
and overall competitiveness [20,66,67].

Table 1 describes the primary data sources, including proprietary and open datasets,
which we merge and append into one large dataset comprising 25 predictor variables to
estimate real estate prices. By leveraging eXplainable AI (XAI) techniques to analyze the
outputs of an XGBoost model with this enriched dataset, we aim to provide an in-depth
and transparent perspective on the trends, patterns, and nuances of the housing market in
Lisbon. Therefore, our approach underscores the potential of integrating publicly available
datasets to enhance the accuracy and accountability of predictive analytics in property
investments and urban planning initiatives.

Table 1. Real estate data variables, categories, and sources.

Variable Description Data Category 1 Data Source 2

Price Transaction price of the dwelling (EUR) (not including taxes) Proprietary data Micro-SIR
BankEval Median value of bank appraisal (EUR/m2) by parish; monthly Open data INE
Bedroom Number of bedrooms of the dwelling Proprietary data Micro-SIR

Bus Number of bus stops within a 250 m radius of the dwelling Open data Transporlis
Commerce Distance to the nearest shopping facilities (malls and markets) (m) Open data Geodados Lisboa

ConstrPermits Number of new residential permits issued; monthly Open data BdP
CPI Consumer Price Index (Inflation rate); monthly; year-on-year rate of change Open data BdP

Culture Distance to the nearest cultural facilities (cinemas, museums, theaters, art
galleries, and libraries) (m) Open data Geodados Lisboa

EPC Energy Performance Certificate: 1—A+, 2—A, 3—B, 4—B-, 5—C, 6—D, 7—E,
8—F, 9—G Proprietary data Micro-SIR

GDP Gross Domestic Product at market prices; quarterly; chained
volume—year-on-year rate of change Open data BdP

Health Distance to the nearest health facilities (public and private hospitals and health
centers) (m) Open data Geodados Lisboa

Latitude Latitude of the dwelling’s postal code centroid (degrees) Proprietary data Micro-SIR
Longitude Longitude of the dwelling’s postal code centroid (degrees) Proprietary data Micro-SIR

Parks Distance to the nearest park (m) Open data Geodados Lisboa
PGA Private gross area of the dwelling (m2) Proprietary data Micro-SIR

PropCond Dwelling quality status: 0—Used, 1—New Proprietary data Micro-SIR

Safety Distance to the nearest safety facilities (fire department stations and civil
protection units) (m) Open data Geodados Lisboa

School Number of school facilities (public and private schools and basic, secondary,
and professional schools) within a 500 m radius of the dwelling Open data Geodados Lisboa

Security Distance to the nearest security facilities (municipal police and public security
police stations) (m) Open data Geodados Lisboa

Sports Distance to the nearest sports facilities (m) Open data Geodados Lisboa
Subway Distance to the nearest subway station (m) Open data Geodados Lisboa

Train Distance to the nearest train station (m) Open data Geodados Lisboa
Trees Number of trees within a 75 m radius Open data Geodados Lisboa

University Distance to the nearest university (m) Open data Geodados Lisboa

UnempRate Unemployment percentage of the active population aged between 16 and
74 years old; monthly Open data INE

ZIP7 Numeric representation of the 7-digit postal code in the “NNNN.NNN” format Proprietary data Micro-SIR

1 Proprietary data: variables retrieved from the initial dataset (raw data); Open data: variables sourced from
external, open datasets. 2 BdP—Bank of Portugal (https://bpstat.bportugal.pt/) (accessed on 3 December
2023); Geodados Lisboa—Lisbon City Council’s georeferenced open data platform (https://geodados-cml.hub.
arcgis.com/) (accessed on 3 December 2023); INE—Statistics Portugal (https://www.ine.pt/) (accessed on
3 December 2023); Micro-SIR—Confidencial Imobiliário (https://www.confidencialimobiliario.com/en/base-
de-dados/micro-sir/) (accessed on 3 December 2023); Transporlis—Transporlis (https://www.transporlis.pt/)
(accessed on 3 December 2023).

https://bpstat.bportugal.pt/
https://geodados-cml.hub.arcgis.com/
https://geodados-cml.hub.arcgis.com/
https://www.ine.pt/
https://www.confidencialimobiliario.com/en/base-de-dados/micro-sir/
https://www.confidencialimobiliario.com/en/base-de-dados/micro-sir/
https://www.transporlis.pt/
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2.1.3. Descriptive Statistics

Before deploying our machine learning models, we first preprocessed the data. Dur-
ing this stage, we addressed missing values within the dataset, particularly for the EPC
feature, which had a 12.05% missing rate. We used a simple imputation method, replacing
missing values with the mode to preserve the feature’s ordinal nature. Conversely, features
with a high percentage of missing values, such as Garage, Pool, Terrace, and Patio, were
excluded from our analysis. This decision was due to their excessively high missing rates,
with the Garage at 30.14% and the Pool, Terrace, and Patio all sharing a missing rate of
34.07%. Excluding these variables prevents potential distortion in the predictive model
outcomes [68].

Our approach included detecting and handling outliers in the target variable price,
recognizing that outliers can significantly impact model performance and generalizability,
particularly in regression models. Outliers can distort a model’s generalization ability by
leading it to overfit these extreme values. Therefore, we applied the Modified Z-score
method to identify individual outliers in a single variable [69]. This method, relying on the
median and median absolute deviation (MAD), is particularly effective for non-normally
distributed data, such as the right-skewed distribution of the price feature. The Modified
Z-score method, with a threshold of 3.5, was used to identify and remove 1204 outliers
from the price feature that could skew our analysis.

In addition to this univariate treatment, we performed a multivariate outlier inspection
by considering PGA (private gross area), the feature most highly correlated with price. We
specifically targeted unusual combinations of values across these two features that are un-
likely to be encountered in real-world deployment scenarios. In this process, we identified
and removed observations with abnormally low prices per square meter, specifically those
under EUR 1000/m2. This analysis resulted in the exclusion of 107 observations from our
dataset. By treating outliers, we refined our dataset to 22,470 records, retaining only those
real estate transactions that most typically reflect the broader market trends and represent
the majority of the population of our dataset.

Our study employed ArcGIS Pro (version 3.2.2) within a Geographic Information
System (GIS) framework to analyze the impact of urban amenities and infrastructure ac-
cessibility on patterns of real estate transactions. The preprocessing of open data features
was approached using two methods. First, we quantified the number of points of interest
(POIs)—such as Trees, Bus stops, and Schools—within each property listing’s 75, 250,
and 500 m radii, respectively. This process involved creating spatial buffers around the
properties and afterward counting the POIs within these areas to assess the density of
amenities. Second, we calculated the distance from each property to the nearest POI cate-
gories, including Commerce, Culture, Health, Parks, Safety, Security, Sports, Subway, Train,
and University facilities, using proximity calculations to establish potential accessibility.
The outlined methodology is designed to elucidate the spatial dynamics between property
transactions and the attractiveness of various urban zones, providing insights critical for
real estate valuation and urban development planning.

To manage the issue of high dimensionality and the problems with one-hot encodings,
like increased sparsity and multicollinearity, we converted 7-digit postal codes into a
numerical format and binary encoded the property condition feature (PropCond).

Feature selection was conducted using Recursive Feature Elimination (RFE) in con-
junction with feature importance scores from XGBoost models and correlation matrices.
We partitioned our dataset into two segments, using 80% for training purposes and the
remaining 20% for testing, in line with the standard train–test split methodology. Feature
scaling was accomplished using the StandardScaler from the scikit-learn library, fitted
only on the training data, and then applied to both the training and testing data to avoid
data leakage.

After preprocessing, we selected 25 features for the final dataset. Table 2 presents
this dataset’s descriptive statistics, offering an overview of the data types, mean values,
standard deviations, and a five-number summary for a succinct overview of the dataset’s
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distribution. It also includes measures of skewness, Fisher’s kurtosis, and Pearson’s
correlation coefficients to highlight the features’ distribution and their linear relationship
with the target variable price.

Table 2. Summary statistics for the target variable and features (N = 22,470).

Feature
Name

Data
Type Mean St. Dev. Min. 25% 50% 75% Max. Skew. Kurt.

Corr.
with
Price

Price Numerical 306,046.33 155,053.56 37,705 188,000 270,000 383,558 810,000 0.98 0.42 1
BankEval Numerical 2929.44 166.91 2483 2830 2979 3040 3830 −0.43 0.56 0.10
Bedroom Numerical 2.22 1.16 0 1 2 3 10 0.64 0.63 0.43

Bus Numerical 7.50 3.58 0 5 7 10 23 0.73 0.88 −0.05
Commerce Numerical 508.40 366.93 17.32 249.31 408.30 697.04 3133.37 1.73 5.23 −0.15

ConstrPermits Numerical 2106.18 378.03 1355 1871 2082 2337 3172 0.50 0.17 0.04
CPI Numerical 0.70 0.70 −0.70 0.10 0.60 1.00 2.70 0.80 0.63 0.03

Culture Numerical 259.19 205.30 3.65 118.86 212.21 357.09 2539.90 2.72 16.19 −0.18
EPC Ordinal 5.63 1.26 1 5 6 6 9 −0.83 1.48 −0.30
GDP Numerical 1.34 5.96 −17.80 1.00 2.73 3.00 17.00 −0.70 1.75 0.01

Health Numerical 474.15 294.26 7.37 272.74 429.62 626.59 3296.81 2.27 12.28 −0.05
Latitude Numerical 38.73 0.02 38.69 38.72 38.73 38.74 38.80 0.62 −0.12 0.01

Longitude Numerical −9.15 0.03 −9.23 −9.16 −9.15 −9.13 −9.09 −0.61 −0.05 −0.07
Parks Numerical 331.29 187.06 5.64 196.78 300.28 421.82 1295.44 1.19 1.97 −0.12
PGA Numerical 87.29 37.90 26 60 79 107 631 1.45 4.79 0.72

PropCond Binary 0.08 0.27 0 0 0 0 1 3.18 8.14 0.21
Safety Numerical 870.79 525.79 17.32 502.10 769.54 1147.63 3776.78 1.31 2.32 0.01
School Numerical 8.74 5.15 0 5 8 12 30 0.90 0.80 0.02

Security Numerical 513.24 259.02 13.16 320.93 484.83 664.92 2073.19 0.82 1.43 −0.10
Sports Numerical 148.41 81.91 7.36 86.37 135.91 194.09 560.71 0.85 0.72 0.09

Subway Numerical 925.67 1123.06 3.58 319.50 520.41 988.07 6343.07 2.53 6.04 −0.10
Train Numerical 1096.24 713.11 18.40 638.14 983.88 1357.03 5438.74 2.23 7.54 0.00
Trees Numerical 16.73 19.43 0 1 10 27 186 1.72 4.34 0.16

University Numerical 699.23 387.44 9.61 414.60 641.27 914.73 2921.03 1.23 3.01 −0.13
UnempRate Numerical 6.88 0.51 5.70 6.50 6.80 7.10 8.30 0.69 0.43 −0.06

ZIP7 Numerical 1378.18 298.64 1000.00 1150.31 1300.00 1600.66 1990.62 0.64 −0.94 −0.18

2.2. Methods

This section outlines the analytical methods employed to analyze the previous dataset.
The methods employed in this study contribute to the accuracy and interpretability of our
model’s output. We introduce XGBoost as our primary modeling technique, chosen for its
efficacy in predictive modeling, followed by a description of the Optuna hyperparameter
tuning strategy to maximize model performance. We then describe the performance metrics
selected to assess our models’ effectiveness, ensuring a multidimensional evaluation. Lastly,
we detail incorporating the SHAP method to provide transparency and interpretability
in our model’s decision-making process. This analytical framework emphasizes the im-
portance of XAI and open data in addressing urban challenges and the critical need for
transparency in AI-driven analytics.

2.2.1. Extreme Gradient Boosting

The dynamics of real estate markets are complex and influenced by multiple interact-
ing factors. Rather than being straightforward or directly proportional, real estate markets
do not always follow a straight or predictable path. Instead of a simple cause-and-effect
relationship, where a given change in one factor (like an increase in interest rates) leads
to a proportional change in real estate prices, the relationship might be more complex.
Small changes in one variable might significantly affect prices under certain conditions and
negligible effects under others. Also, multiple factors can influence real estate prices simul-
taneously, and their combined effect might differ from the sum of their individual effects.
For instance, the combination of low interest rates and high demand might push prices
up more significantly than expected by considering each factor separately. Therefore, real
estate markets exhibit non-linearity and joint effects, which machine learning algorithms
adeptly handle [27,30,70].
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In this study, we employ the eXtreme Gradient Boosting (XGBoost) algorithm, a
highly performant and robust tree-based machine learning method developed by Chen
and Guestrin [71], for predicting real estate prices [72,73]. XGBoost, an advanced imple-
mentation of Friedman’s Gradient Tree Boosting algorithm [74], excels due to its unique
combination of bagging and boosting techniques for ensemble learning. The bagging com-
ponent enhances model stability and accuracy by training multiple models in parallel with
independent sampling. The boosting aspect sequentially generates trees, with each new
tree aiming to rectify the shortcomings of its predecessor, thereby incrementally improving
the model’s accuracy. This dual approach makes XGBoost particularly effective and widely
adopted in research and industry, suitable for diverse applications, including regression
and classification problems [75].

The XGBoost algorithm employs an objective function that combines a loss function
for assessing prediction error and a regularization component that imposes penalties on
model complexity to prevent overfitting. This combination is crucial for maintaining the
balance between bias and variance. The loss function (l) measures how well the model’s
predictions match the actual data. For classification problems, it could be a log loss function,
and for regression problems, it might be a mean squared error or another suitable metric.
The regularization term (Ω) is the part of the objective function that penalizes complexity,
which helps to prevent overfitting. This term is made up of two parts: one that penalizes
the number of leaves in the trees (γT) and another that penalizes the magnitude of the leaf
weights ( 1

2λ∥w∥2), where γ and λ are regularization parameters.
The combination of these two elements constitutes the XGBoost objective function and

is formally represented as [71]:

L(ϕ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) (1)

where Ω( f ) = γT + 1
2λ∥w∥2.

This composite objective function aims to find a balance between fitting the model
accurately to the training data (minimizing the loss function) while keeping the model
simple enough to generalize well to unseen data (minimizing the regularization term).
This dual-component objective function ensures a balance between model complexity and
predictive performance, which is crucial to the effectiveness of the XGBoost algorithm.

The algorithm’s performance is primarily influenced by its hyperparameters, includ-
ing “gamma”, which controls regularization on the tree’s leaves; “n_estimators”, which
specifies the number of trees to be built; and “max_depth”, which determines the depth of
each tree and is essential in controlling overfitting. These hyperparameters control model
complexity, thus influencing the trade-off between bias and variance and, ultimately, the
model’s predictive prowess on unseen data. One can significantly enhance the model’s
predictive capabilities by fine-tuning these hyperparameters. The interplay of these hyper-
parameters with the loss reduction and regularization terms allows XGBoost to enhance
its performance adaptively with each iteration, effectively handling various predictive
modeling tasks. Moreover, XGBoost enables parallel tree boosting to expedite computa-
tional processes, which not only quickens the training speed but also ensures more efficient
employment of hardware resources, thereby enhancing overall model training throughput
and scalability [71].

2.2.2. Hyperparameter Tunning

Fine-tuning hyperparameters is a crucial step in machine learning for improving model
effectiveness. Optuna (https://optuna.org/ (accessed on 11 January 2024)), developed
by Akiba et al. [76], is an advanced hyperparameter optimization framework designed
to automate the optimization process of machine learning models. It is renowned for its
efficiency and flexibility, supporting various optimization techniques. It automatically
determines the best set of hyperparameters to optimize the model’s performance.

https://optuna.org/
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Optuna uses techniques such as Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) optimization, Tree-structured Parzen Estimator (TPE) optimization, Random
Search, and Grid Search methods to identify the optimal hyperparameters. Optuna has
been used to tune hyperparameters for tasks such as sales prediction [77], impedance
forecasting [78], and multi-class classification [79], among others. By automatically ad-
justing the hyperparameters, Optuna can enhance machine learning models’ accuracy
and generalization potential, reducing the time and effort needed for manual tuning and
leading to better forecast accuracy and improved performance.

By default, Optuna uses TPE as its default sampler, which is a Bayesian optimization
method. TPE uses results from previous trials to inform the sampling of hyperparameters
for subsequent trials. If early trials identify a promising region of the hyperparameter space,
subsequent trials might focus on this region, leading to quick convergence. It introduces a
novel pruning mechanism that efficiently discards unpromising trials, accelerating opti-
mization. Optuna offers visualization tools to analyze the optimization process, providing
insights into hyperparameter impacts and relationships. It has been effectively used in
tuning deep neural networks [76], gradient boost models [80], AutoML systems [81], and
reinforcement learning [82], among others, significantly improving model accuracy and
performance [76,83].

Optuna supports parallel trials, which is an essential feature in increasing the speed
of hyperparameter tuning. This parallelization allows multiple trials to be conducted
simultaneously, leveraging multi-core processors and distributed computing environments.
By running trials in parallel, Optuna significantly reduces the time required to find optimal
hyperparameters, especially in cases where individual trials are time-consuming. This
feature is particularly useful in complex machine learning tasks where hyperparameter
tuning can be a bottleneck in the development process. Optuna achieves this parallelization
while maintaining efficiency and accuracy in the optimization process [76].

2.2.3. Evaluation Metrics

When dealing with regression tasks such as real estate price prediction, several metrics
can be used to provide a comprehensive understanding of the model’s performance. These
metrics are essential for assessing the performance of machine learning algorithms, as they
provide a quantitative measure of their accuracy, precision, and generalization capabilities.
The choice of metric can rely on the specific characteristics of the data and the business
objectives [84].

When evaluating the performance of our XGBoost models, we prioritized the Mean
Absolute Error (MAE) as the primary evaluation metric. This decision aligned the objective
function used during the training phase and the criteria for performance assessment. Since
our models were optimized using MAE as the objective function via Optuna, it stands to
reason that MAE should be the primary metric for assessing the model’s performance. This
approach ensures that our evaluation meets the most critical objectives and constraints
during the model’s optimization process.

Furthermore, MAE provides a direct and interpretable measure of average prediction
error, enhancing its practicality for clear and effective communication with stakeholders.
This metric quantitatively expresses the average deviation of predictions from actual values
without overly penalizing larger errors. This characteristic is especially crucial in our
analysis, considering that the price distribution in our dataset is right-skewed. Such a
skewness naturally results in outliers, which can disproportionately influence error metrics
that square errors, like in Mean Squared Error (MSE) for example, where errors are squared
before they are averaged, which leads to larger errors having a disproportionately more
significant impact on the final metric value. By opting for MAE, we ensure a more balanced
evaluation that reflects the typical prediction error, acknowledging the inherent variability
within our dataset.

That said, MAE determines the average size of the errors in a set of predictions, not
considering their direction, and is commonly used in statistics and machine learning for
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assessing the accuracy of continuous variables. It represents the mean of the absolute
differences between prediction and actual observation across the test sample, treating
all individual differences with equal weight. MAE is calculated using the mathematical
formula in Equation (2).

MAE(y, ŷ) =
1
n

n

∑
i=1

|yi − ŷi| (2)

where

• yi represents the actual observed values in the dataset;
• ŷi denotes the predicted values generated by the model;
• n is the number of observations in the dataset;
• |yi − ŷi| represents the absolute error for each individual prediction.

While focusing exclusively on a single metric like MAE could potentially lead to a
narrow view of the model’s performance, incorporating a variety of metrics can offer a more
holistic and nuanced evaluation. This is especially crucial as different metrics highlight
different aspects of model accuracy and error behavior. To this end, in addition to MAE,
we also assessed the model using three additional key metrics: MAPE (Mean Absolute
Percentage Error), RMSE (Root Mean Squared Error), and the R2 Score (Coefficient of
Determination). MAPE provides insight into the relative size of errors as a percentage,
lending a sense of the error magnitude concerning the actual values. RMSE assesses
the impact of larger errors as it squares them before averaging, thereby emphasizing
larger deviations. The R2 Score measures the degree to which the independent variables
in a regression model account for the fluctuations observed in the dependent variable,
indicating the model’s goodness of fit. This combined approach, utilizing MAE, MAPE,
RMSE, and R2, ensures a comprehensive and multifaceted evaluation of the regression
model, encompassing both absolute and relative error measures and overall model fit.

The Mean Absolute Percentage Error (MAPE) measures each prediction’s average
absolute percent error, providing a scale-independent assessment of error magnitude. It
expresses accuracy as a percentage, which can be easier to interpret than other metrics. The
formula of MAPE is given by Equation (3).

MAPE(y, ŷ) =
1
n∑n

i=1

∣∣∣ yi−ŷi
yi

∣∣∣× 100% (3)

The Root Mean Squared Error (RMSE) assesses the standard deviation of errors within
predictions. It is computed by taking the square root of the mean of squared differences
between actual and predicted values, and it provides error magnitude in the same units as
the variable being predicted, which can be directly interpretable. This metric is sensitive to
large errors and can be more informative than MAE when large residuals are undesirable
or costly. The formula of RMSE is given by Equation (4).

RMSE(y, ŷ) =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

The Coefficient of Determination (R2 Score), while not an error metric per se, is a
statistical indicator that measures the ratio of the variance in the target variable that is
attributable to the predictor variables in a regression model. It indicates the goodness of fit
and, therefore, measures how well unseen samples are likely to be predicted by the model.
An R2 value of 1 indicates that the regression predictions perfectly fit the data, whereas an
R2 value of 0 signifies that the model does not explain any variation in the response data
around its mean. The formula of R2 is given by Equation (5).

R2(y, ŷ) = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (5)
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where y is the mean of the observed values y. It is calculated as y = 1
n ∑n

i=1 yi.
To calculate the percentage reduction in each evaluation metric (MAE, MAPE, and

RMSE) from a baseline model (proprietary data) to a final model (open data), we computed
the following difference ratio:

Percentage Reduction =

(Metric valuebaseline − Metric value f inal

Metric valuebaseline

)
× 100% (6)

The result shows how much improvement in prediction accuracy (in terms of MAE,
MAPE, and RMSE) our final model has achieved compared to the baseline model. A higher
percentage indicates a more significant improvement.

To calculate the percentage gain (or improvement) in the R2 score from the baseline
model to the final model, we follow a similar approach as with the other evaluation metrics,
with some adjustments for the nature of the R2. The percentage gain can be calculated
as follows:

Percentage Gain =

(
R2

f inal − R2
baseline

R2
baseline

)
× 100% (7)

2.2.4. Explainable Artificial Intelligence

Machine learning systems are increasingly being adopted, pushing society toward a
new era of algorithmic decision making [85]. While these systems become more integral to
various domains, their decisions bear a higher potential for societal impact, emphasizing
the importance of trust, transparency, and understanding these complex models. Many
advanced ML models operate as black boxes. Their opaqueness poses challenges as users,
regardless of expertise, cannot fully understand or verify the rationale behind the system’s
decisions [86].

Historically, the focus of AI has shifted toward predictive power, leaving interpretabil-
ity behind. Given the complexities of black box models, there is a growing emphasis and
need for machine learning interpretability to make these systems more transparent and
trustworthy. Explainable Artificial Intelligence (XAI), a term coined by Lent et al. [87], is an
emergent field aiming to enhance the transparency of AI systems without compromising
their predictive performance. XAI uses explanations to elucidate the predictions of ML
models to users, serving as tools to achieve interpretability, typically relating the feature
values of data to predictions in a comprehensible manner.

XAI encompasses a wide range of model-specific and model-agnostic techniques
to improve the interpretability of machine learning models. Model-specific methods
are designed to work with specific types of ML models. They leverage the inherent
characteristics and structures of those models to provide explanations. For example, the
parameters within a linear regression model or the architecture of a decision tree inherently
provide interpretability. For deep neural networks, techniques like feature visualization or
class activation mapping can provide insights specific to the architecture. Model-agnostic
methods offer explanations for interpreting black box models independent of the ML
model type, regardless of its internal architecture. They operate post hoc, meaning that
after the model has made a prediction, they do not interfere with its internal workings
or performance. Examples include methods that provide model-agnostic explanations,
such as LIME (Local Interpretable Model-agnostic Explanations) [88], which approximates
predictions with local and simpler interpretable models, and SHAP [47], which calculates
the contribution of each feature to the prediction by using Shapley values, a concept initially
developed in cooperative game theory [48].

The SHAP method has been widely applied across various domains for interpreting
machine learning models, including finance [89], healthcare [90], and environmental sci-
ences [91], to provide interpretable explanations of complex machine learning models. In
our study, we leverage the predictive capabilities of an XGBoost ML model and enhance
its interpretability using SHAP. We aim to decode the model’s predictions, evaluate each
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feature’s significance, and provide a comprehensive view of the model’s behavior and
decision-making process. Using SHAP, we understand feature importance and identify the
most influential features in making the predictions [47].

The SHAP method computes a value to each feature, representing its contribution to
the model’s prediction for a specific instance while considering all possible combinations
of features. By attributing these Shapley-based values to each feature, the SHAP method
enables an understanding of the relative importance of different features in influencing the
model’s predictions. The formula for computing SHAP values is based on Shapley values.
The Shapley value formula, represented by Equation (8), calculates the contribution of each
feature (or “player” in game theory) to the predictive model [47].

ϕi(v) = ∑
S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|! [v(S ∪ {i})− v(S)] (8)

where

• ϕi(v) is the Shapley value for feature i;
• N is the set of all features;
• S is a subset of features, with the exclusion of feature i;
• |S| is the number of features within subset S;
• |N| is the total number of features;
• v(S) is the prediction model evaluated with the features in subset S;
• v(S ∪ {i}) is the prediction model evaluated with the features in S plus feature i.

The formula calculates the average marginal contribution of feature i across all possible
combinations of features. It does so by summing over all subsets of features S that do not
include i, computing the difference in the model’s prediction with and without feature i in
each subset. The factorial terms are used for weighting these differences to ensure a fair
distribution of contributions among the features.

In the context of SHAP in machine learning, this formula is adapted to calculate the
contribution of each feature to the prediction of a machine learning model for a specific
instance. The SHAP method applies this formula to understand how each feature value
changes the prediction from what it would be if that feature were absent (or at its baseline
value). The strength of this approach lies in its equitable distribution of predictive con-
tributions among feature values. This allows for the assessment of importance ranging
from local (individual sample-based) to global (overall model) explanations, leveraging the
additive property of SHAP.

The SHAP values offer an intuitive understanding of feature importance by quan-
tifying the contribution of each feature to the prediction. Positive SHAP values indicate
that a feature increases the prediction, while negative values suggest the opposite. The
SHAP value’s magnitude represents the contribution’s strength, allowing for comparing
the relative importance of different features. This interpretability of SHAP values enhances
the transparency and trustworthiness of machine learning models.

3. Results

This section presents the results obtained from a comprehensive three-phase analysis
focused on predicting real estate prices using an XGBoost model. Initially, we provide a
concise yet comprehensive comparative model analysis overview, justifying the XGBoost
model selection based on empirical evidence in alignment with the study’s predictive accu-
racy and model interpretability objectives. Next, the best-performing model, the Baseline
Model—for proprietary data, is expanded into an Open Data Model by incorporating open
data features and then retrained, allowing for a detailed examination of its impact on pre-
dictive precision and providing the most complete and performant solution. Subsequently,
we explore SHAP values analysis to interpret the predictions of the Open Data Model,
offering deep insights into the importance of features and interactions.
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In this section, we present the results produced using Python (version 3.10.12), em-
ploying a variety of libraries offering an extensive array of capabilities. We utilized pandas
(version 1.5.3), numpy (version 1.23.5), and scikit-learn (version 1.2.2) for data manipu-
lation and analysis. Machine learning tasks were executed using xgboost (version 2.0.1)
and tensorflow (version 2.15.0). We integrated optuna (version 3.4.0) and scipy (version
1.11.3) for optimization purposes. Visualization tasks were accomplished with the assis-
tance of seaborn (version 0.12.2), matplotlib (version 3.7.1), plotly (version 5.15.0), and
kaleido (version 0.2.1). The utility library joblib (version 1.3.2) was used for intermediate
storage and loading, while platform-specific operations were managed by the google.colab
library (version 1.0.0). We incorporated shap (version 0.44.0) for in-depth model explana-
tion and interpretability. All these workflows were executed in the cloud-based runtime
environment of Google Colab (https://colab.research.google.com/ (accessed on 11 Jan-
uary 2024)), leveraging VMs equipped with Nvidia’s T4 GPU hardware acceleration and
high-RAM capabilities.

3.1. Comparative Analysis of Predictive Models

Our comparative analysis aims to discern the most performant model for predicting
real estate prices, a crucial step toward enhancing the accuracy and reliability of real estate
analytics, particularly in the context of this study’s dataset and regression task. To this end,
we systematically evaluated a selection of commonly employed predictive models in real
estate analytics—XGBoost [11], Random Forest Regression (RFR) [92], AdaBoost [32], and
artificial neural networks (ANN) [30]—using a comprehensive suite of evaluation metrics.
These metrics, including Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Root Mean Squared Error (RMSE), and the R2 coefficient, were applied across
training and testing datasets to measure each model’s performance in terms of accuracy,
consistency, and ability to generalize to new data.

Our analysis highlighted XGBoost as the standout model, particularly excelling in test
dataset generalization, a key indicator of its robustness against overfitting and superior
predictive accuracy. While Random Forest showed promise in training performance,
XGBoost’s consistent superiority across training and testing underscored its balanced
approach to error reduction and precision in prediction. Conversely, despite showing
potential, AdaBoost and ANN fell short of XGBoost’s benchmarks, with ANN notably
underperforming in predictive accuracy despite its theoretical capacity to model complex,
non-linear relationships, suggesting a misalignment with the specific characteristics of our
real estate dataset.

Table 3 succinctly presents our comparative findings, underlining XGBoost’s optimal
balance between training performance and testing applicability, particularly its lower error
rates and higher R2 values on unseen data. These results advocate for XGBoost’s selection
and underscore its potential in real-world applications, where generalizing from historical
to future data is crucial.

Table 3. Comparative performance of predictive models on real estate proprietary data.

Dataset Metric XGBoost RFR AdaBoost ANN

Train

MAE 40,821.22 36,166.76 73,917.53 63,803.96
MAPE 16.66 14.34 31.27 58.37
RMSE 55,568.64 51,184.51 95,210.09 91,295.80

R2 0.87 0.89 0.62 0.65

Test

MAE 51,733.88 52,678.57 74,764.45 65,366.37
MAPE 19.58 19.74 30.43 58.31
RMSE 72,488.87 74,482.71 97,492.31 94,369.38

R2 0.79 0.78 0.62 0.64

Choosing XGBoost aligns with our broader research objectives, specifically enhancing
model transparency and interpretability via Explainable AI (XAI) techniques. This approach

https://colab.research.google.com/
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increases the utility of XGBoost and provides stakeholders in the real estate sector with clear,
understandable insights into the factors influencing price predictions. The selected model’s
robustness and XAI integration significantly strengthen the credibility and trustworthiness
of our study’s findings.

In conclusion, the systematic evaluation of predictive models supports the selection
of XGBoost for its adept handling of real estate data complexities. By achieving an ideal
equilibrium between minimizing overfitting risks and maximizing predictive accuracy,
XGBoost stands out as the benchmark, meeting our analysis criteria. The implications of
this choice extend far beyond this study, setting a foundation for innovative approaches to
predictive modeling in real estate analytics.

3.2. Model Training and Optimization

Our analysis employs an XGBoost model trained on an 80–20 train–test split in our
modeling process. The model undergoes training using the training dataset, and Optuna is
employed for hyperparameter optimization. Within Optuna, the objective function utilizes
10-fold cross-validation to compute the model’s Mean Absolute Error (MAE) with the
best hyperparameters found. The data are randomized before fold-splitting, ensuring that
each fold is a representative mix of the whole dataset, thus improving the robustness and
reliability of the cross-validation process and effectively preventing any order-based biases
during the data division process. In shuffling the data, a fixed Hitchhiker’s 42 random seed
was set to ensure reproducible results.

The model is trained and evaluated during each cross-validation fold, and the MAE
is calculated. Optuna intelligently searches the hyperparameter space, and the objective
function reports intermediate results and determines if a trial should be pruned based on
performance, speeding up the optimization process. Early stopping is also used to prevent
overfitting during training. This method divides the dataset into ten subsets (or folds). The
model is trained on nine of these folds and tested on the remaining one. This process is
repeated ten times, each time with a different fold used as the test set, and the MAE is
calculated for each iteration. The average MAE across all folds is then used as a criterion
for optimization, and it measures how close the model’s predictions are to the actual values,
with a lower MAE indicating the better performance of the model.

Optuna’s objective is to identify a combination of hyperparameters that minimize
this average MAE. This iterative process is optimized over 100 trials. Each trial involves
training a model with a different set of hyperparameters to see which combination yields
the best performance, evaluated by its MAE score. Once the best-performing model (i.e.,
the best set of hyperparameters) is identified in each trial, this model is then retrained on
the entire training dataset. This approach validates model performance and guarantees the
model’s robustness. After 100 trials are completed, the overall best model is selected—the
one with the best MAE performance across all trials. This model is considered the most
optimal and is used for further testing and evaluation.

The model with the most optimal hyperparameter set is then used to make predictions
on the test dataset to evaluate the model’s performance on unseen data. Predictions are
made, and the model’s performance is thoroughly evaluated using the metrics MAE, MAPE,
RMSE, and R2 computed for the test set. Additionally, residuals were analyzed to diagnose
potential issues in predictions.

The above predictive analytics pipeline, involving training, hyperparameter tuning,
and evaluation for an XGBoost model, was thus first used to develop a Baseline Model
containing the seven features derived from proprietary data. Building on the Baseline
Model, we retrained the XGBoost model by integrating 18 additional features from open
data sources. Like the Baseline Model, the Open Data Model underwent the same pipeline.
The Baseline and Open Data Models are thus instantiations of the same XGBoost model.

Additionally, for both models, we conducted a fine-tuning process with several runs
to refine the hyperparameter space further and curb overfitting by iteratively adjusting the
ranges based on the previous best values found, considering the individual importance
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of each hyperparameter. This process allowed the optimization algorithm to fine-tune the
hyperparameters more closely. The goal was to balance model complexity with its general-
ization ability to unseen data, achieving a balance between performance and avoidance
of overfitting.

Table 4 presents the optimal hyperparameters for the two XGBoost models’ instan-
tiations (Baseline Model and Open Data Model), outlining their best-found values and
detailing the respective search ranges for these parameters for each model.

Table 4. Optimal hyperparameters of the XGBoost model (best value and search range).

Hyperparameter Description Type Baseline Model Open Data Model

n_estimators

The number of gradient boosted trees.
Equivalent to the number of boosting rounds.

Too many trees can lead to overfitting by
capturing more noise.

Integer 1961
(1800, 2100)

2031
(2000, 2050)

max_depth

Maximum tree depth for base learners.
Controls how deep each tree is allowed to
grow during any boosting round. Deeper

trees can capture more noise.

Integer 8
(6, 8)

11
(10, 11)

learning_rate
Step-size shrinkage is used to prevent

overfitting. It scales the contribution of each
tree by a factor between 0 and 1.

Float 0.007
(0.007–0.010)

0.013
(0.012, 0.013)

subsample

The proportion of data samples utilized to
train each base learner in the model. Values

less than 1 make the algorithm more
conservative and prevent overfitting.

Float 0.74
(0.65–0.75)

0.72
(0.70, 0.74)

colsample_bytree
The fraction of features to be used for each

tree. A value of 0.6 means that 60% of features
are used to train each tree.

Float 0.57
(0.50–0.60)

0.60
(0.50, 0.60)

gamma
Required minimal reduction in loss to further
split a leaf node in the tree. A larger gamma
simplifies the model, preventing overfitting.

Float 0.27
(0.20–0.30)

0.10
(0.10, 0.15)

reg_lambda
L2 regularization term (Lasso) on weights. It

is used to avoid overfitting by penalizing
large weights.

Float 1.84
(1.50–2.00)

1.95
(1.90, 2.20)

reg_alpha

L1 regularization term (Ridge) on weights. It
encourages sparsity in the final model

representation, allowing some features to be
entirely ignored.

Float 2.23
(1.80–2.30)

2.10
(1.90, 2.20)

min_child_weight

Minimum sum of instance weight (hessian)
required in a child node. Higher values help
prevent overfitting by avoiding learning from

overly specific data patterns.

Integer 3
(3, 5)

11
(9, 11)

Both models demonstrate a balanced strategy in subsampling ratios and feature
selection (colsample_bytree), carefully managing the trade-off between model complexity
and overfitting. The Open Data Model’s reduced gamma setting allows for more extensive
tree splits, thus enabling a finer granularity in capturing data patterns. With increased L2
(reg_lambda) and moderated L1 (reg_alpha), its regulatory strategy emphasizes feature
efficacy while managing model complexity.

A crucial aspect of the Open Data Model is the heightened min_child_weight, strategi-
cally set to prevent overfitting. Overfitting occurs when a model learns too much from the
training data, including the noise and fluctuations, which are not generalizable. This adjust-
ment is vital in real estate modeling, characterized by market variability across locations,
property types, and economic conditions, and an overly tailored (overfitted) model fitted
to a market segment, such as a particular location or property type, risks underperforming
in other segments. The deliberate enhancement of min_child_weight in the Open Data
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Model reflects a strategic choice to maintain the model’s versatility, as the model ensures
wide-ranging applicability by avoiding overemphasizing specific market segments.

Overall, the Open Data Model is engineered for precision and adaptability, aligning
with the dynamic nature of real estate markets. It deftly combines detailed pattern detection
with strategies to ensure reliability and generalizability, making it suitable for high-stakes,
varied market predictions.

Figure 2 depicts the price prediction error plots for the Baseline and Open Data Models.
It shows how well the predicted values (on the y-axis) match the true values (on the x-axis).
A perfect prediction would mean all points lie precisely on the dashed line, where the
predicted value equals the true value.
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plot (b) depicts the Open Data Model. Each plot contains points representing individual predictions. 
The closer the points are to the dashed line of perfect fit (where predicted values equal true values), 
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cating less accuracy, while the Open Data Model’s points are more concentrated around the identity 
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Figure 2. Comparative analysis of price prediction accuracy between XGBoost models: This figure
presents two scatter plots comparing predicted versus true values of real estate prices, with the
train data in blue and the test data in green. Plot (a) shows the performance of the Baseline Model,
while plot (b) depicts the Open Data Model. Each plot contains points representing individual
predictions. The closer the points are to the dashed line of perfect fit (where predicted values equal
true values), the more accurate the predictions. The Baseline Model shows a broader dispersion of
points, indicating less accuracy, while the Open Data Model’s points are more concentrated around
the identity line, suggesting higher accuracy in predictions.

Several insights emerge by examining the price prediction error plots for both models.
The Baseline Model plot shows a broad dispersion of predictions as the true values increase,
indicating increased difficulty in predicting higher-priced properties. There are distinct out-
liers, especially for higher true values, suggesting the model may not capture all the factors
influencing higher real estate prices. In the Open Data Model plot, the tighter clustering
of points around the dashed line indicates that the model predictions are generally more
accurate across the full range of prices. Its test points do not exhibit as much scatter relative
to the training points as in the Baseline Model, which might indicate better generalization.
The improved performance in the Open Data Model suggests that incorporating open data
features enhanced the model’s precision. Its consistent performance across different price
ranges implies a better understanding of the underlying relationships in the data.

The prediction errors concerning the predicted values can be assessed by analyzing the
residual plots of the Baseline and Open Data Models (Figure 3). The price prediction error
plots and the residual plots provide a comprehensive picture of each model’s performance.
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Figure 3. Residual analysis of price prediction models: The figure displays two residual plots for
evaluating the prediction errors of the two real estate price prediction models, with the train data in
blue and the test data in green. Plot (a) corresponds to the Baseline Model and plot (b) to the Open
Data Model. Each plot illustrates the residuals (the differences between predicted and actual prices)
on the y-axis against the predicted prices on the x-axis for both train (blue dots) and test (green dots)
datasets. Ideally, residuals should be randomly distributed around the horizontal line at zero (red
line), indicating that the model has no systematic error. The Baseline Model exhibits a broader spread
of residuals, suggesting higher variability in prediction errors, while the Open Data Model shows a
tighter clustering around the zero line, implying more consistent prediction accuracy.

The residual plot for the Baseline Model shows a noticeable spread in residuals as
the predicted property values increase, which could suggest a heteroscedasticity pattern,
where the errors’ variability increases with the prediction’s magnitude. This pattern might
indicate that the model’s predictive accuracy is not consistent across the range of property
values. The presence of residuals with large magnitudes, particularly on the higher end
of the predicted values, highlights the model’s limitations in accurately predicting more
expensive properties.

For the Open Data Model, the residuals are more tightly clustered around the zero line,
suggesting more consistent prediction errors across different values. This homoscedastic
pattern indicates that the model’s performance is more uniform, regardless of the prop-
erty’s value. The residuals are distributed more symmetrically around the horizontal axis,
implying fewer systematic biases in prediction.

When comparing the two models, it is evident that the Open Data Model provides a
more uniform performance with minor errors across the entire range of predicted values.
These facts suggest that the Open Data Model is more robust, potentially due to the
inclusion of the additional features of open data. The Baseline Model’s performance is
more variable, with the quality of predictions decreasing as property values increase, which
could indicate missing explanatory variables or features better captured in the Open Data
Model. Ultimately, the Open Data Model is more effective in predicting real estate prices
across all ranges with more consistent precision. The analysis suggests that incorporating
comprehensive and relevant open data features while ensuring the model captures the
complexity inherent in real estate pricing is crucial for reliable predictions.
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3.3. Model Evaluation

After training and hyperparameter optimization, we evaluate the performance of the
Baseline and Open Data Models using various metrics for a holistic assessment—MAE,
MAPE, RMSE, and R2, computed for the test set. Subsequently, a comparative analysis of
the model’s performance and reliability is made by juxtaposing both models’ performance
metrics. We calculate and discuss the Reduction/Improvement (%) in predictive precision,
clearly showing how open data contributes to our model. Via this dual approach of an
individual (standalone) performance evaluation and comparative analysis, we offer a
comprehensive overview of the models’ capabilities and quantitatively assess the value
added by the open data features.

The calculated performance metrics for the Baseline and Open Data Models in Table 5
provide quantitative insights into their predictive capabilities for real estate prices. The
performance metrics calculated on the test set estimate how the models will likely perform
in real-world scenarios, thereby providing an understanding of the model’s value.

Table 5. Evaluation metrics of the XGBoost model for prediction of real estate prices.

Dataset Metric Baseline
Model

Open Data
Model Reduction (%) Gain R2 (%)

Test

MAE 51,733.88 47,469.62 8.24 N/A
MAPE 19.58 17.75 9.36 N/A
RMSE 72,488.87 68,347.98 5.71 N/A

R2 0.79 0.81 N/A 2.96

The Baseline Model’s performance on the test set, with an MAE of 51,733.88 and a
MAPE of 19.58%, indicates that while it can capture some of the trends in real estate pricing,
its predictions may not be reliable enough for precise financial decision making. The RMSE
value of 72,488.87 further suggests that the model is particularly challenged by properties
with higher prices or unique features not well-represented in the testing data. An R2 of 0.79
shows that the model has a fair predictive capacity but also indicates that about a fifth of
the variance in housing prices is left unexplained.

In contrast, the Open Data Model’s performance metrics show notable improvements.
The reductions in MAE and MAPE by 8.24% and 9.36%, respectively, mean that the predic-
tions are closer to the actual selling prices with fewer outliers, which can be particularly
valuable for investors and realtors seeking to price properties or forecast market trends.
The RMSE reduction of 5.71% indicates fewer significant errors, which is essential for
evaluating high-value properties. The increase in R2 by 2.96% reflects a better fit to the
data, suggesting that incorporating open data has provided the model with additional
explanatory power to account for the price variability.

The performance gains from the Open Data Model suggest that the features derived
from open data sources provide a more nuanced view of the real estate market. These
improvements in the model’s predictive capabilities are due to the additional data giving
more detailed neighborhood characteristics, such as enhanced mobility, comprehensive
quality of life, well-being assessments, and improved governance, macroeconomic, and
financial indicators not accounted for in the Baseline Model.

To summarize, the Open Data Model’s improved accuracy makes it a more robust tool
for stakeholders in the real estate market, offering more reliable predictions and insights.
The gains in precision and reduced errors highlight the value of incorporating open data
into predictive models. These results underscore the significance of using open data in
real estate AI-driven solutions, particularly for smart cities. Integrating diverse open data
sources can provide superior models with more accurate and insightful predictions. These
model improvements can lead to better-informed decisions in real estate investments,
policymaking, and market analysis.
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3.4. Model Interpretability

The final phase of our analytical approach involves SHAP values analysis to interpret
the predictions of the Open Data Model, which, in our study, yields the most comprehensive
and performant solution for real estate price prediction. This analysis delves into the
importance of individual features and their impact on the model’s decision-making process,
giving profound insights into the factors driving real estate prices.

The analysis employed SHAP’s TreeExplainer to interpret the predictions of the XG-
Boost Open Data model by calculating SHAP values for the test set and gaining insights
into feature importance and individual predictions on unseen data. These SHAP values are
measures of feature importance that indicate how much each feature contributes, positively
or negatively, to each individual prediction, thus quantifying the impact of each feature
on the model’s predictions. The TreeExplainer within the SHAP framework is specially
optimized to analyze tree-based machine learning models efficiently and accurately.

During SHAP values analysis, several visual outputs are commonly generated to
understand the contributions and importance of features in a machine learning model
(https://shap.readthedocs.io/ (accessed on 11 January 2024)). Figure 4 shows two visually
generated outputs for interpreting model predictions with SHAP values analysis.
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price predictions: This figure is divided into two main parts: (a) on the left, the SHAP Summary plot
(beeswarm) visualizes the impact of each feature on the model’s prediction for individual instances.
Each point represents a SHAP value for a feature and an instance. High feature values are colored in
red and low in blue. Features are ordered by the sum of SHAP value magnitudes across all samples.
(b) on the right, the SHAP Global Summary plot shows the average impact of each feature on the
model’s output. Features are ranked by their importance. The length of the bar represents the mean
absolute SHAP value for each feature, indicating its importance. Positive SHAP values indicate a
feature’s increasing impact on the model’s prediction, while negative values indicate a decreasing
impact. Together, these plots provide insight into which features are most influential for the model’s
predictions and how they affect real estate prices.
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The beeswarm plot in Figure 4a shows the distribution of the SHAP values for each
feature across all the data points. The position on the x-axis indicates the impact of the
feature on the model’s output, where features pushing the prediction higher are displayed
on the right, and those pushing the prediction lower are on the left. The color intensity
represents the feature’s value, with pink indicating higher values and blue indicating lower
values. The distribution of points illustrates the variability of the impact of each feature.

The global summary plot in Figure 4b shows each feature’s mean absolute SHAP
values across all the data, measuring its overall importance. A higher value indicates a
more significant impact on the model’s predictions. The bars are color-coded and include
a numeric indication of the mean absolute SHAP value for each feature, and the sign
(+/−) before the numbers indicates the direction of the impact. Unlike feature importances,
typically described using abstract units derived from sophisticated concepts like impurities
in tree algorithm nodes, mean absolute SHAP values are more straightforward and intuitive
as they are presented in the same units as the target variable. In this case, they are quantified
in Euros. Here, PGA is the most significant feature, impacting the predicted house price
by an average of ±EUR 73,775.16. On the contrary, the Bus is the least informative feature,
contributing just ±EUR 1703.87 to each house price prediction—a fact that is expected
given the widespread availability of bus stops, which makes them less of an influential
factor for property prices.

The SHAP analysis results in Figure 4 show that our model for predicting real estate
prices reveals a nuanced approach to property valuation. Key findings include the following:

1. Primary predictors: The size of the property, indicated by the private gross area (PGA),
emerges as the most significant factor, confirming that larger dwellings typically com-
mand higher prices. The property’s exact location, denoted by Longitude, Latitude,
and postal code, is also crucial, aligning with the well-known real estate emphasis
on location;

2. Secondary factors: The condition of the property and its energy performance play
important roles, although their impact might vary in different contexts. Proximity to
amenities like transport, commerce, and cultural sites is significant, highlighting the
value of convenience and lifestyle associated with the property;

3. Economic indicators: broader economic conditions, reflected by indicators such as
GDP (Gross Domestic Product) and CPI (Consumer Price Index), are considered in
the valuation but have a lesser impact compared to the direct physical and loca-
tional attributes;

4. Environmental and health attributes: features like proximity to parks and health
facilities moderately affect property values, suggesting that environmental quality
and access to healthcare are important to potential buyers;

5. Variability in impact: the model indicates a range of impacts for certain features,
suggesting that the desirability of attributes like proximity to amenities may depend
on specific market or neighborhood dynamics.

Overall, while the model places the most significant emphasis on physical characteris-
tics and location specifics, it also integrates various factors, from accessibility to amenities
to macroeconomic conditions, illustrating the multifaceted nature of real estate pricing.

4. Discussion

This section comprehensively analyzes and discusses the results obtained, elucidating
their significance and implications in the broader real estate market analysis context.

4.1. Private Gross Area

From the results of the SHAP analysis, private gross area (PGA) exerts the highest av-
erage impact on property prices among the features analyzed, with a mean absolute SHAP
value of 73,775.16. This prominent position underscores the critical role of a dwelling’s size
in price determination. This finding validates previous research by Guliker et al. (2022) [65],
Ho et al. (2020) [31], Iban (2022) [93], Rampini et al. (2021) [30], Tchuente et al. (2022) [32],
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and Xu et al. (2022) [94], indicating the housing area as a strong predictor for the price of a
property. The presence of non-linearities revealed by a broad distribution of PGA’s SHAP
values in the beeswarm plot, sprawling across both sides of the baseline, reflects a complex
relationship with price. Larger properties generally command higher prices, a well-known
trend in real estate, but the spread of SHAP values suggests this trend is not universally
linear. Smaller properties can similarly fetch high prices, contingent on additional factors.

Conversely, a larger area does not unconditionally translate to a premium in price.
Indeed, the observable variability along the x-axis of the plot indicates that the influence of
PGA on price is subject to inconsistencies. This pattern implies the existence of nonlinear
dynamics, where the effect of PGA on the price does not consistently correlate with the
area. In some instances, the increment in PGA can lead to a proportionate increase in price
predictions. In contrast, the effect may be lesser or inversely related in other instances,
potentially influenced by market trends, property location, and desirability.

Figure 5 represents a geospatial heatmap of SHAP values for the PGA feature from our
XGBoost model for predicting real estate prices. This visualization helps understand which
geographic areas have properties where the PGA significantly affects their predicted prices
according to the model. Regions with no points or smaller points indicate areas where PGA
is less important in predicting real estate prices or has a potentially negative impact. Each
point corresponds to a property within the Lisbon area, with its location given by Latitude
and Longitude coordinates. The color of a point indicates the SHAP value associated with
the PGA feature for that property, with the color scale extending from −150 k to 250 k.
The negative values on the color scale are essential for understanding the direction of the
impact, while the absolute values are used for the size to visualize the magnitude. The size
of each point reflects the absolute magnitude of the SHAP value, ensuring visibility for
both positive and negative contributions.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 25 of 41 
 

areas have a shallow impact (light blue), while others have a high impact (dark blue). This 
variability could be due to neighborhood desirability, local amenities, or zoning regula-
tions that might make PGA more or less important in different areas. 

 
Figure 5. Geographic distribution of SHAP values for private gross area (PGA) in Lisbon: This map 
illustrates the influence of the private gross area feature on real estate price predictions across dif-
ferent locations in Lisbon. Each bubble represents a property, with its size proportional to the SHAP 
value assigned to the PGA feature, indicating the magnitude of impact on the prediction. The color 
scale ranges from light to dark blue, corresponding to the range of SHAP values from negative to 
positive. Higher SHAP values (darker blue) suggest a more significant positive impact of PGA on 
the property’s predicted value, whereas lower values (lighter blue) indicate a lesser or negative im-
pact. This visualization highlights areas where PGA is a stronger predictor of real estate prices and 
where it may have a reduced or inverse effect. 

The nuances captured by this analysis suggest that PGA’s impact on price predictions 
is modulated by a spectrum of variables that extend beyond the mere area, underlining 
the importance of a multifaceted approach in price estimation models. This insight is crit-
ical for stakeholders who must consider the size of a property and how it interacts with 
other market and property features to drive value in the real estate market. 

4.2. Geolocation 
The insights gathered from the SHAP analysis reveal the significant impact of geo-

spatial features, namely Latitude, Longitude, and ZIP7 (7-digit postal code), on real estate 
valuation. 

Longitude emerges as a particularly influential factor, with a mean absolute SHAP 
value of 16,871.72. The beeswarm plot indicates its pronounced effect on property prices, 
suggesting that properties within certain longitudinal zones, potentially due to their loca-
tion within sought-after neighborhoods, proximity to commercial hubs, or other desirable 
amenities, tend to command higher prices. The SHAP beeswarm plot illustrates this trend: 
red dots skewed to the right indicate areas with higher property values, while blue dots 
to the left denote lower-valued areas. Figure 6b also displays a similar pattern, where Lon-
gitude exhibits pronounced peaks and troughs, indicating that certain longitudinal zones 
significantly impact property prices positively or negatively. The broader range of SHAP 
values and clear clusters suggest a more localized and complex impact on property prices. 
This variation implies that east–west positioning within the city has diverse implications 
on property values, thus reflecting geographical desirability. 

Figure 5. Geographic distribution of SHAP values for private gross area (PGA) in Lisbon: This
map illustrates the influence of the private gross area feature on real estate price predictions across
different locations in Lisbon. Each bubble represents a property, with its size proportional to the
SHAP value assigned to the PGA feature, indicating the magnitude of impact on the prediction. The
color scale ranges from light to dark blue, corresponding to the range of SHAP values from negative
to positive. Higher SHAP values (darker blue) suggest a more significant positive impact of PGA
on the property’s predicted value, whereas lower values (lighter blue) indicate a lesser or negative
impact. This visualization highlights areas where PGA is a stronger predictor of real estate prices and
where it may have a reduced or inverse effect.



Appl. Sci. 2024, 14, 2209 25 of 40

Darker blues represent higher positive SHAP values, denoting a more significant
positive impact of PGA on the model’s price prediction, particularly noticeable in central
Lisbon, which suggests a higher space valuation in these areas. Lighter blues, conversely,
indicate negative SHAP values, signaling areas where larger PGAs may not be as valued
or could even decrease a property’s predicted price. The varying shades of blue indicate
that the impact of PGA on the model’s predictions is not uniform across Lisbon. Some
areas have a shallow impact (light blue), while others have a high impact (dark blue). This
variability could be due to neighborhood desirability, local amenities, or zoning regulations
that might make PGA more or less important in different areas.

The nuances captured by this analysis suggest that PGA’s impact on price predictions
is modulated by a spectrum of variables that extend beyond the mere area, underlining the
importance of a multifaceted approach in price estimation models. This insight is critical
for stakeholders who must consider the size of a property and how it interacts with other
market and property features to drive value in the real estate market.

4.2. Geolocation

The insights gathered from the SHAP analysis reveal the significant impact of geospatial
features, namely Latitude, Longitude, and ZIP7 (7-digit postal code), on real estate valuation.

Longitude emerges as a particularly influential factor, with a mean absolute SHAP
value of 16,871.72. The beeswarm plot indicates its pronounced effect on property prices,
suggesting that properties within certain longitudinal zones, potentially due to their loca-
tion within sought-after neighborhoods, proximity to commercial hubs, or other desirable
amenities, tend to command higher prices. The SHAP beeswarm plot illustrates this trend:
red dots skewed to the right indicate areas with higher property values, while blue dots to
the left denote lower-valued areas. Figure 6b also displays a similar pattern, where Longi-
tude exhibits pronounced peaks and troughs, indicating that certain longitudinal zones
significantly impact property prices positively or negatively. The broader range of SHAP
values and clear clusters suggest a more localized and complex impact on property prices.
This variation implies that east–west positioning within the city has diverse implications
on property values, thus reflecting geographical desirability.
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Figure 6. SHAP dependence plots for geographic predictors of real estate prices: This series of
plots illustrates the relationship between the SHAP values of real estate prices and three geographic
features: (a) Latitude, (b) Longitude, and (c) ZIP code (ZIP7). Each plot visualizes the individual
contribution of these features to the predictive model’s output. Plot (a) shows the SHAP values
for Latitude, displaying a trend where certain latitudes correspond to higher or lower impacts on
price predictions, suggesting a geographical preference or aversion in the real estate market. Plot
(b) for Longitude reveals a complex, non-linear relationship with the price predictions, indicating
that some longitudinal regions might be more favorable or unfavorable for property values. Lastly,
plot (c) demonstrates the variability of the ZIP code’s impact on price predictions, with some ZIP
codes having a distinctly positive or negative influence, reflecting the localized real estate market
trends. Collectively, these plots enable a nuanced understanding of how specific geographic locations
contribute to the valuation of real estate properties as per the model’s predictions.
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Latitude, although less influential than Longitude with a mean absolute SHAP value of
11,298.82, still plays a significant role in the model. It indicates the north–south desirability
of properties within the city. The SHAP Partial Dependence plot in Figure 6a for the
Latitude shows a broadly descending trend, where the SHAP value decreases as the
Latitude increases. This trend suggests a consistent north–south axis relevance in property
valuation, and the impact on property prices tends to decrease as we move north or
south from a certain point. The spread of the points is relatively uniform, with no apparent
clusters, indicating that the impact of Latitude on property prices is more evenly distributed
and possibly less localized than Longitude or ZIP7. This plot also seems to exhibit a less
dramatic range of SHAP values than Longitude and ZIP7, indicating a more stable but
widespread influence on property prices.

ZIP7, representing the 7-digit postal code, also shows a notable influence on property
prices, with a mean SHAP value of 11,034.59. This feature reflects the desirability of different
areas, capturing how local dynamics, such as school districts, local market conditions, or
community features, impact property values. The SHAP values for ZIP7 underscore the
intricacies of regional price variations, indicating that specific postal codes correspond to
areas with differing levels of desirability.

In Figure 6c, the dependence plot for ZIP7 shows a series of vertical lines, indicating
that discrete categories within the data correspond to individual postal codes. The variation
in SHAP values is substantial, with some postal codes having a strong positive impact on
prices and others a negative impact. This plot illustrates the granularity at which ZIP7
can affect property prices, likely reflecting very localized factors such as neighborhood
desirability, school districts, or other community features.

The SHAP values for these geospatial features exhibit positive and negative impacts,
highlighting the model’s ability to discern location-based pricing disparities. These re-
sults collectively underscore the importance of geospatial features in property valuation
models, corroborating with the studies of Rampini (2021) [30], Rico-Juan et al. [95], and
Tchuente et al. (2022) [32]. They also reveal how such features can capture broad regional
trends and very localized market conditions mentioned by Chen et al. (2023) [39], providing
a multifaceted view of the real estate market.

In terms of real estate market analysis, these insights can be instrumental. Market
segmentation can be refined using these geospatial features, allowing for targeted marketing
and development strategies. For investors, these data points can highlight potential areas
of growth or decline. Urban planners may also use these insights to strategically allocate
resources, identify conservation regions, or plan infrastructure to enhance property values.

The SHAP analysis confirms the central role of location in determining real estate
prices, with specific geographic coordinates and ZIP codes serving as proxies for many
factors that influence desirability and value. Using tools like SHAP, machine learning
models provide a powerful means to uncover these complex relationships, offering granular
insights that can inform strategic decision making in the real estate market. However, for
stakeholders in real estate, it is important to interpret these results cautiously, as correlation
does not equate to causation, and overfitting remains a concern with highly granular
features. Nonetheless, these results can be applied with a nuanced understanding of the
market’s complexity.

4.3. Energy Performance Certificate

The energy performance certificate (EPC) emerges as a significant predictor in prop-
erty valuation, ranking as the third-most influential feature after PGA and Longitude,
as evidenced by its substantial mean SHAP value of 15,344.33. This value underscores
the significant role that energy efficiency plays in property valuation models. The SHAP
beeswarm plot reinforces this, displaying a concentration of high positive SHAP values
for properties with superior energy efficiency, which corresponds to lower numerical EPC
ratings. This cluster of positive values on the plot illustrates a market trend where higher
energy efficiency is often rewarded with higher property valuations.
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However, the plot also exhibits some negative SHAP values for EPC, although these
seem to be fewer and less extreme than the positive ones. These negative values represent
instances where lower energy efficiency or higher numerical EPC ratings are linked to a
reduction in the predicted price. This data pattern portrays a more complex real estate
market where energy efficiency is valued but not consistently across all properties. Such
inconsistencies may arise from varying buyer awareness or preferences concerning energy-
efficient features.

The distribution and concentration of the SHAP values depicted in the plot capture the
EPC’s variable influence on property prices. The dense clustering of positive SHAP values
suggests a clear correlation recognized by the model—higher energy efficiency commonly
leads to higher property prices. In contrast, the scattered and less dense negative SHAP
values hint at a less consistent pattern where properties with poorer energy performance
are sometimes, but not consistently, associated with lower prices. This variability indicates
that while energy efficiency is a crucial factor in property valuation, the extent to which it
affects prices can vary, reflecting the dynamic nature of market perceptions and priorities
related to energy efficiency in homes.

Previous studies from Guliker et al. (2022) [65], Lenaers et al. (2023) [44], and
Rampini et al. (2021) [30] confirm the importance of EPC in the valuation process, and our
results are aligned with these work’s findings, further demonstrating that properties with
higher EPC ratings tend to have a positive effect on predicted prices, reinforcing the value
placed on energy efficiency in the housing market.

The significant SHAP values associated with EPC may also indicate broader trends
in the real estate market. They suggest that energy efficiency is valued and could serve
as a differentiator in the market, influencing buyer preferences and property values. This
finding can have implications for various stakeholders: (a) sellers might be motivated to
invest in energy efficiency improvements to enhance property appeal and justify higher
prices; (b) buyers may consider the EPC rating a critical factor in their decision making,
valuing the long-term cost savings and environmental impact; and (c) policymakers and
regulators could use these insights to promote sustainability in housing via incentives
or regulations.

4.4. Housing Characteristics

Several nuanced insights valuable for real estate market analysis and predictive mod-
eling can be derived by analyzing the SHAP plots in Figure 4 concerning the housing
characteristics—specifically, the Bedroom and Property Condition (PropCond) features.

The beeswarm plot reveals that the number of bedrooms (Bedroom feature) generally
positively impacts the predicted property prices. The distribution of SHAP values for this
feature is spread out, suggesting that additional bedrooms tend to increase the dwelling’s
price, but the degree of this increase varies significantly from property to property. This
variability may be due to interactions with other influential features, such as the size of
the property (PGA) or its location. It also hints at a possible diminishing return on value
as the bedroom count increases, which would be an essential consideration for market
segmentation and pricing strategies.

The analysis of SHAP values highlighting the Bedroom feature significance aligns
well with Abidoye et al.’s (2018) [96] research, which established a statistically significant
positive relationship between the number of bedrooms and property value. This correlation
underlines the market’s valuation of space and utility, particularly in how bedrooms cater
to the needs of families or individuals seeking more living space. Furthermore, Bauer
et al. (2023) [37]’s study reinforces this perspective by ranking bedrooms as an upper
mid-range feature in their SHAP analysis. This insight suggests that bedrooms reflect a
property’s practical utility and significantly influence its market appeal. The consistency of
these findings across different studies validates the conclusion that bedrooms are a critical,
flexible indicator of a property’s utility and attractiveness to buyers in the real estate market.
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For stakeholders in the real estate market, these insights could be instrumental in guiding
development priorities, investment choices, and targeted marketing campaigns.

In contrast, the Property Condition (PropCond) feature exhibits a more clustered dis-
tribution of positive SHAP values, especially for new properties. This clustering indicates a
more consistent market expectation that new dwellings command a premium, likely due
to lower anticipated maintenance costs and contemporary amenities. Whether a dwelling
is new or used also affects its price, with new properties generally commanding higher
prices, reflected by the average SHAP value for this feature. However, the Global Summary
plot indicates that while PropCond is significant, its average impact on the model’s output
is less than that of the number of bedrooms, suggesting that while buyers value newness,
the size and utility of the property play a more crucial role in determining price.

The consistent value attributed to the PropCond feature, particularly for newer
dwellings, aligns with Morano et al. (2021) [97] findings, establishing a direct functional cor-
relation between property condition and selling price. This insight reinforces the observed
market trend where buyers are willing to pay a premium for new construction. This effect
could be due to the modern design and amenities, energy efficiency, or reduced need for
immediate repairs and renovations. Teoh et al.’s (2022) [98] study further supports this by
identifying OverallQual, which rates a house’s overall material and finish as a significant
determinant of housing prices, indicating that buyers value not just the age of a property
but its overall quality and condition, which are often superior in newer constructions.
Additionally, Rico-Juan et al.’s (2021) [95] research further corroborates this viewpoint,
highlighting that the accumulation of individual absolute Shapley values indicates that the
age of a property, closely related to its condition, is a critical factor in market valuation.
Real estate developers and investors can use these insights to inform construction and
development decisions, ensuring that new properties meet the market demand for quality
and modernity.

4.5. Governance

From the SHAP plots in Figure 4, we can analyze the impact of governance-related
features such as construction permits (ConstrPermits), Safety, and Security on real estate
prices, gain valuable insights into their significance within the model-based perspective
and, by extension, their potential implications in the real estate market. The SHAP analysis
reveals that governance features like construction permits, safety, and security are signifi-
cant but not predominant factors in the model’s predictions. Their impact on the real estate
market can be multifaceted.

The SHAP values for construction permits (ConstrPermits) show a central concentra-
tion with a moderate spread, indicating that this feature has a variable impact on price
predictions. This effect suggests that construction permits moderate influence on price
predictions in some instances, while they may have a limited effect in others. This fact is
corroborated by the study of Zhang et al. (2023) [99] that establishes bidirectional causal
relationships between the number of building permits and the housing value index, indicat-
ing that this index responds negatively to an increase in building permits in the short term
of 4–7 months but positively to an increase in building permits with a lag of 10–12 months.
Also, in the work of Chen et al. (2023) [39], the number of new permits is not regarded as
a significant factor in their global model results, but its SHAP values in the high-income
neighborhoods sub-model reflect it as a top factor in predicting housing values. A higher
number of construction permits is typically associated with growth, potentially leading to
higher property values. Nevertheless, this could also signal an oversupply that may drive
prices down. This dual implication suggests that stakeholders must analyze these metrics
within broader economic and development contexts, ensuring an accurate valuation of
their investment’s potential value, as construction permits reflect market dynamism and
can guide strategic development.

The safety-related SHAP values are clustered near the lower mid-range of the impact
spectrum, suggesting a more uniform but lesser influence on the model’s predictions. While
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it is not a dominant factor, its consistent presence indicates it is a feature that the model
reliably considers. These insights are aligned with the study by Bazan-Krzywoszanska et al.
(2018) [63], where the authors discuss the relative importance of “district safety”, ranked as
one of the top ten factors in their ANN model, highlighting the importance of safety in the
district as a determinant of property value.

Security displays a broader range of SHAP values, indicating a more inconsistent but
occasionally significant influence on property price predictions. This pattern indicates that
for specific-located properties, the presence of security services is a mid-range price deter-
minant, as the proximity to security services might be a proxy for a low-crime environment,
adding to an area’s appeal.

In the 2023 study by Cellmer [21], “security” is defined as a variable in the context
of points of interest (POIs) linked to public safety comprising elements such as camera
surveillance, fire stations, police stations, and prisons. This study contributes to our
understanding of the security feature by providing statistical data and assigning a relative
importance score to this variable. However, its p-value of 0.678 indicates that “security”
does not have a statistically significant impact on housing prices in the model used. The
lack of a strong correlation between the security factor and housing prices in this research
may be attributed to the complexity of combining various distinct elements into a single
POI category.

Our SHAP analysis shows that safety and security values can differ significantly
based on market type and location. Although our model may not prioritize these features,
their impact on property prices could be substantial, especially in markets with more
pronounced concerns. Real estate professionals should consider the baselines for safety
and security levels in specific areas and how they could synergize with other desirable
location attributes to increase property attractiveness.

4.6. Macroeconomic and Financial Indicators

The SHAP plots in Figure 4 provide a general overview of the significance of macroe-
conomic and financial indicators, including inflation rate, unemployment, gross domestic
product, and bank appraisal in the real estate price prediction model and their implications
in the broader real estate market analysis context.

The bank appraisal (BankEval), featuring a mean SHAP value of 8445.01, is highlighted
as a top-10 predictor of property prices in the prediction model. This substantial value indi-
cates that the financial sector’s appraisals influence real estate market prices significantly.
As an open data feature, BankEval adds a layer of transparency to the prediction process,
offering a standard benchmark for market participants. The SHAP values for BankEval
exhibit a wide range, with a notable red presence, which points to a general market trend
where higher bank valuations are often in step with higher property market prices.

The distribution of SHAP values for BankEval reveals a complex pattern: while there
is a clear tendency for higher bank evaluations to elevate property prices, the model also
recognizes numerous instances where this is not the case. These exceptions, some signifi-
cant outliers, suggest scenarios where bank valuations may not align with the final sale
prices, possibly due to unique property features, local market conditions, or divergences in
evaluation methodologies. Deppner et al.’s (2023) [100] research highlights the complex
nature of appraisal errors, revealing how differences between appraised values and actual
sale prices can arise due to market changes and valuation biases. This insight resonates with
our findings, where BankEval is a significant but varied predictor. While bank appraisals
typically reflect market trends, they are subject to inconsistencies.

The Gross Domestic Product (GDP) shows a consistent positive impact, illustrating the
connection between economic growth and real estate valuation. As GDP increases, signaling
economic strength, there is typically an uptick in property prices due to heightened demand
and investment capability. This trend reflects the fundamental role of economic health in
shaping the real estate market’s trajectory.
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The observed relationship in the model between property prices and the Consumer
Price Index (CPI) supports the idea of real estate being an effective hedge against inflation.
As CPI rises, indicating inflation, property values also tend to increase, suggesting that real
estate can be a stable investment in times of currency devaluation.

The unexpected positive SHAP values associated with the Unemployment Rate (Unem-
pRate) warrant a nuanced interpretation. This effect could reflect a non-linear relationship
or interactions with other variables that the model captures. For instance, these values may
reflect specific economic contexts where real estate markets are resilient to unemployment,
such as areas with a high proportion of non-working wealthy residents or strong social
safety nets.

The SHAP analysis reveals that macroeconomic and financial indicators correlate
positively with property prices. Nevertheless, their effect can differ significantly across
individual predictions, thus providing a valuable perspective on the predictive significance
of macroeconomic and financial indicators within our model. While the general positive
associations align with economic theory, the real-world implications of these findings
should be contextualized within the broader economic landscape, considering the intricate
interplay of local conditions, market sentiment, and economic policy.

Following this line of reasoning, the discussion on property prices is enriched by
integrating the findings from Abidoye et al. (2019) [33], Vaidynathan et al. (2023) [101], and
the SHAP analysis, each contributing unique perspectives on the determinants of real estate
valuation. Abidoye’s study, focusing on Hong Kong’s property market, and Vaidynathan’s
research on the US housing market underscore the traditional economic view that GDP,
CPI, and unemployment rates are key predictors of housing prices. They highlight how
a strong GDP, low CPI, and unemployment can increase demand and property prices. In
contrast, our SHAP analysis offers a more nuanced approach, suggesting that other factors,
such as geographical location, PGA, and EPC ratings, may substantially impact a specific
predictive model. This divergence suggests that while macroeconomic trends provide
a general framework for understanding property market movements, specific market
conditions or unique dataset features can lead to different influencing factors emerging as
more significant.

Therefore, a comprehensive understanding of property prices must consider the
interplay between these broader economic indicators and the more detailed localized
factors insights that predictive analytics provide. This approach enables stakeholders to
comprehend the dynamics in the real estate market with a broader lens, incorporating
established economic principles and detailed, context-specific analysis to inform strategic
planning and decision making.

4.7. Mobility

In analyzing the SHAP plots in Figure 4 of our ML model for predicting housing prices,
we can derive insights about the relative importance of mobility features (Bus, Subway,
and Train), their specific impact on predictions, and their implications in real estate market
analysis context.

The SHAP beeswarm plot, which visualizes the distribution of each feature’s impact
on the model output, shows that proximity to subway stations (Subway) is a significant
predictor of real estate prices, as indicated by the broader spread and higher positioning
of its SHAP values. This effect suggests that properties closer to subway stations are
generally valued higher, likely due to the convenience and efficiency of subway transport
in urban settings. The higher mean absolute SHAP value for this feature suggests that
properties near subway stations are often at a premium. This pattern reflects a broader
market trend where homebuyers value the convenience of rapid transportation, which can
be particularly appealing in dense urban areas where traffic congestion is a concern. The
positive correlation with property prices might also indicate areas subject to gentrification
or urban development. Proximity to subway stations often spurs investment and can
catalyze neighborhood revitalization, increasing property values.



Appl. Sci. 2024, 14, 2209 31 of 40

Our results on the influence of subway transportation on real estate values parallel
the findings of Cárdenas et al. (2023) [55]. Their study reveals how transport infrastructure
significantly impacts real estate values, showing a 5.2% to 10.5% increase in flat prices
within a 1–1.5 km radius of future subway stations, affirming the premium placed on
subway accessibility in urban property markets. These insights are particularly relevant to
our study, demonstrating the tangible value added by proximity to main transport links, a
factor crucial in shaping real estate trends and urban development strategies.

On the other hand, nearby bus stops (Bus) seem to have a negligible effect on pricing.
The SHAP values for Bus are tightly clustered around zero, indicating that this feature
does not substantially sway the model’s predictions. This pattern could be attributed
to the widespread availability of bus stops, making them less of a differentiating factor
for property prices. The lower impact of Bus on property prices relative to Subway and
Train may suggest that while bus routes are essential for basic accessibility, they do not
add as much premium value to properties as access to faster and more reliable modes of
transportation does.

Given the lower SHAP values, there might be more flexibility in the valuation of prop-
erties based on bus access, which could benefit more location-sensitive market segments.
This finding aligns interestingly with Liu et al.’s (2018) [102] study, where the Jiangbei
submarket, on the city’s outskirts, showed significant influence from bus stops. This pattern
suggests a nuanced landscape within the city, where bus stops’ impact on real estate values
might be more pronounced in less central areas like Jiangbei. Such variations highlight
the importance of considering specific urban contexts when assessing the influence of
transportation infrastructure on property valuation.

The proximity to train stations (Train) also positively influences property values, albeit
somewhat less than subway stations. The SHAP values for the Train feature are spread out
but less so than for Subway, reflecting a moderately positive effect on price. This finding
validates previous research by Lenaers and De Moor (2023) [44] and implies that while
train station accessibility to regional or national rail networks is a valued asset, it may not
be as critical for daily commuting within the city as subway access is. The SHAP beeswarm
plot also shows positive and negative impacts, and it could reflect the dual nature of train
stations as hubs for opportunity and potential nuisances. While they offer connectivity,
they can also bring noise, which some buyers might find undesirable.

Overall, subway proximity emerges as a premium attribute in urban real estate,
overshadowing the influence of bus stops and somewhat outpacing train station access.
The findings from SHAP values reinforce the importance of transportation infrastructure in
real estate valuation. Properties with better access to public transportation can command
higher prices, and this factor can often outweigh other considerations like property features
and amenities.

Gleaned from SHAP values, these insights have implications for various real estate
stakeholders. For urban planners, the data underscores the value of investing in rapid
transportation infrastructure. Real estate investors and developers might focus on prop-
erties near subways for higher returns. Agents can leverage these insights in their sales
strategies by emphasizing properties with advantageous transportation links.

However, while SHAP values provide a nuanced view of feature importance, they
represent the model’s internal reasoning and are not causal explanations. External factors
such as demographic shifts, urban development policies, and cultural trends must be
considered when translating these findings into market strategies, emphasizing the need for
a broader and more integrated approach to understanding and leveraging these dynamics
in real estate valuations.

4.8. Quality of Life and Well-Being

The SHAP summary plots in Figure 4 provide nuanced insights into the predictive
power of different features within our XGBoost model for real estate pricing. Focusing
on the quality of life and well-being features—Culture, Commerce, Education (Schools
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and University), Health, Leisure (Sports), and Environment (Parks and Trees)—we can
understand their significance in the context of the broader real estate market.

Starting with Culture, the beeswarm plot shows a broad spread of SHAP values, indi-
cating that proximity to cultural amenities significantly impacts property values. However,
the varied range of impact across the dataset suggests that not all cultural amenities are
valued equally. The dense clusters at higher SHAP values point to a non-linear relationship,
suggesting that specific cultural facilities may carry more weight in the valuation process.

The Commerce feature shows a moderate average SHAP value with a concentrated
cluster of points. This pattern indicates that while the distance to shopping facilities is
generally valued, its impact on property prices is consistent and less variable than Culture.
It suggests a baseline value attributed to convenience but implies that additional proximity
to commerce does not significantly increase property value at a certain point.

Education-related features (School and University) have a positive impact, yet the
SHAP values spread is narrower than for Culture. This effect indicates a more uniform
valuation of educational proximity, which could be tied to the consistent demand for
accessibility to educational institutions from specific market segments, like families and
long-term investors.

While showing a consistent positive effect, the distance to Health facilities has a mid-
lower average impact on property values, as evidenced by the SHAP values. The plot
reveals a positive yet plateauing effect, which suggests that while health facility proximity
is important, it might be a basic expectation in specific markets, beyond which its value
does not significantly increase.

Leisure (Sports) facilities exhibit a range of SHAP values, but overall, their impact on
property prices is more muted than other features. The beeswarm plot suggests variability,
where the significance of sports facilities can be relatively high for some properties but
not others, perhaps reflecting personal preferences or the saturation of such amenities in
certain areas.

The environmental features, particularly proximity to parks and the presence of Trees,
show generally positive SHAP values. However, there is a concentration of points toward
the lower end of the impact scale, indicating that while green spaces are beneficial and
contribute to property desirability, they may be less influential than the property’s size or
energy performance.

The Global Summary plot reinforces the perception that quality of life and well-being
features, while positively contributing to real estate prices, are not the top predictors.
The color intensity in the beeswarm plot, which could correlate with the feature value,
suggests that higher or lower values of these features have varying degrees of impact on
price predictions.

In synthesizing these observations, we see that features associated with quality of
life and well-being are indeed valued in the real estate market, but their influence is often
secondary to intrinsic property characteristics such as size and location. For developers
and policymakers, this underscores the importance of creating balanced environments that
cater to both the physical quality of the living spaces and the well-being of the residents.

Our findings align with the study by Cellmer (2023) [21], which offers insightful
observations in discussing the influence of POIs on housing prices. It reveals that a high
density of POIs generally acts as a stimulant for housing prices, suggesting that a wide
variety of local amenities and services can enhance the attractiveness of a neighborhood.
However, the study also underscores the complexity of this relationship, noting that not all
POIs contribute positively. These effects highlight the need for a nuanced understanding of
how different types of POIs and their specific locations influence real estate values. The
research thus challenges the simplistic notion of a direct causal relationship between POI
density and housing prices, advocating for a more detailed and contextual analysis in real
estate assessments.

It is important to note that SHAP values provide local explanations, and while their
aggregate interpretation offers valuable insights, they should be approached with caution
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when projecting broader market trends. These findings are contingent on the current
market conditions and the model’s training data. As the market evolves, reassessment of
the impact of these features will be necessary to maintain an accurate understanding of
their influence on property valuation.

4.9. Synergy of Proprietary and Open Data in Real Estate Price Prediction

The SHAP heatmap plot from Figure 7 allows us to see which features are most
important across all instances and how each feature’s value affects the model’s predictions
for each individual instance. It highlights the multifaceted nature of real estate pricing,
where many factors interact in complex ways to influence the final property valuation.
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Figure 7. SHAP value heatmap for feature impact analysis in real estate price Prediction: This
heatmap displays the distribution of SHAP values for each feature across 4508 instances in the test
dataset. Each row represents a feature such as PGA, Longitude, or EPC, and each column corresponds
to an instance. The color intensity reflects the impact of the feature on the model’s prediction for that
instance, with red indicating a higher positive impact and blue indicating a negative impact. The
black line graph at the top illustrates the distribution of prediction outputs (f (x)) across all instances.
Features are ordered vertically by their overall impact on model output. This visual analysis helps
identify which features are most influential and how they vary across different property instances,
providing insights into the predictive behavior of the model.

The SHAP heatmap visually represents the dual impact of proprietary and open data
on real estate price predictions. Proprietary data, which include specific details about a
property like its size (PGA), condition, and exact location (Latitude, Longitude, and ZIP7),
directly and significantly impact price predictions due to the close relation to the property’s
inherent qualities. For example, PGA’s color intensity and spread underscore its role as a
primary valuation factor, reflecting the market’s emphasis on property size. These factors
are primary considerations for buyers and sellers, reflected in their strong influence as
indicated by SHAP values in the predictive model.
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Open data, conversely, offers essential contextual information encompassing socioe-
conomic, environmental, and infrastructural aspects of a property’s surroundings and
displays a more varied influence across the heatmap. This information includes accessi-
bility to cultural amenities, public transportation, and economic indicators. The shades
and distribution of colors for features like BankEval and proximity to transportation re-
veal their conditional importance. These features may not always exhibit a strong, direct
impact like the proprietary data, but they are critical for capturing the nuanced interplay
of external factors contributing to a property’s market value. For instance, the impact
of proximity to cultural amenities varies widely across the dataset, as seen in the SHAP
heatmap, suggesting that cultural access is a significant value driver in this market.

The SHAP analysis also highlights the synergy between these two data categories.
While proprietary data points to the inherent value based on property specifics, open
data encapsulates external factors that can either amplify or diminish this inherent value.
Stakeholders such as investors and urban planners can leverage this insight for targeted
interventions; for example, improving public transportation links might increase property
values in a given area, an insight that can be inferred from the model’s sensitivity to
these features.

Furthermore, the heatmap’s patterns reveal how integrating proprietary and open
data in the model enables a more detailed real estate market segmentation. The vary-
ing SHAP values across properties for open data features suggest that the importance
of specific amenities can differ significantly depending on the property’s location and
target demographic.

The model achieves a more holistic understanding of property valuation by integrating
these data types. Proprietary data provide detailed insights into the property, while open
data adds breadth, reflecting the property’s broader context and external influences. This
combination allows for more accurate and nuanced real estate price predictions, underscor-
ing the importance of direct property attributes and broader environmental and economic
factors in the valuation process and offering actionable insights for market participants.

Integrating open data in real estate price prediction is a theme that is present within
several contemporary studies, each offering unique insights into this emerging field. Al-
varez et al. (2022) [103] emphasized the role of incremental learning models in adapting
to dynamic urban data for real estate valuation, while Cellmer (2023) [21] focused on
how points of interest derived from open data sources affect housing prices. Adje et al.
(2023) [15] broadened the scope by highlighting the role of open data in smart city contexts,
including real estate price estimation. Tchuente and Nyawa (2022) [32] leveraged open
datasets to understand the impact of location features in French cities, emphasizing granu-
larity in data analysis. Karamanou et al. (2022) [11] combined Open Government Data with
machine learning to comprehensively view the Scottish real estate market. Tsagkis et al.
(2022) [16] demonstrated the utility of open data in understanding urban growth and its
influence on property prices, and Hurbean et al. (2021) [12] showed how Open Government
Data, enhanced by AI technologies, leads to more accurate house price predictions.

Together, these studies underscore the growing importance of open data in offering
nuanced, adaptable, and transparent approaches to real estate price prediction and ur-
ban planning. The results of our research dovetail with the emerging narrative in the
field, emphasizing the critical role of XAI and open data in augmenting the precision
and transparency of AI applications in urban development. Our findings align with con-
temporary studies and extend their insights by demonstrating the tangible benefits of
these technologies in making more informed and sustainable policy decisions for smart
city development.

5. Conclusions

This study made significant strides in applying AI for real estate price prediction within
smart cities, particularly by leveraging proprietary and open data synergy. Our findings
reveal that incorporating open data about socio-economic indicators and infrastructure,
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such as public transport links and cultural facilities, plays a pivotal role in enhancing the
accuracy of an XGBoost model, as evidenced by the 8.24% improvement in the MAE.

The application of SHapley Additive exPlanations (SHAP) has provided transparency
into the model’s decision making, elucidating the weighted significance of each variable.
Proprietary data on a property’s size and exact location have emerged as critical predictors
of real estate values. Meanwhile, open data variables like accessibility to amenities and
economic health indicators have been instrumental in capturing the contextual nuances of
the property’s environment.

The practical implications of these results are far-reaching for urban planners and
policymakers. Integrating diverse data sources can refine urban development strategies,
ensuring they are grounded in a comprehensive understanding of the factors driving real
estate values. This approach can support informed decision making that promotes sus-
tainable and equitable growth, allowing for more targeted and effective urban planning
policies that cope with the evolving needs and trends of the real estate market. Furthermore,
our conclusions emphasize the importance of transparency in AI-driven analytics. Tools
such as SHAP heatmaps increase model accountability and serve as a bridge in communi-
cation with non-technical stakeholders, making complex AI assessments more accessible
and understandable.

However, the study acknowledges certain limitations, including the model’s reliance
on the quality and availability of open data, which can vary significantly across different
contexts. Those data limitations could be subject to speculation about potential biases
inherent in both our proprietary real estate data and the open data about points of interest
(POIs) and macroeconomic indicators. For instance, proprietary real estate data may be
biased toward properties listed on a specific platform and might not reflect the market as a
whole. Open data on POIs could exhibit a geographical bias, being more detailed in urban
areas than peri-urban ones, potentially skewing the model’s performance across different
regions. Also, the absence of detailed socioeconomic and demographic data might limit the
model’s ability to accurately predict prices in diverse communities. For example, the model
might not account for the impact of gentrification, changes in neighborhood demographics,
or residents’ economic mobility, which can significantly affect real estate values and might
affect the generalizability of our findings.

Furthermore, changes in housing policy, zoning laws, and real estate regulations
could affect market prices. Such changes can have significant, sometimes rapid, impacts
on real estate values and market dynamics, aspects that our model may not entirely
capture. Therefore, further refinement of our model may be necessary to reflect these
impacts accurately.

The study also has temporal limitations. The data gathered from 2018 to 2021 provide
a snapshot of the market during this period. Longer-term trends and cyclical market
behaviors may not be fully captured within this timeframe. Additionally, this timeframe
may not reflect the impact of rapid technological advancements and changing market
dynamics on real estate prices. For instance, emerging trends such as remote work could
alter the attractiveness of different locations after 2021, potentially shifting demand and
prices in ways our model might not accurately foresee.

By advancing the field of XAI and highlighting the value of open data, our study
contributes to the responsible and informed use of AI in developing smart cities. It calls
for a collaborative approach among data scientists, urban developers, and policymakers to
foster intelligent, efficient, transparent, and inclusive smart city ecosystems. Our research
demonstrates the innovation potential of AI in urban planning, suggesting a future where
AI-driven insights are integral to crafting policies that reflect the dynamic interplay among
economic, social, and environmental factors within urban landscapes.

Integrating XAI and open data is a technical enhancement and a paradigm shift toward
more informed and democratic urban governance. It is hoped that the methodologies and
insights from this study will inspire further innovations in the realm of smart city planning,
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encouraging a data-informed approach to creating cities that are resilient, adaptive, and
attuned to the needs of their inhabitants.

The following steps in research should focus on enhancing the generalizability of our
model. These future steps involve extensive testing and validation across diverse markets
and regions beyond Lisbon to ensure the model’s broad applicability. Tailoring the model to
account for the unique characteristics, regulatory environments, and economic conditions
of different markets will be essential. This process will evaluate the model’s generalizability
and ensure it can be adapted to reflect the complexities of various urban landscapes.

Future paths of research could explore the integration of additional data types and
sources, incorporating environmental quality indices, detailed socioeconomic and demo-
graphic information, image data, real-time data streams, such as social media sentiment,
immediate market changes, and traffic patterns, among others, to assess their potential to
improve our model’s accuracy and relevance further.

Future research may also introduce seasonality into the model to capture the temporal
dynamics that influence market prices, offering a more nuanced understanding of how
and why prices fluctuate throughout the year. Also, conducting longitudinal studies to
capture the temporal fluctuations in market prices will offer deeper insights into how urban
development policies shape urban growth, housing markets, and community development.

The future exploration of probabilistic AI models that have been applied in other
predictive modeling domains presents a logical progression to build upon the foundational
insights we have garnered from our current study. Probabilistic AI algorithms could com-
plement the existing framework by providing new insights into uncertainty management
and improving the predictive performance of real estate analytics, illustrating their versa-
tility and effectiveness in real estate appraisals and offering valuable insights for urban
planning and investment decisions.

Furthermore, future research should delve deeper into the ethical dimensions of AI
and data utilization, focusing on safeguarding privacy, ensuring robust data security, and
promoting equitable access to AI benefits across all segments of urban populations, while
addressing data bias and fairness in model predictions should strengthen the commitment
to social inclusivity, preventing the perpetuation of existing inequalities. This direction will
help build smart cities that are intelligent, ethically responsible, and socially inclusive.
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17. Pašalić, I.N.; Ćukušić, M.; Jadrić, M. Smart city research advances in Southeast Europe. Int. J. Inf. Manag. 2021, 58, 102127.
[CrossRef]

18. Radchenko, K. The economic and social impacts of smart cities: Multi-stakeholder pre-study results. Smart Cities Reg. Dev. (SCRD)
J. 2023, 7, 25–38. [CrossRef]

19. Jonek-Kowalska, I. Housing Infrastructure as a Determinant of Quality of Life in Selected Polish Smart Cities. Smart Cities 2022, 5,
924–946. [CrossRef]

20. Gutman, S.; Rytova, E. Indicators for assessing the development of smart sustainable cities. In Proceedings of the International
Scientific Conference on Innovations in Digital Economy, Saint-Petersburg, Russia, 24–25 October 2019; pp. 55–73.

21. Cellmer, R. Points of Interest and Housing Prices. Real Estate Manag. Valuat. 2023, 31, 69–77. [CrossRef]
22. Nijskens, R.; Lohuis, M.; Hilbers, P.; Heeringa, W. Hot Property: The Housing Market in Major Cities; Springer Nature: Cham,

Switzerland, 2019.
23. Shin, H.-S.; Woo, A. Analyzing the effects of walkable environments on nearby commercial property values based on deep

learning approaches. Cities 2024, 144, 104628. [CrossRef]
24. Garcês, P.; Pires, C.P.; Costa, J.; Jorge, S.F.; Catalão-Lopes, M.; Alventosa, A. Disentangling Housing Supply to Shift towards Smart

Cities: Analysing Theoretical and Empirical Studies. Smart Cities 2022, 5, 1488–1507. [CrossRef]
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