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Abstract: The Multi-View Stereo model (MVS), which utilizes 2D images from multiple perspectives
for 3D reconstruction, is a crucial technique in the field of 3D vision. To address the poor correlation
between 2D features and 3D space in existing MVS models, as well as the high sampling rate required
for static sampling, we proposeU-ETMVSNet in this paper. Initially, we employ an integrated epipolar
transformer module (ET) to establish 3D spatial correlations along epipolar lines, thereby enhancing
the reliability of aggregated cost volumes. Subsequently, we devise a sampling module based on
probability volume uncertainty to dynamically adjust the depth sampling range for the next stage.
Finally, we utilize a multi-stage joint learning method based on multi-depth value classification to
evaluate and optimize the model. Experimental results demonstrate that on the DTU dataset, our
method achieves a relative performance improvement of 27.01% and 11.27% in terms of completeness
error and overall error, respectively, compared to CasMVSNet, even at lower depth sampling rates.
Moreover, our method exhibits excellent performance with a score of 58.60 on the Tanks &Temples
dataset, highlighting its robustness and generalization capability.

Keywords: multi-view stereo; transformer; depth inference; differentiable homography warping;
image processing; neural network

1. Introduction

Multi-View Stereo (MVS) is one of the fundamental tasks of 3D computer vision,
which is centred on the use of camera parameters and viewpoint poses to compute the
mapping relationship of each pixel in an image for dense 3D scene reconstruction. In recent
years, this technology has found widespread applications in areas such as robot navigation,
cultural heritage preservation through digitization, and autonomous driving. Traditional
methods heavily rely on manually designed similarity metrics for reconstruction [1–4].
While these approaches perform well in Lambertian surface scenarios, their effectiveness
diminishes in challenging conditions characterized by complex lighting variations, lack of
distinct textures, and non-Lambertian surfaces. Furthermore, these methods suffer from
computational inefficiency, significantly increasing the time required for reconstructing
large-scale scenes, thereby limiting practical applications.

Deep learning-based MVS methods, such as Yao et al. [5] employed 2D Convolutional
Neural Networks (CNN) to extract image features. They utilized differentiable homography
warping, 3D CNN regularization, and depth regression operations to achieve end-to-end
depth map prediction. Finally, the reconstructed dense scene was obtained through depth
map fusion. The introduction of CNN networks allows for better extraction of global
features, with excellent performance even in scenarios with weak textures and reflective
environments. Additionally, Gu et al. [6], in CasMVSNet, adopt a cascading approach
to construct the cost volume, gradually refining the depth value sampling range from
coarse to fine. This stepwise refinement at higher feature resolutions generates more
detailed depth maps, ensuring overall efficiency in reconstruction and a rational allocation
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of computational resources. However, conventional multi-stage MVS frameworks often
lack flexibility in depth sampling, relying mostly on static or pre-defined ranges for depth
value sampling. In cases where there is a deviation in depth sampling for a certain pixel, the
model cannot adaptively adjust the sampling range for the next stage, leading to erroneous
depth inferences.

The core step of multi-view stereo vision is to construct a 3D cost volume, which can
be summarized as computing the similarity between multi-view images. Existing methods
mostly utilize variance [6,7] to build the 3D cost volume. For example, Yao et al. [5] havethe
same weights for different perspectives in matching cost volume construction and use the
mean square deviation method to aggregate feature volumes from different perspectives.
However, this approach overlooks pixel visibility under different viewpoints, limiting
its effectiveness in dense pixel-wise matching. To address this issue, Wei et al. [8] intro-
duced context-aware convolution in the AA-RMVSNet’s intra-view aggregation module
to aggregate feature volumes from different viewpoints. Additionally, Yi et al. [9] pro-
posed an adaptive view aggregation module, utilizing deformable convolution networks to
achieve pixel-wise and voxel-wise view aggregation with minimal memory consumption.
Luo et al. [10] employed a learning-based block matching aggregation module, transform-
ing individual volume pixels into pixel blocks of a certain size and facilitating information
exchange at different depths. However, directly applying regularization to the cost volume
fails to facilitate communication with depth feature information from adjacent depths. With
the continuous development of attention mechanisms, Yu et al. [11] incorporated attention
mechanisms into the feature extraction stage of the MVS network, resulting in noticeable
improvements in experimental results. Li et al. [12] transformed the depth estimation
problem into a correspondence problem between sequences and optimized it through self-
attention and cross-attention. Unfortunately, the above methods focus solely on a single
dimension, addressing only 2D local similarity issues and obtaining pixel weights through
complex networks. This introduces additional computational overhead, neglecting the
correlation between 2D semantics and 3D space, ultimately compromising the assurance of
3D consistency in the depth direction.

To address the above issues, this paper proposes an uncertainty-epipolar Transformer
multi-view stereo network (U-ETMVSNet) for object stereo reconstruction. First, this
paper uses an improved cascaded U-Net network to enhance the extraction of 2D seman-
tic features. And the cross-attention mechanism of the epipolar Transformer is used to
construct the 3D association between different view feature volumes along the epipolar
lines, enhancing the 3D consistency of the depth space, without introducing additional
learning parameters to increase the amountof model calculations. The cross-scale cost
volume information exchange module allows information contained in cost volumes at
different stages to be progressively transmitted, strengthening the correlation between cost
volumes and improving the quality of depth map estimation. Secondly, allynamic dynamic
adjusting the depth sampling range based on the uncertainty of the probability cost volume
is employed to effectively reduce the requirements on the number of depth samples and
enhance the accuracy of depth sampling. Finally, a multi-stage joint learning approach
is proposed, replacing the conventional depth regression problem at each stage with a
multi-depth value classification problem. This joint learning strategy significantly enhances
the precision of the reconstruction. The proposed method is experimentally validated
on the DTU and Tanks&Temples datasets, and its performance is compared with current
mainstream methods. The method in this paper achieves high reconstruction accuracy
even at lower sampling rates, confirming the effectiveness of the proposed approach for
dense scene reconstruction.

The rest of the paper is organised as follows: Section 2 provides an overview of
relevant methods in the field. Section 3 provides a detailed overview of the proposed
network and the entire process of object reconstruction. Section 4 presents the experimental
setup and multiple experiments conducted to validate the reliability and generalization
capabilities of the proposed method. Finally, in Section 5, we summarize the contribu-
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tions of the proposed network to multi-view reconstruction of objects offer prospects for
future work.

2. Related Work
2.1. Traditional MVS

Early MVS methods can be categorized based on their technical characteristics into
point-based methods [13,14], voxel-based methods [15], depth map-based methods [16–18],
and polygon mesh-based methods [19]. Point-based approaches extend from initial match-
ing points to surrounding pixels, iteratively refining feature points to achieve dense recon-
struction. However, this method limits the capability of parallel data processing. In certain
scenarios, such as those with uneven texture distribution, this approach heavily relies on
accurate feature extraction, resulting in less-than-ideal outcomes. Voxel-based methods
initially calculate the scene’s bounding box and then identify voxels near irregular grids
in 3D space. Vogiatzis et al. [20] proposed a method that partitions 3D space into “object”
and “no-object” regions, enforcing photometric consistency between adjacent areas and
expanding the “object” region. However, discrete spatial partitioning increases memory
usage for improved accuracy, making this method suitable only for low-resolution small
scenes. Depth map-based approaches decompose these steps into two parts, starting with
multiple single-view depth estimations. This approach can be combined with the previous
two methods, merging depth maps to obtain the final predicted point cloud. Compared to
the methods mentioned earlier, this approach offers greater flexibility. Polygon mesh-based
methods initialize the evolution of the scene surface and iteratively enhance multi-view
photometric consistency while evolving the scene surface. These early MVS methods
have their advantages, but they also face limitations such as parallel processing capability,
robustness in specific scenarios, and applicability to different scene sizes.

2.2. Learning-Based MVS

In early research, achieving end-to-end 3D reconstruction models was addressed by
Ji et al.’s SurfaceNet method [21], which cleverly encoded images and camera parameters
into 3D voxels, yielding significant reconstruction results. Extending this idea, Huang
et al. [22] proposed DeepMVS, employing plane-wise scanning sampling for each input
image to construct the cost volume of the source images. To enhance the model’s scalability
and overcome limitations on the number of input images, a clever use of max-pooling
was employed to gather and aggregate information from neighboring images, effectively
addressing this challenge. Yao et al. [5] introduced an end-to-end multi-view reconstruction
algorithm in MVSNet, combining plane sweep stereo, differentiable homographic warping,
variance matching cost volume construction, and 3D regularization. This algorithm has
become the standard procedure for MVS reconstruction. Building on this foundation,
Yi et al. [9] proposed an adaptive view aggregation module, constructing the cost volume
selectively by learning the contributions of different views. Ma et al. [23] introduced a
coarse-to-fine MVS method based on a cascaded structure in EPP-MVSNet, allowing more
accurate aggregation of high-resolution image features. On the other hand, addressing
memory consumption concerns, Yang et al. [24] introduced a coarse-to-fine cost pyramid
construction method, mitigating memory usage through distributed computing to enhance
model efficiency. Yao et al. [25] proposed R-MVSNet, utilizing a GRU structure for cost
volume regularization, effectively resolving excessive memory usage issues at the expense
of increased training time. Chen et al.’s VA-Point-MVSNet [26] initially predicts a coarse
depth map, followed by an iterative up-sampling and refinement process to generate
depth maps with a narrower depth range. However, due to potential depth interval errors
in the coarse estimation phase, this method performs suboptimally in high-resolution
reconstruction. The coarse-to-fine strategy also struggles to capture crucial information for
depth inference.

In multi-stage MVS frameworks, the initial stage typically employs a fixed depth
sampling range to cover the entiredepth values of the input scene. Subsequent stages then
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modify the depth sampling range based on the predicted depth values from the previous
stage. Gu’s CasMVSNet [6] gradually reduces the depth range using a reduction factor,
achieving high-quality depth map inference. Yu et al.’s Fast-MVSNet [27] uses a sparse
cost volume to learn both sparse and high-resolution depth maps. It employs a Gaussian-
Newton layer to iteratively optimize the sparse depth map and utilizes data-adaptive
propagation and the Gaussian-Newton layer for high-resolution depth map optimization.
Cheng et al.’s UCS-Net [28] uses the variance of depth space distribution to progressively
narrow the depth scanning range, achieving a reasonable and fine-grained partition of
depth space underlimited memory usage. Wang et al.’s PatchmatchNet [29] optimizes each
stage’s depth sampling using an adaptive propagation and evaluation scheme. It reduces
the number of depth hypotheses and removes regularization structures to improve model
efficiency, though the overall performance is not highly satisfactory.

With the continuous development of attention mechanisms, Yu et al. [11] applied
attention mechanisms to the feature extraction stage of MVS networks to capture long-
term dependencies in depth inference tasks, achieving promising experimental results.
Li et al. [12] formalized the depth estimation problem as a sequence-to-sequence correspon-
dence problem. They utilized positional encoding, self-attention, and cross-view attention
mechanisms to capture the features of the cost volume, enabling dense stereo estimation.
Ding et al.’s TransMVSNet model [30] and Zhu et al.’s MVSTR model [31] introduced a
global contextual Transformer, expanding the network’s receptive field and reinforcing the
3D consistency of dense features, achieving robust dense feature matching. Sun et al. [32]
proposed a Transformer-based local feature matching method that used attention mecha-
nisms to obtain feature descriptors of images for precise matching. They demonstrated the
effectiveness of dense matching even in areas with weak textures. However, these methods
tend to overly focus on 2D features, associating features of pixels within views through
extensive computations, resulting in suboptimal overall model efficiency.

3. Method

In this section, we provide a detailed overview of the model proposed in this paper.
The overall network architecture is depicted in Figure 1. The network processes the given
image II=0,...,N−1 ∈ RH×W×3, utilizing an enhanced Cascaded U-Net to extract 2D features
at various scales (Section 3.1). Subsequently, we employ a differentiable homography
warping to construct the source view feature volume, initializing depth hypotheses through
inverse depth sampling in the initial stage (Section 3.2). The epipolar Transformer (ET) is
then utilized to aggregate feature volumes from different viewpoints, generating stage-wise
matching cost volume. The cost volume information exchange module (CVIE) enhances
the utilization of information across different scales (Section 3.3). In stage 1 of the model,
we dynamically adjust the depth sampling range based on the uncertainty in the current
probability cost volume distribution, aiming to enhance the accuracy of depth inference
(Section 3.4). Finally, we introduce the multi-stage joint learning approach proposed in this
paper (Section 3.5).

3.1. Cascaded U-Net Network

Traditional methods, such as Yao et al. [5], employ 2D convolutional networks for
feature extraction, however, this approach can only perceiv image textures within a fixed
field of view. In contrast, Chen et al. [33] utilize an improved U-Net network for feature
extraction, achieving favorable results. In this section, an enhanced cascaded U-Net feature
extraction module is designed. The first part of the structure is illustrated in Figure 2. The
network selectively handles low-texture regions to preserve more intricate details.

The given reference image Ii=0 and adjacent source images {Ii}N−1
i=1 are fed into the

network to construct image features at different scales. In this cascaded U-Net network,
the front-end feature encoder utilizes successive convolution and pooling operations,
increasing the channel dimensions while reducing the size to extract deep features from
the images. However, as the network depth increases, more feature information tends to



Appl. Sci. 2024, 14, 2223 5 of 18

be lost. The back-end decoder functions inversely to the encoder, performing upsampling
to not only restore the original size but also connecting with feature maps from earlier
stages. This facilitates better reconstruction of target details. The key to this process lies in
fusing high-level and low-level features to enrich the detailed information in the feature
maps. Subsequently, the cascaded network repeats this process, and the second part of the
cascaded structure appends convolution operations at the output ports, obtaining features

Fk
i=0,...,N−1i

ϵR
H
2k ×

W
2k ×2(3+k)

, where k = 0, 1, 2 denotes the three different stages of the model,
omitted for simplicity in the following discussion. This cascaded U-Net feature extraction
module aids in preserving richer detailed features, providing more accurate information
for depth estimation.
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3.2. Homography Warping

In deep learning-based multi-view stereo (MVS) methods [27,29,30], the construction
of the cost volume often involves the use of differentiable homographic warping, drawing
inspiration from traditional plane sweep stereo. Homographic warping leverage camera
parameters to establish mappings between each pixel on the source view and different
depths under the reference view, within a depth range of [dmin, dmax]. The procedure entails
warping source image features to the dj layer of the reference view’s viewing frustum. This
process is mathematically expressed as shown in Equation (1).

psi ,j = Ki·
(

R0,i·
(

K−1
0 ·pr·dj

)
+ t0,i

)
(1)

The pixel feature in the reference view is denoted as pr. We use {Ki}N−1
i=0 to represent the

camera intrinsic parameters and {[R0,i|t0,i]}N−1
i=1 to represent the motion transformation

parameters from the source views to the reference view. By embedding camera param-
eters into features and performing mapping transformations, we establish the mapping
relationship between the pixel feature psi ,j in the i-th source view corresponding to pr. The
features psi ,j are distributed along the epipolar line in the source view, and the depth fea-

tures of layer dj can be represented as F̃src,j =
{

F̃i,j

∣∣∣i = 1 . . . N − 1
}

. Simultaneously, N − 1

feature volumes {Vi}N−1
i=1 ϵRH×W×C×D are generated, where D is the total number of depth

hypotheses. This process accomplishes the conversion of features from two-dimensional to
three-dimensional, thereby restoring depth information.

Due to the absence of calibration in the input images, directly performing uniform
sampling in depth space may result in spatial sampling points not being evenly distributed
along the epipolar lines when projected onto the reference view. This is particularly evident
in regions farther from the camera center, where the mapped features may be very close,
leading to a loss of depth information, as illustrated in Figure 3. To address this issue,
inspired by references [29,34], in the first stage of depth sampling, this paper employs
the inverse depth sampling method to initialize depth. The specific operation involves
uniformly sampling in inverse depth space, ensuring equidistant sampling in pixel space,
as shown in Equation (2).

dj =

((
1

dmin
− 1

dmax

)
j

D − 1
+

1
dmax

)−1
(2)

Employing this depth sampling method effectively avoids the loss of depth information,
thereby significantly enhancing the reconstruction results.
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3.3. Cost Volume Aggregation

The complete cost volume aggregation module consists of two components: the
Epipolar Transformer aggregation module (ET) (Section 3.3.1) and the cross-scale cost
volume information exchange module (CVIE) (Section 3.3.2). In this section, we will
introduce both components.

3.3.1. Epipolar Transformer

Cost volume construction is the process of aggregating feature volumes from different
source views to obtain depth information for individual pixels in the reference view.
As conventional variance-based aggregation methods often struggle to filter out noise
effectively, this paper employs an epipolar Transformer for aggregating feature volumes
from different views. Specifically, the Transformer’s cross-attention mechanism is used to
build a 3D correlation along the epipolar line direction between the reference feature pr

(Query) and source features
{

psi,j
}D−1

j=0 (Keys). And use the cross-dimensional attention to
guide the aggregation of feature volumes from different views, ultimately achieving cross-
dimensional cost volume aggregation. The detailed structure of the module is illustrated in
Figure 4.
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Common shallow 2D CNNs can only extract texture features within a fixed receptive
field and struggle to capture finer details in regions with weak textures. Therefore, this
paper employs the computationally intensive cascaded U-Net for query construction.
Guided by Equation (1), the projection transformation of source view features restores the
depth information of 2D query features. To ensure 3D consistency in depth space, we adopt
a cross-attention mechanism along the epipolar line direction to establish 2D semantic and
3D spatial depth correlations. This involves the 3D correlation between the pixel feature
of the reference view, pr (Query), and the source features mapped to the epipolar line,{

psi ,j
}D−1

j=0 (Keys). The attention weights, wi, are computed to achieve this, as shown in
Equation (3).

wi = so f tmax
(

vi
T pr

te
√

C

)
, (3)

where te represents the temperature parameter. The
{

psi,j
}D−1

j=0 are stacked along the depth di-

mension to form vi ∈ RC×D. Previous studies [35,36] have indicated that utilizing group-wise
correlations to group feature volumes can reduce the computational and storage requirements
of the model during cost volume construction. Therefore, this paper employs group-wise
correlations to partition the feature volumes into g groups along the feature dimension,
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where g = 0, . . . , G − 1. Based on the inner product calculation in Equation (4), the similarity
si ∈ RG×D is computed between the source view feature volumes and the reference view
feature volume. The obtained si serves as the values for the cross-attention mechanism.

sg
i =

1
G
⟨vg

i , pg
r ⟩ (4)

In this context, the g-th group feature of vi is denoted as vg
i ∈ R

C
G ×D, where ⟨·, ·⟩ represents

the inner product. si ∈ RG×D are obtained by stacking
{

sg
i

}G−1

g=0
along the channel dimen-

sion. Finally, the values of the epipolar attention mechanism are guided and aggregated
for stage n by the wi, resulting in the stage-wise aggregated cost volume Cn

agg. The specific
operations are detailed in Formula (5).

Cn
agg =

∑N−1
i=1 wisi

∑N−1
i=1 wi

(5)

3.3.2. Cross-Scale Cost Volume Information Exchange

Traditional multi-view stereo (MVS) algorithms often overlook the correlation be-
tween cost volumes at different scales, resulting in a lack of information transfer within
each layer [5]. To address this limitation, our study introduces a cross-scale cost volume
information exchange module, outlined in Figure 5. To address this, our module employs a
portion of the Cascade Iterative Depth Estimation and Refinement (CIDER) [34], applying a
lightweight regularization to coarsely regularize the stage-wise cost volume. Subsequently,
through a separation operation, this volume is integrated into the next layer. This process
eliminates noise and facilitates the fusion of information from small-scale cost volumes into
the subsequent layer’s cost volume, thereby enhancing the quality of depth map estimation.
It separates the initially regularized stage-wise cost volume, fusing it into the next layer.
This process not only eliminates noise but also enables the integration of information from
small-scale cost volumes into the next layer, enhancing the quality of depth map estima-
tion. Taking the (n − 1)-th layer as an example, the generated cost Cn−1

agg ∈ RB×C×D×H×W

undergoes initial regularization to acquire sufficient contextual information, followed by
an upsampling operation, resulting in Cn−1

agg ∈ RB× C
2 ×D′×2H×2W , where D, represents the

upsampled depth samples. This size is consistent with the subsequently generated cost
volume Cn

agg in the next stage. The fusion of these volumes yields the final cost volume

Cn ∈ RB×C×D′×2H×2W for that stage.
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3.4. Dynamic Depth Range Sampling

An appropriate depth sampling range is crucial for comprehensive coverage of real
depth values, playing a vital role in generating high-quality depth maps. Conventional
methods typically focus on the distribution of individual pixels in the probability volume,
adjusting the depth sampling range for the next stage based on this information. Zhang
et al. [37] introduced a novel approach leveraging the information entropy of a probability
volume to fuse feature volumes from different perspectives. Motivated by this, we propose
an uncertainty module to adapt the depth sampling range. This module takes the informa-
tion entropy of the probability volume from Stage 1 as input to assess the reliability of depth
inferences. A higher output from the Uncertainty Module indicates greater uncertainty in
the current pixel’s depth estimation. Consequently, in Stage 0, the depth sampling range
is expanded correspondingly to comprehensively cover true depth values, as illustrated
in Figure 1. The module comprises five convolutional layers and activation functions,
producing output values between 0 and 1. Higher values signify increased uncertainty. The
uncertainty interval D(x) for the pixel x in the next stage is calculated using Equation (6).

D(x) = [Dest − λ × U(Eest),Dest + λ × U(Eest)] (6)

where λ is the hyperparameter defining the confidence interval, Eest represents the entropy
map of the probability volume, U(·) denotes the uncertainty module for the probability
volume, and Dest is the predicted depth value for the current pixel.

3.5. Multi-Stage Joint Learning
3.5.1. Cross-Entropy Based Learning Objective

Regularization operations yield a probability volume with dimensions H × W × D,
storing the matching probabilities between pixels and different depth values. The paper
departs from utilizing the Smooth L1 loss to minimize the disparity between predicted and
actual values. Instead, it addresses a multi-sampled depth value classification problem
as an alternative to conventional depth estimation methods. In Stages 0 and 2, the cross-
entropy loss function is employed to quantify the difference between the true probability
distribution P(x) and the predicted probability distribution P̂(x) for each pixel x.

Lclass = ∑
x∈{valid}

−
(

P(x) log
(

P̂(X)
)
+ (1 − P(x)) log

(
P̂(X)

))
(7)

3.5.2. Uncertainty-Based Learning Objectives

In Stage 1, the paper dynamically adjusts the depth sampling range from Stage 0 based
on the uncertainty of pixel distribution in the probability volume. Additionally, a negative
log-likelihood minimization constraint is incorporated into the loss function of Stage 0 to
jointly learn depth value classification and its uncertainty U(·). The loss function for the
second stage is outlined in Equation (8).

Lstage1
class−uncert = ∑

x∈{valid}

−
(

P(x) log
(

P̂(X)
)
+ (1 − P(x)) log

(
P̂(X)

))
U(x)

+ log(U(x)) (8)

3.5.3. Joint Learning Objective

The constants λ1, λ2 and λ3, all belonging to the interval (0, 1), represent the weights
assigned to the learning objectives of the three stages. The overarching goal of multi-stage
joint learning is to minimize the overall loss function, defined as follows:

Lsum = λ1Lstage0
class + λ2Lstage1

class−uncert + λ3Lstage2
class (9)
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4. Experiments

In this section, we evaluate our proposed model on the DTU [38] and Tanks&Temples [39]
datasets. We begin by providing a comprehensive overview of the two experimental
datasets and detailing the specifics of our experimental setup (Sections 4.1 and 4.2). Sub-
sequently, we present and analyze the model’s performance on the experimental datasets
(Section 4.3). Additionally, we conduct ablation study on the DTU dataset (Section 4.4) to
thoroughly validate the effectiveness of our proposed model.

4.1. Datasets

• DTU dataset [38]: This dataset leverages an adjustable industrial robot arm to capture
129 scenes in a laboratory setting. Each scene comprises object views from 64 or
49 different angles under seven distinct lighting conditions, with recorded intrinsic
and extrinsic camera parameters. The dataset is partitioned into 79 training scenes,
18 validation scenes, and 22 test scenes. It is noteworthy that we adopt the same
dataset partitioning method as CasMVSNet [6].

• Tanks&Temples Dataset [39]: The dataset encompasses 14 indoor and outdoor scenes
with varying resolutions. Due to the absence of intrinsic camera parameters in this
dataset, we employ OpenMVG [40] (open multiple view geometry) to compute and
generate sparse point clouds. Evaluation of the reconstructed point clouds is conducted
using an F1 score that combines precision and recall for a comprehensive assessment.

4.2. Implementation Details

Following experimental conventions [30,41], this paper trains and evaluates the pro-
posed model on the DTU dataset. To verify the model’s generalization ability, the model
trained on DTU is directly tested on the Tanks&Temples dataset without any modifications.
The depth sampling numbers {Dk}k=0,1,2 at different stages are set to 16, 8, and 4, with
depth sampling range (dmin and dmax) configured as 425 mm and 935 mm. The temperature
parameter (te) in the polarcross attention mechanism is set to 2. We train this paper’s model
for 14 epoches. The Adam optimizer [42] with β1 = 0.9 and β2 = 0.999 is employed to
optimize the model. The experiment is conducted on one NVIDIA RTX3090 GPU with a
batch size of 2. The initial learning rate is set to 0.001 and is reduced by a factor of 2 after 8,
10, and 12 epoches. For DTU dataset training, input image resolution is 1600 × 1200 with N
(number of input images) set to 5. On the Tanks&Temples dataset, N is set to 7, and the
input image resolution is 1080 × 2048.

4.3. Benchmark Performance
4.3.1. Evaluation on DTU Dataset

In this section, we compare the performance of our model with traditional methods,
learning-based methods, and the methods reported in the latest technical literature.

To better analyze the differences between various methods, our approach is compared
with Gipuma [4], Effi-MVSnet [43], DA-PatchmatchNe [44], and CasMVSNet [6]. Among
these, Gipuma employs a disparitypropagation strategy from traditional 3D reconstruction
methods, proposing a diffusion propagation strategy utilizing GPU’s multicore architecture
for multi-view 3D reconstruction. Effi-MVSnet utilizes GRU based on 2D convolution to
generate cost volumes. DA-PatchmatchNe combines data augmentation with traditional
multi-scale patchmatchalgorithm. Cas-MVSNet adopts a cascaded approach to construct
cost volumes, gradually refining the depth sampling range from coarse to fine, ensuring
overall efficiency of reconstruction and rational allocation of computational resources.

We opt for input image resolutions of 1600 × 1200 with the number of views set at
N = 5. Employing the official evaluation metrics provided by the DTU dataset, we compute
reconstruction accuracy (Acc.), completeness (Comp.), and their average, termed overall error
(Overall), measuring the reconstruction errors between the generated point cloud and the
ground truth. Smaller values of these three metrics indicate better reconstruction performance.
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As shown in Table 1, Gipuma [4] achieves the highest score of 0.283 in the Acc. metric,
indicating superior performance. While DA-PatchmatchNetbi [44] excels in the Comp.
metric with a score of 0.272, our proposed method also achieves impressive results, scoring
0.279, with only a marginal difference of 0.007. Notably, our Overall metric stands at 0.315,
leading among all methods. In comparison to the mainstream CasMVSNet [6], we achieve
a relative improvement of 11.27%.

Table 1. Experimental results of different methods on the DTU evaluation set (lower values are
better). The best and second-best results are highlighted in bold and underlined, respectively.

Method Acc. (mm) Comp. (mm) Overall (mm)

Gipuma [4] 0.283 0.873 0.578
Tola [3] 0.342 1.190 0.766

COLMAP [45] 0.400 0.664 0.532
MVSNet [5] 0.396 0.527 0.462
CIDER [34] 0.417 0.437 0.355

CVP-MVSNet [46] 0.296 0.406 0.351
R-MVSNet [25] 0.383 0.452 0.417

Fast-MVSNet [27] 0.336 0.403 0.370
CasMVSNet [6] 0.325 0.385 0.355

Point-MVSNet [33] 0.342 0.411 0.376
Epp-mvsnet [23] 0.413 0.296 0.355
AA-RMVSNet [8] 0.376 0.339 0.357

UCS-Net [28] 0.338 0.349 0.344
Effi-MVSnet [43] 0.321 0.313 0.317

DA-PatchmatchNet [44] 0.417 0.272 0.344
Ours 0.351 0.279 0.315

Furthermore, Figure 6 illustrates a comparison of the reconstruction results between
our method and CasMVSNet [6] in different scenes. The results indicate that the reconstruc-
tion outcomes of this paper are denser and exhibit finer details, successfully alleviating
the impact of noise in local areas. It is noteworthy that in regions with weak textures, our
method preserves more details. This is primarily attributed to the uncertainty dynamic
range sampling module, which comprehensively covers real-depth values. Addition-
ally, the introduced cross-scale cost volume information exchange module better handles
information connections between different dimensions and scales, further enhancing in-
formation utilization. In summary, our proposed algorithm outperforms other methods,
showcasing superior competitiveness in terms of reconstruction quality.
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4.3.2. Evaluation on Tanks and Temples Dataset

To assess the generative capability of our approach across diverse scenarios, the model
trained on DTU is tested directly on the Tanks&Temples dataset without any adjustments,
and compared with traditional methods as well as learning-based methods. During testing,
the number of input views is set at N = 7, and the input image size is 1080 × 2048.
Evaluation of the reconstructed point cloud is performed using F1 scores, where higher
F-scores indicate superior performance.

Table 2 presents the performance comparison with different methods. Our approach
maintains outstanding results, scoring an impressive average of 58.60 on the challeng-
ing Tanks&Temples intermediate dataset, even with a lower depth sampling rate. This
places our method at the forefront, with a marginal 2.91-point gap from the third-ranked
AA-RMVSNe [8]. Notably, compared to mainstream methods such as CasMVSNet [6]
and Fast-MVSNet [27], our approach showcases performance improvements of 3.86%
and 23.65%, respectively. These results affirm the robust generalization capabilities of
our model.

Table 2. Quantitative results on the Tanks&Temples dataset—intermediate dataset (F-score, higher is
better). F-score is the average across all scenes, and the best and second-best results are highlighted
in bold and underlined, respectively.

Method F-Score Family Francis Horse Lighthouse M60 Panther Playground Train

ACMH [17] 54.82 69.99 49.45 45.12 59.04 52.64 52.37 58.34 51.61
COLMAP [45] 42.14 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04

ACMP [1] 58.41 70.30 54.06 54.11 61.65 54.16 57.60 58.12 57.25
MVSNet [5] 43.48 53.96 34.69 25.07 50.09 55.90 50.86 47.90 28.55

CasMVSNet [6] 56.42 76.36 58.45 46.20 55.33 53.96 54.02 58.17 46.56
DDR-Net [47] 54.91 76.18 53.36 43.43 55.20 55.57 52.28 56.04 47.17
UCS-Net [28] 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89

AA-RMVSNet [8] 61.51 77.77 54.90 51.53 64.02 64.05 59.47 60.85 46.65
Fast-MVSNet [27] 47.39 65.18 39.59 34.98 47.81 49.16 46.20 53.27 42.91

UniMVSN [41] 64.36 81.20 66.43 53.11 63.46 66.09 64.84 62.23 57.53
CVP-MVSNet [46] 54.03 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54

PatchmatchNet [29] 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81
Effi-MVS [43] 56.88 72.21 51.02 51.78 58.63 58.71 56.21 57.07 49.38

DA-PatchmatchNet [44] 54.79 68.10 54.60 45.65 57.32 53.43 48.21 57.64 53.33
ET-MVSNet [48] 65.49 81.65 68.79 59.46 65.72 64.22 64.03 61.23 58.79

Ours 58.60 78.23 57.19 48.36 58.25 59.58 56.60 60.36 50.26

4.3.3. Computational Resource Consumption Analysis

To comprehensively evaluate the performance of the proposed model, this experiment
presents insights into memory consumption and runtime, comparing them with methods
such as AA-RMVSNet [8], CasMVSNet [6], and CIDER [34], as depicted in Figure 7.

Different methods exhibit varying memory usage on the DTU test set, as illustrated
in Figure 7a. Through comparison, it is found that our method consumes only 4.53 GB
of GPU memory, significantly less than other methods. Meanwhile, among all compared
methods, our approach achieves an overall error reduction to 0.315, demonstrating excellent
performance. Figure 7b shows the time required for depth map prediction across different
methods on the “Tanks&Temples” dataset. Our method computes in just 1.53 s, significantly
faster than CIDER. Additionally, our method achieves an F-score of 58.60, demonstrating
excellent overall performance.
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4.4. Ablation Study

In this section, a series of ablation studies are conducted on the DTU dataset to
validate the effectiveness of each component. The official point cloud reconstruction metrics
provided by the DTU dataset are employed as experimental benchmarks [38], with default
input image specifications set at 864 × 1152. Control variable methodology is employed to
isolate the impact of individual components on the overall network performance, ensuring
that other components are evaluated under the same experimental conditions.

4.4.1. Number of Views

This experiment, conducted on the DTU dataset, aims to evaluate the impact of
different input view counts (N = 3, 4, 5, 6) on reconstruction outcomes. As observed from
the results in Table 3, an increase in the number of views allows for the extraction of
more feature information, thereby enhancing reconstruction accuracy and completeness.
However, indiscriminate addition of views is not a prudent choice, as it not only consumes
computational resources but may also introduce unnecessary interference with the overall
reconstruction quality. Determining the optimal view count requires a careful balance
between performance improvement and efficiency maintenance.

Table 3. Effect of different view numbers on the experimental results.

N Acc. (mm) Comp. (mm) Overall (mm)

3 0.365 0.313 0.339
4 0.360 0.281 0.321
5 0.351 0.279 0.315
6 0.359 0.286 0.323

4.4.2. Cascaded U-Net Network (CU-Net)

The enhanced cascaded U-Net feature extraction module (CU-Net) excels in extracting
more precise and comprehensive multi-scale 2D features. It not only emphasizes overall
features but also focuses on effectively capturing local details, particularly in handling
low-texture areas. This addition enhances sensitivity to local details, leading to superior
feature information acquisition. As demonstrated in the experiments in Table 4, this module
significantly improves the model’s performance.

Table 4. Effect of CU-Net module on experimental results.

Algorithm Acc. (mm) Comp. (mm) Overall (mm)

None 0.405 0.326 0.366
CU-Net 0.351 0.279 0.315
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4.4.3. Dynamic Depth Range Sampling (DDRS)

Table 5 shows the comparative results of the ablation experiment for the dynamic
sampling module on the DTU dataset. It can be observed that the dynamic depth range
sampling module extends the depth sampling from 13.12 mm to 28.43 mm in stage 0.
The coverage of real depth values is also improved, increasing from 0.8468% to 0.8934%.
Additionally, even at lower sampling rates, the model’s comprehensive reconstruction error
decreases from 0.320 to 0.315. This indicates that measuring the uncertainty of sampling
with the entropy of the cost volume, and subsequently adjusting the depth sampling range,
allows for more accurate predictions along the object edges. This approach takes into
consideration the correlation between contextual information, features of neighboring
pixels, and the depth sampling range of the current pixel, resulting in enhanced precision.

Table 5. Quantitative comparison of ablation experiments on dynamic sampling module in DTU’s
test set (This experiment mainly analyzes stage 0).

Algorithm Hypo. Num Sampling Range (mm) Coverage Ratio (%) Overall (mm)

CasMVSNet 48, 32, 8 21.09 0.8441 0.355
DDRNet 48, 32, 8 19.24 0.8435 0.329

Ours 16, 8, 4 13.12 0.8468 0.320
Ours and DDRS 16, 8, 4 28.43 0.8934 0.315

4.4.4. Cost Volume Aggregation

In this experiment, we compare the cost volume construction method proposed in
this paper with two types of aggregation in learning-based multi-view stereo (MVS):
1. variance fusing [6,7,28], 2. CNN-based fusing [8,29].

Our method primarily establishes semantic correlations in 3D space through cross-
attention, enhancing the aggregation of image features from a greater number of input
views during the cost volume construction. Additionally, the cross-scale cost volume
communication module boosts information utilization, strengthening correlations among
cost volumes at different scales. As demonstrated in Table 6, our approach achieves
a relative improvement of 12.35%, 16.01%, and 16.19% in accuracy error, completeness
error, and overall error, respectively, compared to CNN aggregation. The reconstruction
performance of our method significantly surpasses the other two approaches.

Table 6. Quantitative results of different aggregation methods.

Method Acc. (mm) Comp. (mm) Overall (mm)

CNN Fusion 0.376 0.326 0.351
Variance Fusion 0.353 0.317 0.335

Ours 0.351 0.279 0.315

As depicted in Figure 8, compared to the original CasMVSNet [6] (the number of depth
samples is 48, 32, 8), the introduced cost volume aggregation module in our approach
helps mitigate the impact of errors, resulting in sharper and smoother edges in the depth
map. In Figure 8e, it is evident that our model’s predicted depth map is more complete,
demonstrating superior performance in handling low-texture regions and physical edges.

In Table 7, we conduct ablation study on two components employed in the cost volume
aggregation process. Both components show optimization effects on the Overall metric, as
evident from the results. It’snoteworthy that the introduction of the CVIE module leads to
higher memory usage, primarily due to the additional space required to store the cross-scale
cost volume. This addition also increases computation time. However, given the overall
performance improvement, the extra storage space is deemed worthwhile.
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Table 7. DTU dataset ablation study results’ comparison. Ablation study on the components used in
the cost volume aggregation process on the DTU dataset.

Settings
Overall (mm) Runtime (s) Param (G)

ET CVIE
√

0.331 0.21 1.12√
0.324 1.53 3.76√ √
0.315 1.17 4.53

4.4.5. L1 Loss and Cross-Entropy Loss

In this section, we experimentally compare our classification-based cross-entropy loss
(CE loss) with the commonly used regression-based L1 loss [5,6] on the DTU dataset. The
experimental results are presented in Table 8, where the depth error is calculated as the
average absolute difference between the predicted depth and the ground truth. Lower error
values indicate better performance. It can be observed that replacing the depth regression
approach with the multi-depth classification method reduces the depth error from 8.53 to
6.79, and consequently, the overall reconstruction error is further reduced. This validates
the effectiveness of the proposed module.

Table 8. Ablation study of L1 loss and cross-entropy loss on the DTU dataset.

Method Acc. (mm) Comp. (mm) Overall (mm) Depth Error

L1 loss 0.373 0.281 0.327 8.53
CE loss 0.351 0.279 0.315 6.79

In summary, the excellent reconstruction performance of our method is primarily
attributed to the appropriate number of input views, the cascaded U-Net module, the
epipolar transformer module, the dynamic depth sampling module, and the multi-stage
joint learning approach.

5. Conclusions

This paper proposes an uncertainty-epipolar Transformer multi-view stereo network
(U-ETMVSNet) for object stereo reconstruction. Initially, an enhanced Cascaded U-Net is
employed to bolster both feature extraction and query construction within the epipolar
Transformer. The epipolar Transformer, along with the cross-scale information exchange
module, enhances the correlation of cross-dimensional information during cost volume
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aggregation, ensuring 3D consistency in depth space. The dynamic adjustment of depth
sampling range based on the uncertainty of the probability volume also enhance stability
in reconstructing regions with weak texture, and the reconstruction performance remains
excellent even at lower depth sampling rates. Finally, the multi-stage joint learning method
based on multi-depth value classification solution also effectively improves the reconstruc-
tion accuracy. The proposed method in this paper exhibits excellent performance in terms
of completeness, accuracy, and generalization ability on the DTU and Tanks&Temples
datasets, comparable to existing mainstream CNN-based MVS networks. However, the
algorithm retains common 3D CNN regularization modules, resulting in no significant
advantage in terms of memory usage. Future work aims to explore the role of Transformers
in dense feature matching to replace CNN regularization, enhancing the practicality of
deploying the model on mobile devices.
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